北师大版九年级数学上册中考正方形新题赏析-精品
- 格式:doc
- 大小:140.00 KB
- 文档页数:4
2022-2023学年北师大版九年级数学上册《1.3正方形的性质与判定》同步练习题(附答案)一.选择题1.正方形具有而矩形不一定具有的性质是()A.对角线相等B.四个角都是直角C.对角线互相垂直D.两组对边分别平行2.下列说法正确的是()A.正方形既是矩形,又是菱形B.有一个内角是直角的四边形是矩形C.两条对角线互相垂直平分的四边形是正方形D.对角线互相垂直的四边形是菱形3.如图,已知四边形ABCD是平行四边形,下列结论正确的是()A.当AB=BC时,四边形ABCD是矩形B.当AC⊥BD时,四边形ABCD是矩形C.当AC⊥BD时,四边形ABCD是菱形D.当∠ABC=90°时,四边形ABCD是正方形4.在正方形ABCD中,BF平分∠DBC交CD于F点,则∠DBF的度数是()A.15°B.22.5°C.30°D.45°5.如图,点E、F分别是正方形ABCD的边CD、BC上的点,且CE=BF,AF、BE相交于点G,下列结论不正确的是()A.AF=BE B.AF⊥BEC.AG=GE D.S△ABG=S四边形CEGF6.如图,点E,F,P,Q分别是正方形ABCD的四条边上的点,并且AF=BP=CQ=DE,则下列结论不一定正确的是()A.∠AFP=∠BPQB.EF∥QPC.四边形EFPQ是正方形D.四边形PQEF的面积是四边形ABCD面积的一半7.如图1是由一根细铁丝围成的正方形,其边长为1.现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.0B.2.5C.2.0D.1.58.如图,已知正方形ABCD的边长为4,P是对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接AP,EF.给出下列结论:①PD=EC;②四边形PECF的周长为8;③AP=EF;④EF的最小值为2.其中正确结论有几个()A.1B.2C.3D.49.如图,在平面直角坐标系xOy中,P(4,4),A、B分别是x轴正半轴、y轴正半轴上的动点,且△ABO的周长是8,则P到直线AB的距离是()A.4B.3C.2.5D.210.如图四块同样大小的正方形纸片,围出一个菱形ABCD,一个小孩顺次在这四块纸片上轮流走动,每一步都踩在一块纸片的中心,则这个小孩走的路线所围成的图形是()A.平行四边形B.矩形C.菱形D.正方形二.填空题11.如图,已知阴影部分是一个正方形,AB=4,∠B=45°,则此正方形的面积为.12.添加一个条件,使矩形ABCD是正方形,这个条件可能是.13.如图,平行四边形ABCD的对角线互相垂直,要使ABCD成为正方形,还需添加的一个条件是(只需添加一个即可)14.边长为4的一个正方形和一个等边三角形如图摆放,则△ABC的面积为.15.如图,正方形ABCD内部有一个等边△ABE,则∠DAE=°.16.如图,正方形ABCD的顶点B、C都在直角坐标系的x轴上,点D的坐标是(2,3),则点B的坐标是.17.如图,点D,E,F分别是△ABC三边的中点,连接AD,DE,DF,有下列结论:①四边形AEDF一定是平行四边形;②若∠BAC=90°,则四边形AEDF是矩形;③若AD平分∠BAC,则四边形AEDF是正方形;④若AD⊥BC,则四边形AEDF是菱形.其中正确的有.(填序号)三.解答题18.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且AB=4,CF=1.(1)求AE,EF,AF的长;(2)求证:∠AEF=90°.19.如图,在正方形ABCD中,PD=QC,求证:PB=AQ,BP⊥AQ.20.四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交线段BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图,求证:矩形DEFG是正方形;(2)若AB=2,CE=2,求CG的长.参考答案一.选择题1.解:∵正方形的性质为:对边平行且相等,四条边相等,四个角为直角,对角线互相垂直平分,相等,且每条对角线平分一组对角,矩形的性质为:对边平行且相等,四个角为直角,对角线互相平分,相等,∴正方形具有而矩形不一定具有的性质是:对角线互相垂直,故选:C.2.解:A.正方形既是矩形,又是菱形,正确,符合题意;B.有一个内角是直角的四边形是矩形,错误,不符合题意;C.两条对角线互相垂直平分的四边形是正方形,错误,不符合题意;D.对角线互相垂直的四边形是菱形,错误,不符合题意.故选:A.3.解:A、∵四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形,故本选项不符合题意;B、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项不符合题意;C、∵四边形ABCD是平行四边形,又∵AC⊥BD,∴四边形ABCD是菱形,故本选项符合题意;D、∵四边形ABCD是平行四边形,又∵∠ABC=90°,∴四边形ABCD是矩形,故本选项不符合题意;故选:C.4.解:∵BD是正方形ABCD的对角线,∴∠DBC=45°.∵BF平分∠DBC,∴∠DBF=∠DBC=22.5°.故选:B.5.解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠C=90°,∵BF=CE,∴△ABF≌△BCE(SAS),∴AF=BE,∠BAG=∠CBE,∴选项A不符合题意;∵∠ABG+∠CBE=∠ABC=90°,∴∠BAG+∠ABG=90°,∴∠AGB=90°,∴AF⊥BE,∴选项B不符合题意;∵△ABF≌△BCE,∴S△ABF=S△BCE,∴S△ABF﹣S△BFG=S△BCE﹣S△BFG,∴S△ABG=S四边形CEGF,∴选项D不符合题意;∵无法证明AG=GE,∴选项C符合题意;故选:C.6.解:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD,∵AF=BP=CQ=DE,∴DF=CE=BQ=AP,∴△APF≌△DFE≌△CEQ≌△BQP(SAS),∴EF=FP=PQ=QE,∠AFP=∠BPQ,故A选项正确,不符合题意;∵EF=FP=PQ=QE,∴四边形EFPQ是菱形,∴EF∥PQ,故B选项正确,不符合题意;∵△APF≌△BQP,∴∠AFP=∠BPQ,∵∠AFP+∠APF=90°,∴∠APF+∠BPQ=90°,∴∠FPQ=90°,∴四边形EFPQ是正方形.故C选项正确,不符合题意;∵四边形PQEF的面积=EF2,四边形ABCD面积=AB2,若四边形PQEF的面积是四边形ABCD面积的一半,则EF2=AB2,即EF=AB.若EF≠AB,则四边形PQEF的面积不是四边形ABCD面积的一半,故D选项不一定正确,符合题意.故选:D.7.解:∵由一根细铁丝围成的正方形,其边长为1,∴该细铁丝的长度为4.∴AC+BC+AB=4,∴AC+BC=4﹣AB.∵AC+BC>AB,∴4﹣AB>AB,∴AB<2.∴AB的长可能为1.5,故选:D.8.解:如图,连接PC,①∵正方形ABCD的边长为4,P是对角线BD上一点,∴∠ABC=∠ADC=∠BCD=90°,∠PDC=∠DBC=45°,AB=BC=CD=AD=4,又∵PE⊥BC,PF⊥CD,∴∠PEC=∠PEB=∠PFC=∠PFD=90°=∠BCD,∴∠DPF=∠PDF=∠BPE=∠DBC=45°,∴PF=DF,PE=BE,即△PDF和△BPE均为等腰直角三角形,∴PD=PF,∵∠PEC=∠PFC=∠BCD=90°,∴四边形PECF是矩形,∴CE=PF=DF,PE=FC,∴PD=CE,故①正确;②由①知:PE=BE,且四边形PECF为矩形,∴四边形PECF的周长=2CE+2PE=2CE+2BE=2(CE+BE)=2BC=2×4=8,故②正确;③∵四边形PECF为矩形,∴PC=EF,∵四边形ABCD为正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,,∴△ADP≌△CDP(SAS),∴AP=PC,∴AP=EF,故③正确;④由③得:EF=PC=AP,∴当AP最小时,EF最小,∴当AP⊥BD时,垂线段最短,即AP=BD=2时,EF的最小值等于2;故④错误;综上,①②③正确.故选:C.9.解:方法一:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,设OB=a,OA=b,AB=c,P到直线AB的距离是h,∵△ABO的周长是8,∴a+b+c=8,∴a+b=8﹣c,∴a2+2ab+b2=64﹣16c+c2根据勾股定理得:a2+b2=c2,∴ab=32﹣8c,∵S△P AB=4×4﹣ab﹣4(4﹣b)﹣4(4﹣a)=2(a+b)﹣ab=2(8﹣c)﹣(32﹣8c)=16﹣2c﹣16+4c=2c,∵S△P AB=×c•h,∴2c=×c•h,∴h=4.∴P到直线AB的距离为4.方法二:如图,过点P作PC⊥x轴,PD⊥y轴,垂直分别为C,D,∵P(4,4),∴四边形CODP是边长为4的正方形,∴PC=PD=OC=OD=4,∵A、B分别是x轴正半轴、y轴正半轴上的动点,∴将△P A′D沿P A′折叠得到△P A′E,延长A′E交y轴于点B,∴∠P A′D=∠P A′E,PE=PD,A′D=A′E,∠PDA′=∠PEA′=90°,∴PE=PC,在Rt△PEB和Rt△PCB中,,∴Rt△PEB≌Rt△PCB(HL),∴BE=BC,∵△A′BO的周长是8,∴A′O+BO+A′B=A′O+BO+BE+A′E=A′O+BO+BC+A′D=CO+DO=8,∴△A′BO符合题意中的△ABO,∴P到直线AB的距离PE=4,故选:A.10.解:如图,根据题意,顺次连接四个正方形的中心,所构成的图形是正方形,所以这个小孩走的路线所围成的图形是正方形.故选:D.二.填空题11.解:∵阴影部分是一个正方形,∴∠ACB=90°,∵∠B=45°,∴△ABC是等腰直角三角形,∴AC===2,∴正方形的面积为(2)2=8,故答案为:8.12.解:AB=AD(或AC⊥BD答案不唯一).理由:∵四边形ABCD是矩形,又∵AB=AD,∴四边形ABCD是正方形.或∵四边形ABCD是矩形,又∵AC⊥BD,∴四边形ABCD是正方形,故答案为:AB=AD(或AC⊥BD答案不唯一).13.解:条件为∠ABC=90°或AC=BD,理由是:∵平行四边形ABCD的对角线互相垂直,∴四边形ABCD是菱形,∵∠ABC=90°或AC=BD,∴四边形ABCD是正方形,故答案为:∠ABC=90°或AC=BD.14.解:过C作CD⊥AB交AB延长线与D,如图:∵∠CBD=180﹣90°﹣60°=30°,∠D=90°,∴CD=BC=×4=2,∴△ABC的面积为AB•CD=×4×2=4,故答案为:4.15.解:∵四边形ABCD是正方形,∴∠DAB=90°,∵△ABE是等边三角形,∴∠DAE=∠DAB﹣∠EAB=90°﹣60°=30°,故答案为:30.16.解:∵四边形ABCD为正方形,∴AD=CD=BC=AB,∵点D的坐标是(2,3),∴AD=CD=BC=3,OC=2,∴OB=1,∴点B的坐标是(﹣1,0).故答案为:(﹣1,0).17.解:①∵点D、E、F分别是△ABC三边的中点,∴DE、DF为△ABC的中位线,∴ED∥AC,且ED=AC=AF;DF∥AB,且DF=AB=AE,∴四边形AEDF一定是平行四边形,故正确;②若∠BAC=90°,则平行四边形AEDF是矩形,故正确;③若AD平分∠BAC,则∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠BAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,∴不能判定四边形AEDF是正方形,故错误;④若AD⊥BC,则AD垂直平分BC,∴AB=AC,∵AB=AC,AD⊥BC,∴AD平分∠BAC,即∠BAD=∠CAD,∵DE∥AC,∴∠CAD=∠ADE,∴AE=DE,又∵四边形AEDF是平行四边形,∴四边形AEDF是菱形,故正确.故答案为:①②④.三.解答题18.(1)解:∵四边形ABCD是正方形,∴∠B=∠C=∠D=90°,∵E为AB的中点,∴BE=CE=2,∴AE===2,EF===,AF===5;(2)证明:∵AE2+EF2=20+5=25,AF2=52=25,∴AE2+EF2=AF2,∴∠AEF=90°.19.证明:由题意可得:AD=AB=BC=DC,∠BAD=∠ADC=∠ABC=∠C=90°,∵PD=QC,∴AP=DQ,在△ADQ和△BAP中,,∴△ADQ≌△BAP(SAS),∴BP=AQ,∠APB=∠AQD,∵∠DAQ+∠AQD=90°,∴∠DAQ+∠APB=90°,∴BP⊥AQ,∴BP=AQ,BP⊥AQ.20.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,,∴Rt△EQF≌Rt△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)解:如图2,在Rt△ABC中,AB=2,∴AC=AB=4,∵CE=2,∴AE=4﹣2=2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴CG=CE=2.。
课时练第1单元正方形的性质与判定一.选择题1.如图,正方形ABCD中,对角线AC,BD相交于点O,H为CD边中点,正方形ABCD 的周长为8,则OH的长为()A.4B.3C.2D.12.如图,四边形ABCD、CEFG均为正方形,其中正方形ABCD面积为8cm2,图中阴影部分面积为5cm2,正方形CEFG面积为()A.14cm2B.16cm2C.18cm2D.20cm23.如图,平行四边形ABCD中,对角线AC、BD相交于点O,则下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是矩形D.当AC垂直平分BD时,它是正方形4.如图,在边长为4的正方形ABCD中,点E、F分别是边BC、CD上的动点.且BE=CF,连接BF、DE,则BF+DE的最小值为()A.B.C.D.5.正方形具有而菱形不具有的性质是()A.对角线平分一组对角B.对角线相等C.对角线互相垂直平分D.四条边相等6.如图,在正方形ABCD中,E点是对角线BD上的一点,AE的延长线交CD于点F,连接CE,若∠BAE=56°,则∠CEF的度数为()A.30°B.79°C.22°D.81°7.如图,四边形ABCD是正方形,以CD为边长向正方形外作等边△CDE,AC与BE相交于点F,则∠AFD的度数为()A.65°B.60°C.50°D.45°8.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相垂直且相等9.如图,正方形ABCD的对角线AC,BD交于点O,P为边BC上一点,且2BP=AC,则∠COP的度数为()A.15°B.22.5°C.25°D.17.5°10.下列说法正确的是()A.矩形对角线相互垂直平分B.对角线相等的菱形是正方形C.两邻边相等的四边形是菱形D.一条对角线分别平分对角的四边形是平行四边形11.如图,在正方形ABCD中,点E、F分别在边CD、AD上,BE与CF交于点G.若BC =8,DE=AF=2,则FG的长为()A.B.C.D.12.正方形ABCD中,点E、F分别在CD、BC边上,△AEF是等边三角形.以下结论:①EC=FC;②∠AED=75°;③AF=CE;④EF的垂直平分线是直线AC.正确结论个数有()个.A.1B.2C.3D.4二.填空题13.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.14.如图,正方形AFCE中,D是边CE上一点,B是CF延长线上一点,且AB=AD,若四边形ABCD的面积是24cm2,则AC长是cm.三.解答题15.如图,在正方形ABCD中,点P是BC延长线上一点,连结AP,过点B作BE⊥AP于点E,过点D作DF⊥AP于点F.(1)证明:△ABE≌△DAF;(2)若AB=10,∠P=30°,求EF的长.16.如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.已知:如图,在Rt△ABC中,∠ACB=90°,CD平分∠ACB,DE⊥BC,DF⊥AC,垂足分别为E、F,求证:四边形CFDE是正方形.18.如图,四边形ABCD为正方形,E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)若AB=2,CE=,求CG的长度.19.如图,平行四边形ABCD中,AD=9cm,CD=3cm,∠B=45°,点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6)(1)求BC边上高AE的长度;(2)连接AN、CM,当t为何值时,四边形AMCN为菱形;(3)作MP⊥BC于P,NQ⊥AD于Q,当t为何值时,四边形MPNQ为正方形.20.如图,已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG,DE.(1)求证:BG=DE;(2)连接BD,若CG∥BD,BG=BD,求∠BDE的度数.21.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,点E,F分别是垂足.(1)求证:AP=PC;(2)若∠BAP=60°,PD=,求PC的长.参考答案一.选择题1.D2.C3.D4.C5.B6.C7.B8.B9.B10.B11.A12.D二.填空题13.814.4.三.解答题15.(1)证明:∵四边形ABCD是正方形,∴AD=AB,∵BE⊥AP,DF⊥AP,∴∠AEB=∠DF A=90°,∴∠ABE+∠BAE=∠BAE+∠F AD=90°,∴∠ABE=∠DF A,∴△ABE≌△DAF(AAS);(2)解:∵四边形ABCD是正方形,∠APB=30°,∴AD∥BC,∴∠DAP=∠APB=30°,∵DF⊥AP,∴DF=AD==5,在Rt△ADF中,由勾股定理,得AF===5,∵△ABE≌△DAF,∴AE=DF=5,∴EF=5.16.解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.17.证明:∵∠ACB=90°,DE⊥BC,DF⊥AC,∴四边形CFDE是矩形.又∵CD平分∠ACB,DE⊥BC,DF⊥AC,∴DE=DF.∴四边形CFDE是正方形(有一组邻边相等的矩形是正方形).18.(1)证明:如图1,作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在△EQF和△EPD中,,∴△EQF≌△EPD(ASA),∴EF=ED,∴矩形DEFG是正方形;(2)如图2中,在Rt△ABC中,AC=AB=2,∵CE=,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,∴四边形DECG是正方形,∴CG=CE=.19.解:(1)∵四边形ABCD是平行四边形,∴AB=CD=3cm.在直角△ABE中,∵∠AEB=90°,∠B=45°,∴AE=3(cm);(2)∵点M、N分别以A、C为起点,1cm/秒的速度沿AD、CB边运动,设点M、N运动的时间为t秒(0≤t≤6),∴AM=CN=t,∵AM∥CN,∴四边形AMCN为平行四边形,∴当AN=AM时,四边形AMCN为菱形.∵BE=AE=3,EN=6﹣t,∴AN2=32+(6﹣t)2,∴32+(6﹣t)2=t2,解得t=.故当t为时,四边形AMCN为菱形;(3)∵MP⊥BC于P,NQ⊥AD于Q,QM∥NP,∴四边形MPNQ为矩形,∴当QM=QN时,四边形MPNQ为正方形.∵AM=CN=t,BE=3,∴AQ=EN=BC﹣BE﹣CN=9﹣3﹣t=6﹣t,∴QM=AM﹣AQ=|t﹣(6﹣t)|=|2t﹣6|(注:分点Q在点M的左右两种情况),∵QN=AE=3,∴|2t﹣6|=3,解得t=4.5或t=1.5.故当t为4.5或1.5秒时,四边形MPNQ为正方形.20.(1)证明:∵四边形ABCD和四边形CEFG为正方形,∴BC=DC,CG=CE,∠BCD=∠GCE=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE(SAS),∴BG=DE;(2)连接BE,∵CG∥BD,∴∠DCG=∠BDC=45°,∴∠BCG=∠BCD+∠DCG=90°+45°=135°.∵∠GCE=90°,∴∠BCE=360°﹣∠BCG﹣∠GCE=360°﹣135°﹣90°=135°,∴∠BCG=∠BCE.∵CG=CE,BC=BC,∴△BCG≌△BCE(SAS),∴BG=BE.∵由(1)可知BG=DE,∴BD=BE=DE,∴△BDE为等边三角形,∴∠BDE=60°.21.(1)证明:∵ABCD是正方形,∴∠C=90°,∵PE⊥CD,PF⊥BC,∴四边形PFCE是矩形,∴EF=PC,在△ABP和△CBP 中,,∴△ABP≌△CBP(SAS),∴AP=CP;(2)解:∵由(1)知△ABP≌△CBP,∴∠BAP=∠BCP=60°,∴∠PCE=30°,∵四边形ABCD是正方形,BD是对角线,∴∠PDE=45°,∵PE⊥CD,∴DE=PE,∵PD =,∴PE=1,∴PC=2PE=2.11/11。
北师大版九年级数学上册第一章特殊平行四边形3.正方形的性质与判定正方形的判定专题练习题1.下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形2.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是() A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC3. 已知四边形ABCD是平行四边形,再从①AB=BC,②∠ABC=90°,③AC=BD,④AC ⊥BD四个条件中,选两个作为补充条件后,使得四边形ABCD是正方形,现有下列四种选法,其中错误的是()A.选①②B.选②③C.选①③D.选②④4.如图,只要把一张矩形纸片的一个角沿折痕AE翻折上去,使AB和AD边上的AF重合,则四边形ABEF就是一个正方形,判断的依据是____________________________.5.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是__________________.6.黑板上画有一个图形,学生甲说它是多边形,学生乙说它是平行四边形,学生丙说它是菱形,学生丁说它是矩形,老师说这四位同学的答案都正确,则黑板上画的图形是__________.7.对角线________的菱形是正方形,对角线________的矩形是正方形,对角线________________的平行四边形是正方形,对角线的四边形是正方形.8.已知:如图,△ABC中,∠ABC=90°,BD是∠ABC的平分线,DE⊥AB于点E,DF ⊥BC于点F.求证:四边形DEBF是正方形.9.如图,在△ABC中,点D,E分别是边AB,AC的中点,将△ADE绕点E旋转180°得到△CFE.(1)求证:四边形ADCF是平行四边形;(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.10.四边形ABCD的对角线AC=BD,AC⊥BD,分别过点A,B,C,D作对角线的平行线,所成的四边形EFMN是()A.正方形B.菱形C.矩形D.任意四边形11.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF12.如图,将一张长方形纸片对折两次,然后剪下一个角,打开.如果要剪出一个正方形,那么剪口线与折痕成________度角.13.如图,以边长为1的正方形的四边中点为顶点作四边形,再以所得四边形的四边中点为顶点作四边形,…依次作下去,图中所作的第三个四边形的周长为________;所作的第n 个四边形的周长为________.14.如图,正方形ABCD的边长为6,菱形EFGH的三个顶点E,G,H分别在正方形ABCD 的边AB,CD,DA上,且AH=2,连接CF.若DG=2,求证:菱形EFGH为正方形.15.如图,正方形CEFG的边GC在正方形ABCD的边CD上,延长CD到H,使DH=CE,K在BC边上,且BK=CE,求证:四边形AKFH为正方形.答案:1---3 DCB4. 有一组邻边相等的矩形是正方形5. AC=BD6. 正方形7. 相等互相垂直互相垂直且相等互相垂直平分且相等8.证明:∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°.又∵∠ABC=90°,∴四边形BEDF为矩形.∵BD是∠ABC的平分线,且DE⊥AB,DF⊥BC,∴DE=DF,∴矩形BEDF为正方形.9. (1)证明:∵△CFE是由△ADE绕点E旋转180°得到的,∴A,E,C三点共线,D,E,F三点共线,且AE=CE,DE=FE,故四边形ADCF是平行四边形;(2)解:当∠ACB=90°,AC=BC时,四边形ADCF是正方形.理由如下:在△ABC中,∵AC=BC,AD=BD,∴CD⊥AB,即∠ADC=90°.由(1)知,四边形ADCF是平行四边形,∴四边形ADCF是矩形.又∵∠ACB=90°,∴CD=12AB=AD,故四边形ADCF是正方形10. A11. D12. 4513. 2 4(2 2)n14.证明:∵四边形ABCD是正方形,∴∠D=∠A=90°.∵四边形EFGH是菱形,∴HG =HE.∵DG=AH=2,∴Rt△HDG≌Rt△EAH,∴∠DHG=∠AEH.又∵∠AEH+∠AHE=90°,∴∠DHG+∠AHE=90°,∴∠GHE=90°,∴菱形EFGH为正方形.15.证明:∵四边形ABCD和四边形CEFG是正方形,∴AB=BC=CD=AD,∠BAD=∠DCB=∠B=∠ADC=90°,∠GCE=∠E=∠GFE=∠CGF=90°,∴∠ADH=∠HGF=∠E=∠B=90°.又∵DH=CE,BK=CE,∴BK=GF=DH=EF,KE=GH=AB=AD,∴△ABK ≌△KEF≌△HGF≌△ADH,∴AK=KF=HF=AH,∠BAK=∠DAH.∵∠BAD=90°,∴∠HAK=∠HAD+∠DAK=∠BAK+∠DAK=∠BAD=90°,∴四边形AKFH为正方形.。
重难点专项突破:正方形中的十字架模型【知识梳理】【考点剖析】一.解答题(共10小题)1.(2022•越秀区校级一模)如图,正方形ABCD中,点P,Q分别为CD,AD边上的点,且DQ=CP,连接BQ,AP.求证:BQ⊥AP.【分析】根据题意证明△ABQ≌△DAP即可.【解答】解:在正方形ABCD中,AB=AD=CD,∠BAD=∠ADC=90°,∵DQ=CP,∴AD﹣DQ=CD﹣CP,∴AQ=DP,∴△ABQ≌△DAP(SAS),∴∠DAP=∠ABQ,∵∠DAP+∠BAP=90°,∴∠ABQ+BAP=90°,∴BQ⊥AP.【点评】本题考查正方形的性质,熟练掌握正方形中的“十字架”模型是解题关键.2.(2022•湘潭县校级模拟)如图,有两个动点E,F分别从正方形ABCD的两个顶点B,C同时出发,以相同速度分别沿边BC和CD移动,问:在E,F移动过程中,AE与BF的位置和大小有什么关系吗?并给予证明.【考点】正方形的性质;全等三角形的判定与性质.版权所有【分析】由题中已知的四边形ABCD为正方形,根据正方形的性质,可得一对直角边和一对直角的对应相等,又根据两个动点E,F以相同速度分别沿边BC和CD移动,得到CF=BC,利用“SAS”证得△ABE≌△BCF,由全等三角形的对应角和对应边分别相等可得,AE=BF,∠EAB=∠FBC,利用转化的方法可得∠AOB=90°,从而得到AE与BF的关系为相互垂直且相等;【解答】解:AE与BF的位置关系是:垂直;大小关系是:相等.证明:∵四边形ABCD为正方形,∴AB=BC,∠ABC=∠BCD=90°,又动点E,F分别从正方形ABCD的两个顶点B,C同时出发,以相同速度分别沿边BC和CD移动,∴BE=CF,在△ABE和△BCF中,,∴△ABE≌△BCF(SAS),∴∠EAB=∠FBC,AE=BF,∵∠CBF+∠ABO=90°,∴∠EAB+∠ABO=90°,在△ABO中,∠AOB=180°﹣(∠EAB+∠ABO)=90°,∴AE⊥BF.【点评】此题考查了全等三角形的判定与性质,以及正方形的性质,要求学生会从动态变化中找出相等的量,确定相等关系,构造全等三角形,利用转化的思想,从而达到解题的目的.解本题的关键是根据已知条件得出三角形ABE与三角形BCF全等.3.(2023•运城二模)综合与实践:问题情境:在数学活动课上,老师出了这样一道题:在矩形ABCD中,AB=6,BC=10,将矩形ABCD绕着点C顺时针旋转α到矩形CEFG的位置,点D 恰好在边CG上.问题解决:(1)如图1,连接AC,CF,AF,AF与CG交于点H.①α的值为,AF=;②求GH的长.(2)如图2,若将四边形ABCP沿渞直线CP折叠,得到四边形A′PCB′,使得点B的对应点B′恰好在EF上,点A的对应点为A′,点G在A′P上,求AP的长.【考点】解直角三角形的应用;翻折变换(折叠问题).版权所有【分析】(1)①根据矩形的每一个角都是直角,以及点D恰好在边CG上和得出旋转角α的度数;②先由旋转的性质可得出:AC=ACF=90°,然后在Rt△ABC中由勾股定理求出AC的长,进而即可求出AF的长;(2)连接B′G,先求出CB’的长,进而可求出FB',再利用勾股定理可求出B′G,A′G,然后设AP=y,则A′P=y,GP=x﹣2,DP=10﹣x,GD=4,最后在Rt△GDP中由勾股定理列出关于x的方程即可得出答案.【解答】解:(1)①∵四边形ABCD为矩形,AB=6,BC=10,∠BCD=∠B=∠ADC=90°,∴AD=BC=10,CD=AB=6,当矩形ABCD绕着点C顺时针旋转α到矩形CEFG的位置,点D恰好在边CG上时,旋转角α=∠BCD=90°,由旋转的性质可知:点A与点F为旋转前、后的对应点,∴AC=CF,∠ACF=90°,在Rt△ABC中,AB=6,BC=10,由勾股定理得:,∴,在Rt△ACF中,,由勾股定理得:.②由旋转的性质可知:CG=BC=10,∠G=∠B=90°,FG=AB=6,∴GD=CG﹣CD=10﹣6=4,设GH=x,则HD=GD﹣GH=4﹣x,∵∠G=∠ADC=90°,∴GF∥AD,∴△GHF∽△DHA,∴FG:AD=GH:HD,∴FG•HD=AD•GH,∵FG=6,HD=4﹣x,AD=10,GH=x,∴6•(4﹣x)=10x,解得:x=1.5,∴GH=1.5.故答案为:①90°,;②1.5.(2)连接B′G.由旋转的性质可知:CE=CD=6,EF=AD=10,由翻折的性质可知:CB'=CB=10,A'B'=AB=6,AP=A'P,在Rt△CEB'中,CE=6,CB'=10,由勾股定理得:.∴FB'=EF﹣EB'=2,在Rt△GFB'中,FB'=2,FG=6,由勾股定理得:,在Rt△A′GB′中,A'B'=6,,由勾股定理得:.设AP=y,则A′P=y,∴GP=A′P﹣A′G=x﹣2,DP=AD﹣AP=10﹣x,GD=CG﹣CD=10﹣6=4.在Rt△GDP中,由勾股定理得:DP2+DG2=PG2,∴(10﹣y)2+42=(y﹣2)2,解得:y=7,∴AP=7.【点评】此题主要考查了图形的旋转变换及性质,图形的翻折变换及性质,矩形的性质,相似三角形的判定及性质,勾股定理的应用等,解答此题的关键是准确识图,熟练掌握图形的旋转、翻折变换,难点是设置适当的未知数,灵活利用勾股定理进行计算.4.(2023•遵义模拟)【问题探究】如图1,在正方形ABCD中,点E、F分别在边DC、BC上,且AE⊥DF,求证:AE=DF.【知识迁移】如图2,在矩形ABCD中,AB=3,BC=4,点E在边AD上,点M、N分别在边AB、CD 上,且BE⊥MN,求的值.【拓展应用】如图3,在平行四边形ABCD中,AB=m,BC=n,点E、F分别在边AD、BC上,点M、N分别在边AB、CD上,当∠EFC与∠MNC的度数之间满足什么数量关系时,有试写出其数量关系,并说明理由.【考点】相似形综合题.版权所有【分析】【问题探究】利用ASA证明△ADE≌△DCF,得AE=DF;【知识迁移】过点N作NO⊥AB于点O,利用△ABE∽△ONM,得,即可得出答案;【拓展应用】作AG∥EF,交BC于G,NH∥BC,交AB于H,说明△ABG∽△NHM,得,且四边形AEFG、HNCB是平行四边形,进而解决问题.【解答】【问题探究】证明:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠BCD=90°,∠AED+∠DAE=90°,∵AE⊥DF,∴∠AED+∠CDF=90°,∴∠DAE=∠CDF,在△ADE与△DCF中,,∴△ADE≌△DCF(ASA),∴AE=DF;【知识迁移】解:如图,过点N作NO⊥AB于点O,∴∠BMN+∠MNO=90°,∵BE⊥MN,∴∠BMN+∠MBE=90°,∴∠MNO=∠MBE,∠BMN=∠AEB,在△ABE与△MNO中,∠MNO=∠MBE,∠BMN=∠AEB,∴△ABE∽△ONM,∴,∵ON=BC,∴;【拓展应用】解:当∠EFC=∠MNC时,,作AG∥EF,交BC于G,NH∥BC,交AB于H,则∠EFC=∠AGC,∠MNC+∠BMN=180°,∠MHN=∠ABC,∵∠AGB+∠AGC=180°,∴∠AGB=∠NMH,∴△ABG∽△NHM,∴,∵HN∥BC,AB∥CD,AG∥EF,AD∥BC,∵四边形AEFG、HNCB是平行四边形,∴AG=EF,MN=BC,∴当∠EFC=∠MNC时,.【点评】本题是相似形综合题,主要考查了正方形的性质,平行四边形的判定与性质,相似三角形的判定与性质,熟练掌握正方形中的十字架模型是解题的关键.5.(2023•湘潭县三模)已知点E、F分别是四边形ABCD边AB、AD上的点,且DE与CF相交于点G.(1)如图①,若AB∥CD,AB=CD,∠A=90°,且AD•DF=AE•DC,求证:∠CGE=90°;(2)如图②,若AB∥CD,AB=CD,且∠A=∠EGC时,求证:DE•CD=CF•DA;(3)如图③,若BA=BC=3,DA=DC=4,设DE⊥CF,当∠BAD=90°时,直接写出的值.【考点】相似形综合题.版权所有【分析】(1)根据矩形的判定知四边形ABCD是矩形,利用两边成比例且夹角相等的两个三角形相似,可知△ADE∽△DCF,则∠ADE=∠DCF,从而证明结论成立;(2)首先可知△GDF∽△ADE,得,再通过△DCF∽△GCD,得,进而解决问题;(3)作CN⊥AD于点N,CM⊥AB交AB的延长线于点M,连接BD,设CN=x,可知四边形AMCN是矩形,利用SSS证明△ABD≌△CBD,得∠BCD=∠BAD=90°,根据△BCN∽△DCN,得,则CM=x,在Rt△BCM中,利用勾股定理列方程,再利用(1)中基本模型解决问题.【解答】(1)证明:∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵∠A=90°,∴四边形ABCD是矩形,∴∠A=∠FDC=90°,∵AD•DF=AE•DC,∴,∴△ADE∽△DCF,∴∠ADE=∠DCF,∴∠ADE+∠DFC=∠DCF+∠DFC=∴∠DGF=90°,∴∠CGE=∠DGF=90°;(2)证明:∵∠DGF=∠EGC,∠A=∠EGC,∴∠DGF=∠A,∴∠GDF=∠ADE,∴△GDF∽△ADE,∴,∴,∵AB∥CD,∴∠AED=∠CDG,∵∠AED=∠CFD,∴∠CFD=∠CDG,∵∠DCF=∠GCD,∴△DCF∽△GCD,∴,∴,∴DE•CD=CF•DA;(3)解:如图,作CN⊥AD于点N,CM⊥AB交AB的延长线于点M,连接BD,设CN=x,∵∠BAD=∠AMC=∠ANC=90°,∴四边形AMCN是矩形,∴CM=AN,AM=CN=x,∠MCN=90°,∵BA=BC=3,DA=DC=4,BD=BD,∴△ABD≌△CBD(SSS),∴∠BCD=∠BAD=90°,∴∠BCM=∠DCN=90°﹣∠BCN,∴∠M=∠CND=90°,∴△BCN∽△DCN,∴,∴CM=x,在Rt△BCM中,由勾股定理得,∴(x﹣3),解得x=或x=0(不合题意舍去),∴CN=,∵DE⊥CF,∴∠DGF=90°,∴∠CFN+∠ADE=90°,∵∠DEA+∠ADE=90°,∴∠DEA=∠CFN,∴∠A=∠CNF=90°,∴△ADE∽△NCF,∴.【点评】本题是相似形综合题,主要考查了矩形的判定与性质,平行四边形的性质,全等三角形的判定与性质,相似三角形的判定与性质等知识,构造模型、应用模型解决问题是解题的关键.6.(2022•天桥区一模)(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则的值为;(2)如图2,在矩形ABCD中,AD=5,CD=3,点E是AD上的一点,连接CE,BD,且CE⊥BD,则的值为;(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE的垂线交ED的延长线于点G,交AD的延长线于点F,求证:;(4)如图4,在Rt△ABD中,∠BAD=90°,AB=3,AD=9,将△ABD沿BD翻折,点A落在点C处得△CBD,点E,F分别在边AB,AD上,连接DE,CF,DE⊥CF.请问.是定值吗?若是,直接写出这个定值,若不是,请说明理由.【考点】相似形综合题.版权所有【分析】(1)根据正方形的性质,利用ASA证明△ADE≌△DCF,得DE=CF,从而得出答案;(2)首先根据同角的余角相等知∠ADB=∠DCE,则△ADB∽△DCE,得;(3)过点作CH⊥AD,交AD延长线于H,利用两个角相等可证明△ADE∽△HCF,得;(4)连接AC交BD于H,CF与DE交于G,CF与DB交于P,首先可证明△ACF∽△BDE,得,再利用勾股定理求出BD,面积法求出AC的长,从而得出答案.【解答】(1)解:∵四边形ABCD是正方形,∴AD=DC,∠A=∠FDC=90°,∵DE⊥CF,∴∠ADE+∠DFC=90°,∠DFC+∠DCF=90°,∴∠ADE=∠DCF,在△ADE与△DCF中,,∴△ADE≌△DCF(ASA),∴DE=CF,∴,故答案为:1;(2)解:∵四边形ABCD为矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠ADB+∠CED=90°,∠CED+∠DCE=90°,∴∠ADB=∠DCE,∴△ADB∽△DCE,∴,故答案为:;(3)证明:如图,过点作CH⊥AD,交AD延长线于H,∵∠H=∠A=∠B=90°,∴四边形ABCH为矩形,∴CH=AB,∵CG⊥EG,∴∠G=90°=∠A=∠H,∵∠ADE=∠GDF,∵∠GFD=∠HFC,∴∠ADE=∠HCF,∴△ADE∽△HCF,∴;(4)解:是定值,理由如下:连接AC交BD于H,CF与DE交于G,CF与DB交于P,∵将△ABD沿BD翻折,点A落在点C处得△CBD,∴AC⊥BD,∴∠BAH+∠CAF=90°,∠BAH+∠EBD=90°,∠CHP=90°,∴∠CAF=∠DBE,∵CF⊥DE,∴∠PGD=90°=∠CHP,∵∠HPC=∠GPD,∴∠ACF=∠BDE,∴△ACF∽△BDE,∴,∵AB=3,AD=9,由勾股定理得BD==3,∴,∴AH=,∴AC=2AH=,∴.【点评】本题是相似形综合题,主要考查了正方形和矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.7.(2022春•潮阳区期末)(1)如图1,在正方形ABCD中,AE、DF相交于点O且AE⊥DF则AE和DF 的数量关系为.(2)如图2,在正方形ABCD中,E、F、G分别是边AD、BC、CD上的点,BG⊥EF,垂足为H.求证:EF=BG.(3)如图3,在正方形ABCD中,E、F、M分别是边AD、BC、AB上的点,AE=2,BF=5,BM=1,将正方形沿EF折叠,点M的对应点恰好与CD边上的点N重合,求CN的长度.【考点】四边形综合题.版权所有【分析】(1)证明∠BAE=∠ADF,则△ABE≌△DAF(AAS),即可求解;(2)证明△BCG≌EMF△(ASA),即可求解;(3)证明知△EHF≌△MGN(ASA),则NG=HF,而AE=2,BF=5,故NG=HF=5﹣2=3,进而求解.【解答】解:(1)∵∠DAO+∠BAE=90°,∠DAO+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AE=DF,故答案为AE=DF;(2)如图1,故点E作EM⊥BC于点M,则四边形ABME为矩形,则AB=EM,在正方形ABCD中,AB=BC,∴EM=BC,∵EM⊥BC,∴∠MEF+∠EFM=90°,∵BC⊥EM,∴∠CBG+∠EFM=90°,∴∠CBG=∠MEF,在△BCG和△EMF中,,∴△BCG≌△EMF(ASA),∴BG=EF;(3)如图2,连接MN,∵M、N关于EF对称,∴MN⊥EF,过点E作EH⊥BC于点H,过点M作MG⊥CD于点G,则EH⊥MG,由(2)同理可得:△EHF≌△MGN(ASA),∴NG=HF,∵AE=2,BF=5,∴NG=HF=5﹣2=3,又∵GC=MB=1,∴NC=NG+CG=3+1=4.【点评】本题为四边形综合题,主要考查的是三角形全等和正方形的性质,有一定的综合性,难度适中.8.(2023春•青秀区校级期中)在正方形ABCD中:(1)已知:如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M,求证:AE=BF.(2)如图②,如果点E、F、G分别在BC、CD、DA上,且GE⊥BF,垂足M,那么GE、BF相等吗?证明你的结论.(3)如图③,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M,那么GE、HF 相等吗?证明你的结论.【考点】正方形的性质;全等三角形的判定与性质.版权所有【分析】(1)根据正方形的性质,得到∠ABE=∠BCF=90°,AB=BC,进而得到∠BAE=∠CBF,则△ABE≌△BCF,进一步根据全等三角形的性质进行证明;(2)过点A作AN∥GE,可证四边形ANEG是平行四边形,根据平行四边形的对边相等可得AN=GE,由(1)的结论可知AN=BF,所以GE=BF;(3)分别过点A、B作AP∥GE,BQ∥HF,可证四边形APEG、四边形BQFH为平行四边形,根据平行四边形的对边相等可得AP=GE,BQ=HF,由(1)的结论可知AP=BQ,所以GE=HF.【解答】(1)证明:∵四边形ABCD是正方形,AE⊥BF,∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,∴∠BAE=∠CBF,∵在△ABE和△BCF中,,∴△ABE≌△BCF(AAS),∴AE=BF;(2)GE=BF.证明:如图②,过点A作AN∥GE,∵AD∥BC,∴四边形ANEG是平行四边形,∴AN=GE,∵GE⊥BF,∴AN⊥BF,由(1)可得△ABN≌△BCF,∴AN=BF,∴GE=BF;(3)GE=HF.证明:如图③,分别过点A、B作AP∥GE,BQ∥HF,∵AD∥BC,AB∥DC,∴四边形APEG、四边形BQFH为平行四边形,∴AP=GE,BQ=HF,∵GE⊥HF,∴AP⊥BQ,由(1)可得△ABP≌△BCQ,∴AP=BQ,∴GE=HF.【点评】本题主要考查了正方形的性质和全等三角形的判定,熟练掌握正方形性质确定三角形全等的条件是解题的关键,(2)(3)两题通过作辅助线构造成(1)的形式是得解的关键.9.(2020秋•漳州期中)(1)如图1,在正方形ABCD中,AE,DF相交于点O且AE⊥DF.则AE和DF的数量关系为.(2)如图2,在正方形ABCD中,E,F,G分别是边AD,BC,CD上的点,BG⊥EF,垂足为H.求证:EF=BG.(3)如图3,在正方形ABCD中,E,F,M分别是边AD,BC,AB上的点,AE=2,BF=4,BM=1,将正方形沿EF折叠,点M的对应点与CD边上的点N重合,求CN的长度.【考点】四边形综合题.版权所有【分析】(1)证明∠BAE=∠ADF,则△ABE≌△DAF(ASA),即可求解;(2)由正方形的性质得出∠CBG=∠MEF,证明△BCG≌△EMF(ASA),即可求解;(3)证明△EHF≌△MGN(ASA),则NG=HF,而AE=2,BF=4,故NG=HF=4﹣2=2,进而求解.【解答】解:(1)依题意得:∠DAO+∠BAE=90°,∠DAO+∠ADF=90°,∴∠BAE=∠ADF,在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴AE=DF,故答案为:AE=DF;(2)如图1,过点E作EM⊥BC于点M,则AB=EM,∵AB=BC,∴EM=BC,∵EM⊥BC,∴∠MEF+∠EFM=90°,∵BC⊥EM,∴∠CBG+∠EFM=90°,∴∠CBG=∠MEF,在△BCG和△EMF中,,∴△BCG≌△EMF(ASA),∴EF=BG;(3)如图2,连接MN,∵MN⊥EF,过点E作EH⊥BC于点H,过点M作MG⊥CD于点G,由(2)同理可得:△EHF≌△MGN(ASA),∴NG=HF,∵AE=2,BF=4,∴NG=HF=4﹣2=2,∴NC=NG+CG=2+1=3.∴CN的长度为3.【点评】本题为四边形综合题,考查了直角三角形的性质,全等三角形的判定与性质,正方形的性质,轴对称的性质,熟练掌握正方形的性质是解题的关键.【过关检测】一.解答题(共13小题)1.如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.【考点】正方形的性质;全等三角形的判定与性质.版权所有【分析】由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED =90°,从而证出AF⊥DE.【解答】证明:∵四边形ABCD为正方形,∴DA=AB,∠DAE=∠ABF=90°,又∵AE=BF,∴△DAE≌△ABF,∴∠ADE=∠BAF,(4分)∵∠ADE+∠AED=90°,∴∠FAE+∠AED=90°,∴∠AGE=90°,∴AF⊥DE.(3分)【点评】本题考查了正方形的性质以及全等三角形.2.如图,在正方形ABCD中,E,F分别是边AD,DC上的点,且AF⊥BE.求证:AF=BE.【考点】全等三角形的判定与性质;正方形的性质.版权所有【分析】根据正方形的性质可得AB=AD,∠BAE=∠D=90°,再根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,再根据全等三角形的证明即可.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠D=∠BAE=90°,∵BE⊥AF,∴∠ABE+∠BAF=90°,∠DAF+∠=90°∴∠ABE=∠DAF,在△ABE和△DAF中,,∴△ABE≌△DAF(ASA),∴BE=AF.【点评】本题考查了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.3.如图,在正方形ABCD中,点E、F分别在BC、CD上,BE=CF,连接AE、BF相交于点G.现给出了四个结论:①AE=BF;②∠BAE=∠CBF;③BF⊥AE;④AG=FG.请在这些结论中,选择一个你认为正确的结论,并加以证明.结论:BF⊥AE.【考点】正方形的性质;全等三角形的判定与性质.版权所有【分析】根据正方形的性质证明三角形的全等,选择一个正确的答案进行证明即可.【解答】解:正确结论:①②③;证明:在正方形ABCD中,AB=BC,∠ABE=∠C=90,又∵BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF∠BAE=∠CBF,∴∠FBC+∠BEG=∠BAE+∠BEG=90°,∴∠BGE=90°,∴BF⊥AE.故答案为:BF⊥AE.【点评】本题的考点是:正方形的性质、证明线段的相等、线段垂直和三角形全等.4.已知:正方形ABCD.(1)如图①,E,F分别是边CD,AD上的一点,且AE⊥BF,求证:AE=BF.(2)M,N,E,F分别在边AB,CD,AD,BC上,且MN=EF,那么MN⊥EF?请画图表示,并作简要说明:(3)将正方形ABCD折叠,使得点A落在边CD上的E点,折痕为MN,若已知该正方形边长为12,MN的长为13,求CE的长.【考点】四边形综合题.版权所有【分析】(1)由正方形的性质得出AB=AD,∠BAF=∠ADE=90°,证出∠ABF=∠DAE,由ASA证明△BAF ≌△ADE,得出对应边相等即可;(2)过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,由正方形的性质可得EG=MP,先利用“HL”证明Rt△EFG≌Rt△MNP,由全等三角形对应角相等可得∠MNP=∠EFG,再由角的关系推出∠EQM=∠MNP,由∠MNP+∠NMP=90°得出∠NMP+∠EQM=90°,得出∠MOQ=90°,由垂直的定义得出MN⊥EF,当E向D移动,F向B移动,同样使MN=EF,此时就不垂直;(3)连接AE时,则线段MN垂直平分AE,过点B作BF∥MN,则BF=MN,且AE⊥BF,由(1)知AE=BF=MN=13,由勾股定理求出DE,即可得出CE的长.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAF=∠ADE=90°,∵AE⊥BF,∴∠BAE+∠ABF=90°,∵∠BAE+∠DAE=90°,∴∠ABF=∠DAE,在△BAF和△ADE中,,∴△BAF≌△ADE(ASA),∴AE=BF;(2)解:MN与EF不一定垂直;如图1所示,当MN=EF时,MN⊥EF,如图2所示,当MN=EF时,MN与EF就不垂直了;理由如下:过点E作EG⊥BC于点G,过点M作MP⊥CD于点P,设EF与MN相交于点O,MP与EF相交于点Q,∵四边形ABCD是正方形,∴EG=MP,在Rt△EFG和Rt△MNP中,,∴Rt△EFG≌Rt△MNP(HL),∴∠MNP=∠EFG,∵MP⊥CD,∠C=90°,∴MP∥BC,∴∠EQM=∠EFG=∠MNP,又∵∠MNP+∠NMP=90°,∴∠EQM+∠NMP=90°,在△MOQ中,∠MOQ=180°﹣(∠EQM+∠NMP)=180°﹣90°=90°,∴MN⊥EF,当E向D移动,F向B移动,同样使MN=EF,此时就不垂直,故此,MN与EF不一定垂直;(3)解:如图3所示,连接AE,则线段MN垂直平分AE,过点B作BF∥MN,则四边形MNBF是平行四边形,∴BF=MN,且AE⊥BF,由(1)知AE=BF=MN=13,由勾股定理得:DE===5,∴CE=CD﹣DE=12﹣5=7.【点评】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理、平行四边形的判定与性质等知识;本题难度较大,综合性强.5.探究一:如图1,已知正方形ABCD,E、F分别是BC、AB上的两点,且AE⊥DF.小明经探究,发现AE=DF.请你帮他写出证明过程.探究二:如图2,在矩形ABCD中,AB=3,BC=4,E、G分别在边BC、AD上,F、H分别在边AB、CD上,且GE⊥FH.小明发现,GE与FH并不相等,请你帮他求出的值.探究三:小明思考这样一个问题:如图3,在正方形ABCD中,若E、G分别在边BC、AD上,F、H分别在边AB、CD上,且GE=FH,试问:GE⊥FH是否成立?若一定成立,请给予证明;若不一定成立,请画图并作出说明.【考点】四边形综合题.版权所有【分析】探究一、求出∠ADF=∠BAE,∠DAF=∠ABE=90°,求出△ADF≌△DAE即可;探究二、作GM⊥BC于M,FN⊥CD于N,证出△GME∽△FNH即可;探究三、画出图形,即可得出答案.【解答】探究一证明:∵四边形ABCD是正方形,∴∠DAF=∠ABE=90°,AD=AB,∴∠DAE+∠BAE=90°,∵AE⊥DF,∴∠DAE+∠ADF=90°,∴∠ADF=∠BAE,在△ADF和△BAE中,,∴△ADF≌△DAE(ASA),∴AE=DF;探究二、解:作GM⊥BC于M,FN⊥CD于N,如图2,则GM=AB=3,FN=AD=4,∠GME=∠FNH=∠GOF=90°,∴∠EGM+∠GQO=90°,∠HFN+∠FQR=90°,∵∠FQR=∠GQO,∴∠HFN=∠EGM,∵∠GME=∠FNH,∴△GME∽△FNH,∴=,又∵AB=GM=3,FN=BC=4,∴=;探究三、解:不一定成立,如图3,当在GE时,GE和FH垂直,当在G′E′时,G′E′和FH就不垂直.【点评】本题考查了矩形性质,全等三角形的性质和判定,相似三角形的性质和判定的应用,主要考查学生的推理能力.6.问题背景某课外学习小组在一次学习研讨中,得到如下命题:①如图1,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN.②如图2,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN.然后运用类比的思想提出了如下的命题:③如图3,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN.任务要求(1)请你对命题③进行证明;(2)请你继续完成下面的探索:如图4,在五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN 相交于点O,当∠BON=108°时,请问结论BM=CN是否还成立?若成立,请给予证明;若不成立,请说明理由.【考点】四边形综合题.版权所有【分析】(1)根据正五边形性质得出∠D=∠BCM=108°,BC=CD,求出∠CBM=∠DCN,根据ASA推出△BCM≌△CDN即可;(2)连接CE,BD,根据正五边形性质得出∠AED=∠EDC=∠BCD=108°,ED=DC=BC,求出N、E、M、O四点共圆,求出∠ENC=∠BMD,证△BCD≌△CDE,推出BD=CE,∠DEC=∠BDC,求出∠NEC=∠MDB,根据AAS证△ECN≌△DBM,即可得出答案.【解答】(1)证明:∵五边形ABCDE是正五边形,∴∠D=∠BCM==108°,BC=CD,∵∠BON=108°,∴∠BON=∠CBM+∠BCN=108°,∠BCD=∠BCN+∠DCN=108°,∴∠CBM=∠DCN,在△BCM和△CDN中,,∴△BCM≌△CDN(ASA),∴BM=CN.(2)BM=CN还成立,理由是:连接CE,BD,∵五边形ABCDE是正五边形,∴∠AED=∠EDC=∠BCD=108°,ED=DC=BC,∵∠BON=108°,∴∠NOM+∠AED=180°,∴N、E、M、O四点共圆,∴∠ENC+∠EMB=180°,∵∠EMB+∠DMB=180°,∴∠ENC=∠BMD,在△BCD和△CDE中,,∴△BCD≌△CDE(SAS),∴BD=CE,∠DEC=∠BDC,∵∠EDC=∠AED=108°,∴∠AED﹣∠DEC=∠CDE﹣∠CDB,即∠NEC=∠MDB,在△ECN和△DBM中,,∴△ECN≌△DBM(AAS),∴BM=CN,即BM=CN还成立.【点评】本题考查了四点共圆,圆内接四边形的性质,全等三角形的性质和判定,正多边形的性质的应用,主要考查学生的推理能力.7.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;(3)如图3,在(2)的条件下,连接GF、HD.求证:①FG+BE≥BF;②∠HGF=∠HDF.【考点】四边形综合题.版权所有【分析】(1)证△ABE≌△BCF,推出AE=BF,∠BAE=∠CBF,求出∠CBF+∠AEB=90°,求出∠BHE=90°即可;(2)过点A作AM∥GE交BC于M,证△ABM≌△BCF,推出AM=BF,根据AM∥GE且AD∥BC推出AM =GE即可;(3)①过点B作BN∥FG,且使BN=FG,连接NG、NE,根据四边形NBFG是平行四边形的性质求出BF=NG,BF∥NG,求出△NGE为等腰直角三角形,由勾股定理得NE=NG,即NE=BF,即可求出答案;②证G、H、F、D四点共圆,根据圆周角定理得出∠HGF=∠HDF即可.【解答】(1)解:AE=BF且AE⊥BF,理由是:∵四边形ABCD是正方形,∴∠ABE=∠C=90°,AB=BC,∵在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠BHE=180°﹣90°=90°,∴AE⊥BF.(2)BF=GE,证明:过点A作AM∥GE交BC于M,∵EG⊥BF,∴AM⊥BF,∴∠BAM+∠ABF=90°,∵正方形ABCD,∴AB=BC,AD∥BC,∠ABC=∠BCD=90°,∴∠CBF+∠ABF=90°,∴∠BAM=∠CBF,∵在△ABM和△BCF中,∴△ABM≌△BCF(ASA),∴AM=BF,∵AM∥GE且AD∥BC,∴AM=GE,∴BF=GE;(3)证明:①:过点B作BN∥FG,且使BN=FG,连接NG、NE,∴四边形NBFG是平行四边形,∴BF=NG,BF∥NG,由(2)可知,BF⊥GE,且BF=GE,∴NG⊥EG且NG=EG,∴△NGE为等腰直角三角形,由勾股定理得NE=NG,∴NE=BF,当点F与点D不重合,点E与点C不重合时,N、B、E三点不共线,此时,在△BEN中,NB+BE>NE,即FG+BE>BF,当点F与点D重合,点E与点C重合时,N、B、E三点共线,此时,NB+BE=NE,即FG+BE=BF;②证明:∵正方形ABCD∴∠ADC=90°以GF为直径作⊙P,则点D在⊙P上∵∠GHF=90°∴点H也在⊙P上∴∠HGF=∠HDF.【点评】本题考查了圆周角定理,正方形性质,勾股定理,等腰直角三角形的性质和判定,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理和计算的能力.8.(1)如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.(2)如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.求GH的长.【考点】正方形的性质;全等三角形的判定与性质.版权所有【分析】(1)根据∠AOF=90°,利用同角的余角相等得出∠EAB=∠FBC,再根据ASA即可证出△FBC≌△EAB;(2)过A作AM∥GH,交BC于M,过B作BN∥EF,交CD于N,AMBN交于点O′,利用平行四边形的判定,可知四边形AMHG和四边形BNFE是▱,那么AM=GH,BN=EF,由于∠EOH=90°,结合平行线的性质,可知∠AO′N=90°,那么此题就转化成(1),求△BCN≌△ABM即可;【解答】(1)证明:∵正方形ABCD中,∴AB=BC,∠ABE=∠BCF=90°,∵∠AOF=90°,∠AOB=90°,∴∠BAE+∠OBA=90°,又∵∠FBC+∠OBA=90°,∴∠BAE=∠CBF(同角的余角相等),∴△ABE≌△BCF(ASA).∴BE=CF;(2)解:如图,过点A作AM∥GH交BC于M,过点B作BN∥EF交CD于N,AM与BN交于点O′,则四边形AMHG和四边形BNFE均为平行四边形,∴EF=BN,GH=AM,∵∠FOH=90°,AM∥GH,EF∥BN,∴∠NO′A=90°,故由(1)得,△ABM≌△BCN=BN,∴GH=EF=4;【点评】本题利用了正方形的性质、平行四边形的判定、平行线的性质、全等三角形的判定和性质等知识,关键是作辅助线,构造全等三角形.9.如图1,正方形ABCD中,E、F分别是CD、AD上的点,且满足AF=DE,连接BF、AE,交点为O,(1)请判断AE与BF的关系,并证明你的结论.(2)如图2,连接BE、EF,若G、H、P、Q分别是AB、BE、EF、F A的中点,试说明四边形GHPQ是正方形.【考点】正方形的性质;正方形的判定;全等三角形的判定与性质.版权所有【分析】(1)根据条件证明△ABF≌△DAE,利用全等的性质证明AE=BF,AE⊥BF;(2)由(1)的结论可知,四边形ABEF的对角线互相垂直且相等,根据三角形中位线的性质可证明四边形GHPQ是正方形.【解答】解:(1)AE=BF,AE⊥BF.证明:在△ABF和△DAE中,∵,∴△ABF≌△DAE(SAS),∴BF=AE,∠BFA=∠AED,又∠EAD+∠AED=90°,∴∠BFA+∠AED=90°,∴AE⊥BF;(2)理由:由(1)可知四边形ABEF的对角线互相垂直且相等,∵GQ为△ABF的中位线,∴GQ=BF,GQ∥BF,同理可证PH=BF,PH∥BF,即PH=GQ,PH∥GQ,四边形PQGH为平行四边形,易证PQ=AE=BF=PH,∴▱PQGH菱形,∵AE⊥BF,∴PQ⊥PH,菱形PQGH为正方形.【点评】本题考查了正方形的性质,与判定,全等三角形的判定与性质.关键是利用正方形的性质证明三角形全等,利用性质证明AE与BF的相等与垂直关系.10.在正方形ABCD中:(1)如图①,点E、F分别在BC、CD上,且AE⊥BF,垂足为M.求证:AE=BF.(2)如图②,如果点E、F、G、H分别在BC、CD、DA、AB上,且GE⊥HF,垂足M.那么GE、HF 相等吗?证明你的结论.(3)如图③,在等边三角形ABC中,点E、F分别在BC、CA上,且BE=CF,你能猜想∠AMF的度数吗?证明你的结论.【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.版权所有【分析】有三角形的直接证明三角形全等,没三角形的构造直角三角形,利用正方形的性质证明三角形全等;对于第4问也是证明三角形全等,再用角等量代换求解.【解答】(1)证明:∵AE⊥BF,∴∠BAE+∠ABM=90°,∠CBF+∠ABM=90°,∴∠BAE=∠CBF,在△BAE和△CBF中,△BAE≌△CBF(AAS),∴AE=BF;(2)结论:HF=GE分别过G、H作GT⊥BC、HN⊥CD,∴GT⊥HN,∴∠FHN+∠HPO=90°,∠EGT+∠GPM=90°,∠GPM=∠HPO,∴∠FHN=∠EGT,∵HN=GT,∠GTE=∠NHF=90°,在△GTE与△HNF中,,∴△GTE≌△HNF,∴GE=HF;(3)结论:∠AMF=60°.在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴∠BAE=∠CBF,∴∠ABE=∠BME=60°,∴∠AMF=∠BME=60°.【点评】本题考查正方形的性质,全等三角形的判定和性质以及作辅助线的能力和适时等量代换的能力.11.如图,有两个动点E,F分别从正方形ABCD的两个顶点B,C同时出发,以相同速度分别沿边BC和CD移动,问:(1)在E,F移动过程中,AE与BF的位置和大小有何关系?并给予证明;(2)若AE和BF相交点O,图中有多少对相似三角形?请把它们写出来.【考点】相似三角形的判定;全等三角形的判定与性质;正方形的性质.版权所有【分析】(1)两个动点E,F以相同速度分别沿边BC和CD移动,所以CF=BE,△ABE≌△BCF(SAS)可得,AE=BF,∠AOB=90°,AE与BF的关系式相互垂直且相等;(2)由(1)中的相等关系可知相似三角形有△ABO∽△BEO△ABO∽△AEB△BEO∽△BFO△ABE∽△BCF△ABO∽△BFC.【解答】解:(1)在正方形ABCD中,AB=BC,∠ABC=∠BCD=90°,∵BE=CF,∴△ABE≌△BCF(SAS).∴∠EAB=∠FBC,AE=BF.∵∠CBF+∠ABO=90°,∴∠EAB+∠ABO=90°.在△ABO中,∠AOB=180°﹣(∠EAB+∠ABO)=90°,∴AE⊥BF.(2)有6对相似三角形,△ABO∽△BEO;△ABO∽△AEB;△BEO∽△BFC;△ABE∽△BCF;△ABO∽△BFC;△BOE∽△ABE【点评】考查了相似三角形和全等三角形的判定,会从动态变化中找出相等的量,确定相等关系,利用相似三角形判定定理进行判定.12.问题背景:某课外学习小组在一次学习研讨中,得到了如下两个命题:①如图a,在正三角形ABC中,M、N分别是AC、AB上的点,BM与CN相交于点O,若∠BON=60°,则BM=CN;②如图b,在正方形ABCD中,M、N分别是CD、AD上的点,BM与CN相交于点O,若∠BON=90°,则BM=CN;然后运用类比的思想提出了如下命题:③如图c,在正五边形ABCDE中,M、N分别是CD、DE上的点,BM与CN相交于点O,若∠BON=108°,则BM=CN;任务要求:(1)请你从①,②,③三个命题中选择一个进行证明;(说明选①做对的得4分,选②做对的得3分,选③做对的得5分)(2)请你继续完成下面的探索:ⅰ、如图d,在正n(n≥3)边形ABCDEF…中,M、N分别是CD、DE上的点,BM与CN相交于点O,试问当∠BON等于多少度时,结论BM=CN成立?(不要求证明)ⅱ、如图e,在正五边形ABCDE中,M、N分别是DE、AE上的点,BM与CN相交于点O,若∠BON=108°时,试问结论BM=CN是否还成立?若成立,请给予证明;若不成立.请说明理由.【考点】四边形综合题.版权所有【分析】(1)正三角形ABC BM=CN,由于∠BON=∠MBC+∠BCO=60°,而∠ACB=∠ACN+∠OCB=60°,因此∠ACN=∠MBC,又知道∠A=∠BCM=60°,AC=BC,因此△ACN≌△CBM,可得出BM=CN;正方形和正五边形的证明过程与正三角形的一样,都是通过全等三角形来得出线段的相等,证三角形的过程中都是根据∠BON和多边形的内角相等得出一组两三角形中的一组对应角相等,然后根据正多边形的内角和边相等,得出BCM和CND全等,进而得出BM=CN;(2)①由(1)的证明过程可知道∠MON的度数应该是正多边形的内角的度数,当∠BON=时,结论BM=CN成立,②可参照(1)先得出三角形BCD和CDE全等,然后通过证三角形CEN和BDM全等来得出结论,在证三角形CEN和BDM全等的过程中也是通过∠BON与正五边形的内角相等得出一组对应角相等,然后根据正五边形的内角减去第一对全等三角形中得出的相等角来得出另一组对应角相等,可通过△BCD≌△CDE得出CE =BD,那么可得出三角形CEN和BDM全等,由此可得证.【解答】解:(1)选命题①。
特殊的平行四边形知识点名师点晴矩形1.矩形的性质会从边、角、对角线方面通过合情推理提出性质猜想,并用演绎推理加以证明;能运用矩形的性质解决相关问题.2.矩形的判定会用判定定理判定平行四边形是否是矩形及一般四边形是否是矩形菱形1.菱形性质能应用这些性质计算线段的长度2.菱形的判别能利用定理解决一些简单的问题正方形1.正方形的性质了解平行四边形、矩形、菱形、正方形及梯形之间的相互关系,能够熟练运用正方形的性质解决具体问题2.正方形判定掌握正方形的判定定理,并能综合运用特殊四边形的性质和判定解决问题,发现决定中点四边形形状的因素,熟练运用特殊四边形的判定及性质对中点四边形进行判断,并能对自己的猜想进行证明☞2年中考【2015年题组】1.(2015崇左)下列命题是假命题的是()A.对角线互相垂直且相等的平行四边形是正方形.B.对角线互相垂直的矩形是正方形.C.对角线相等的菱形是正方形.D.对角线互相垂直平分的四边形是正方形.【答案】D.考点:1.正方形的判定;2.平行四边形的判定;3.菱形的判定;4.矩形的判定. 2.(2015连云港)已知四边形ABCD ,下列说法正确的是( ) A .当AD=BC ,AB ∥DC 时,四边形ABCD 是平行四边形 B .当AD=BC ,AB=DC 时,四边形ABCD 是平行四边形 C .当AC=BD ,AC 平分BD 时,四边形ABCD 是矩形 D .当AC=BD ,AC ⊥BD 时,四边形ABCD 是正方形 【答案】B . 【解析】试题分析:∵一组对边平行且相等的四边形是平行四边形,∴A 不正确; ∵两组对边分别相等的四边形是平行四边形,∴B 正确; ∵对角线互相平分且相等的四边形是矩形,∴C 不正确;∵对角线互相垂直平分且相等的四边形是正方形,∴D 不正确; 故选B .考点:1.平行四边形的判定;2.矩形的判定;3.正方形的判定. 3.(2015徐州)如图,菱形中,对角线AC 、BD 交于点O ,E 为AD 边中点,菱形ABCD 的周长为28,则OE 的长等于( )A .3.5B .4C .7D .14 【答案】A . 【解析】试题分析:∵菱形ABCD 的周长为28,∴AB=28÷4=7,OB=OD ,∵E 为AD 边中点,∴OE是△ABD 的中位线,∴OE=12AB=12×7=3.5.故选A .考点:菱形的性质. 4.(2015柳州)如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE ⊥EF ,AE=EF ,现有如下结论:①BE=12GE ;②△AGE ≌△ECF ;③∠FCD=45°;④△GBE ∽△ECH其中,正确的结论有( )A .1个B .2个C .3个D .4个 【答案】B .考点:1.全等三角形的判定与性质;2.正方形的性质;3.相似三角形的判定与性质;4.综合题.5.(2015内江)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.3B.23C.26D.6【答案】B.考点:1.轴对称-最短路线问题;2.最值问题;3.正方形的性质.6.(2015南充)如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )A .1:2B .1:3C .1:2D .1:3【答案】D . 【解析】试题分析:如图,设AC ,BD 相较于点O ,∵菱形ABCD 的周长为8cm ,∴AB=BC=2cm ,∵高AE 长为3cm ,∴BE=22AB AE -=1(cm ),∴CE=BE=1cm ,∴AC=AB=2cm ,∵OA=1cm ,AC ⊥BD ,∴OB=22AB OA -=3(cm ),∴BD=2OB=23cm ,∴AC :BD=1:3.故选D .考点:菱形的性质.7.(2015安徽省)如图,矩形ABCD 中,AB =8,BC =4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是( ) A .25 B .35 C .5 D .6【答案】C .考点:1.菱形的性质;2.矩形的性质.8.(2015十堰)如图,正方形ABCD 的边长为6,点E 、F 分别在AB ,AD 上,若CE=53,且∠ECF=45°,则CF 的长为( )A .102B .53C 5103D 1053【答案】A .考点:1.全等三角形的判定与性质;2.勾股定理;3.正方形的性质;4.综合题;5.压轴题. 9.(2015鄂州)在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A3B3C3D3…按如图所示的方式放置,其中点B1在y 轴上,点C1、E1、E2、C2、E3、E4、C3…在x 轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…则正方形A2015B2015C2015D2015的边长是( )A .201421)(B .201521)( C .201533)( D .201433)(【答案】D .考点:1.正方形的性质;2.规律型;3.综合题. 10.(2015广安)如图,已知E 、F 、G 、H 分别为菱形ABCD 四边的中点,AB=6cm ,∠ABC=60°,则四边形EFGH 的面积为 cm2.【答案】93.【解析】试题分析:连接AC ,BD ,相交于点O ,如图所示,∵E 、F 、G 、H 分别是菱形四边上的中点,∴EH=12BD=FG ,EH ∥BD ∥FG ,EF=12AC=HG ,∴四边形EHGF 是平行四边形,∵菱形ABCD 中,AC ⊥BD ,∴EF ⊥EH ,∴四边形EFGH 是矩形,∵四边形ABCD 是菱形,∠ABC=60°,∴∠ABO=30°,∵AC ⊥BD ,∴∠AOB=90°,∴AO=12AB=3,∴AC=6,在Rt △AOB 中,由勾股定理得:OB=22AB OA =33,∴BD=63,∵EH=12BD ,EF=12AC ,∴EH=33,EF=3,∴矩形EFGH 的面积=EF•FG=93cm2.故答案为:93.考点:1.中点四边形;2.菱形的性质. 11.(2015凉山州)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B (2,0),∠DOB=60°,点P 是对角线OC 上一个动点,E (0,﹣1),当EP+BP 最短时,点P 的坐标为 .【答案】(233-,23-).的交点,∴点P 的坐标为方程组3(13)1y x y x ⎧=⎪⎨⎪=-⎩的解,解方程组得:3323x y ⎧=⎪⎨=⎪⎩,所以点P 的坐标为(33,23-),故答案为:(233-,23).考点:1.菱形的性质;2.坐标与图形性质;3.轴对称-最短路线问题;4.动点型;5.压轴题;6.综合题. 12.(2015潜江)菱形ABCD 在直角坐标系中的位置如图所示,其中点A 的坐标为(1,0),点B 的坐标为(03,动点P 从点A 出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒0.5个单位长度的速度移动,移动到第2015秒时,点P 的坐标为 .【答案】(0.5,32.考点:1.菱形的性质;2.坐标与图形性质;3.规律型;4.综合题.13.(2015北海)如图,已知正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,点E 在DC 边的延长线上.若∠CAE=15°,则AE= .【答案】8. 【解析】试题分析:∵正方形ABCD 的边长为4,对角线AC 与BD 相交于点O ,∴∠BAC=45°,AB ∥DC ,∠ADC=90°,∵∠CAE=15°,∴∠E=∠BAE=∠BAC ﹣∠CAE=45°﹣15°=30°.∵在Rt △ADE 中,∠ADE=90°,∠E=30°,∴AE=2AD=8.故答案为:8. 考点:1.含30度角的直角三角形;2.正方形的性质. 14.(2015南宁)如图,在正方形ABCD 的外侧,作等边△ADE ,则∠BED 的度数是 .【答案】45°.考点:1.正方形的性质;2.等边三角形的性质.15.(2015玉林防城港)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【答案】9 2.【解析】试题分析:如图1所示,作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=12AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴'''BP BEAA AE=,即164BP=,BP=32,CP=BC﹣BP=332-=32,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣SBEP=9﹣12AD•DQ﹣12CQ•CP﹣12BE•BP=9﹣12×3×2﹣12×1×32﹣12×1×32=92,故答案为:92.考点:1.轴对称-最短路线问题;2.正方形的性质.16.(2015达州)在直角坐标系中,直线1y x =+与y 轴交于点A ,按如图方式作正方形A1B1C1O 、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线1y x =+上,点C1、C2、C3…在x 轴上,图中阴影部分三角形的面积从左到游依次记为1S 、2S 、3S 、…nS ,则nS 的值为 (用含n 的代数式表示,n 为正整数).【答案】232n -.故答案为:232n .考点:1.一次函数图象上点的坐标特征;2.正方形的性质;3.规律型;4.综合题. 17.(2015齐齐哈尔)如图,正方形ABCB1中,AB=1.AB 与直线l 的夹角为30°,延长CB1交直线l 于点A1,作正方形A1B1C1B2,延长C1B2交直线l 于点A2,作正方形A2B2C2B3,延长C2B3交直线l 于点A3,作正方形A3B3C3D4,…,依此规律,则A2014A2015= .【答案】20142(3).考点:1.相似三角形的判定与性质;2.正方形的性质;3.规律型;4.综合题.18.(2015梧州)如图,在正方形ABCD 中,点P 在AD 上,且不与A 、D 重合,BP 的垂直平分线分别交CD 、AB 于E 、F 两点,垂足为Q ,过E 作EH ⊥AB 于H . (1)求证:HF=AP ;(2)若正方形ABCD 的边长为12,AP=4,求线段EQ 的长.【答案】(1)证明见试题解析;(21010.【解析】考点:1.正方形的性质;2.全等三角形的判定与性质;3.勾股定理;4.综合题. 19.(2015恩施州)如图,四边形ABCD 、BEFG 均为正方形,连接AG 、CE . (1)求证:AG=CE ; (2)求证:AG ⊥CE .【答案】(1)证明见试题解析;(2)证明见试题解析. 【解析】 试题分析:(1)由ABCD 、BEFG 均为正方形,得出AB=CB ,∠ABC=∠GBE=90°,BG=BE ,得出∠ABG=∠CBE ,从而得到△ABG ≌△CBE ,即可得到结论;(2)由△ABG ≌△CBE ,得出∠BAG=∠BCE ,由∠BAG+∠AMB=90°,对顶角∠AMB=∠CMN ,得出∠BCE+∠CMN=90°,证出∠CNM=90°即可. 试题解析:(1)∵四边形ABCD 、BEFG 均为正方形,∴AB=CB ,∠ABC=∠GBE=90°,BG=BE ,∴∠ABG=∠CBE ,在△ABG 和△CBE 中,∵AB=CB ,∠ABG=∠CBE ,BG=BE ,∴△ABG ≌△CBE (SAS ),∴AG=CE ;(2)如图所示:∵△ABG ≌△CBE ,∴∠BAG=∠BCE ,∵∠ABC=90°,∴∠BAG+∠AMB=90°,∵∠AMB=∠CMN ,∴∠BCE+∠CMN=90°,∴∠CNM=90°,∴AG ⊥CE .考点:1.全等三角形的判定与性质;2.正方形的性质. 20.(2015武汉)已知锐角△ABC 中,边BC 长为12,高AD 长为8.(1)如图,矩形EFGH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K .①求EFAK 的值;②设EH=x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值;(2)若AB=AC ,正方形PQMN 的两个顶点在△ABC 一边上,另两个顶点分别在△ABC 的另两边上,直接写出正方形PQMN 的边长.【答案】(1)①32;②3(8)2S x x =-, S 的最大值是24;(2)245或24049.试题解析:(1)①∵EF ∥BC ,∴AK EF AD BC =,∴EF BC AK AD ==128=32,即EF AK 的值是32;考点:1.相似三角形的判定与性质;2.二次函数的最值;3.矩形的性质;4.正方形的性质;5.分类讨论;6.综合题;7.压轴题. 21.(2015荆州)如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F . (1)PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.【答案】(1)证明见试题解析;(2)90°;(3)AP=CE . 【解析】 试题分析:(1)先证出△ABP ≌△CBP ,得到PA=PC ,由PA=PE ,得到PC=PE ;(2)由△ABP ≌△CBP ,得到∠BAP=∠BCP ,进而得到∠DAP=∠DCP ,由PA=PC ,得到∠DAP=∠E ,∠DCP=∠E ,最后∠CPF=∠EDF=90°得到结论; (3)借助(1)和(2)的证明方法容易证明结论.考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的性质;4.探究型;5.综合题;6.压轴题.【2014年题组】 1.(2014·宜宾) 如图,将n 个边长都为2的正方形按如图所示摆放,点A1,A2,…An 分别是正方形的中心,则这n 个正方形重叠部分的面积之和是( )A .nB .n ﹣1C .(14)n ﹣1D .14n【答案】B . 【解析】试题分析:由题意可得一个阴影部分面积等于正方形面积的14,即是14×4=1,5个这样的正方形重叠部分(阴影部分)的面积和为:1×4,n 个这样的正方形重叠部分(阴影部分)的面积和为:1×(n ﹣1)=n ﹣1. 故选B .考点:1.正方形的性质2.全等三角形的判定与性质. 2.(2014·山东省淄博市)如图,矩形纸片ABCD 中,点E 是AD 的中点,且AE=1,BE 的垂直平分线MN 恰好过点C .则矩形的一边AB 的长度为( )A . 1B .2C .3D . 2【答案】C .考点:1.勾股定理;2.线段垂直平分线的性质;3.矩形的性质. 3.(2014山东省聊城市)如图,在矩形ABCD 中,边AB 的长为3,点E ,F 分别在AD ,BC 上,连接BE ,DF ,EF ,BD .若四边形BEDF 是菱形,且EF=AE+FC ,则边BC 的长为( )A .3B . 33 C .3 D 93【答案】B . 【解析】试题分析:∵四边形ABCD 是矩形,∴∠A=90°,即BA ⊥BF ,∵四边形BEDF 是菱形,∴EF ⊥BD ,∠EBO=∠DBF ,∴AB=BO=3,∠ABE=∠EBO ,∴∠ABE=∠EBD=∠DBC=30°,∴BE=23cos30BO=︒,∴BF=BE=23,∵EF=AE+FC ,AE=CF ,EO=FO∴CF=AE=3,∴BC=BF+CF=33,故选B .考点:1.矩形的性质;2.菱形的性质.4.(2014·广西来宾市)顺次连接菱形各边的中点所形成的四边形是( ) A . 等腰梯形 B . 矩形 C . 菱形 D . 正方形 【答案】B .考点:1.正方形的判定;2.三角形中位线定理;3.菱形的性质. 5.(2014·贵州铜仁市)如图所示,在矩形ABCD 中,F 是DC 上一点,AE 平分∠BAF 交BC 于点E ,且DE ⊥AF ,垂足为点M ,BE=3,AE=26,则MF 的长是( )A 15B 15C .1D . 15【答案】D .考点:1.相似三角形的判定与性质;2.角平分线的性质;3.勾股定理;4.矩形的性质.6.(2014·襄阳)如图,在矩形ABCD 中,点E ,F 分别在边AB ,BC 上,且AE=13AB ,将矩形沿直线EF 折叠,点B 恰好落在AD 边上的点P 处,连接BP 交EF 于点Q ,对于下列结论:①EF=2BE ;②PF=2PE ;③FQ=4EQ ;④△PBF 是等边三角形.其中正确的是( )A .①②B .②③C .①③D .①④ 【答案】D . 【解析】试题分析:∵AE=13AB ,∴BE=2AE .由翻折的性质得,PE=BE ,∴∠APE=30°.∴∠AEP=90°﹣30°=60°,∴∠BEF=12(180°﹣∠AEP )=12(180°﹣60°)=60°.∴∠EFB=90°﹣60°=30°.∴EF=2BE .故①正确. ∵BE=PE ,∴EF=2PE .∵EF>PF,∴PF>2PE.故②错误.由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°.∴BE=2EQ,EF=2BE.∴FQ=3EQ.故③错误.由翻折的性质,∠EFB=∠BFP=30°,∴∠BFP=30°+30°=60°.∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°.∴△PBF是等边三角形.故④正确;综上所述,结论正确的是①④.故选D.考点:1.矩形的性质;2.含30度角直角三角形的判定和性质;3.等边三角形的判定.7.(2014·宁夏)菱形ABCD中,若对角线长AC=8cm,BD=6cm,则边长AB= cm.【答案】5.考点:1.菱形的性质;2.勾股定理.8.(2014·山东省聊城市)如图,四边形ABCD是平行四边形,作AF∥CE,BE∥DF,AF 交BE与G点,交DF与F点,CE交DF于H点、交BE于E点.求证:△EBC≌△FDA.【答案】证明见解析.考点:1.平行四边形的性质;2.全等三角形的判定.9.(2014·梅州)如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?【答案】(1)证明见解析;(2)GE=BE+GD成立,理由见解析.【解析】试题分析:(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.试题解析:(1)在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF (SAS).∴CE=CF.(2)GE=BE+GD成立.理由是:考点:1.正方形的性质;2.全等三角形的判定和性质;3.等腰直角三角形的性质.☞考点归纳归纳1:矩形基础知识归纳:1、矩形的概念有一个角是直角的平行四边形叫做矩形.2、矩形的性质(1)具有平行四边形的一切性质(2)矩形的四个角都是直角(3)矩形的对角线相等(4)矩形是轴对称图形3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理1:有三个角是直角的四边形是矩形(3)定理2:对角线相等的平行四边形是矩形基本方法归纳:关于矩形,应从平行四边形的内角的变化上认识其特殊性:一个内角是直角的平行四边形,进一步研究其特有的性质:是轴对称图形、内角都是直角、对角线相等.同时平行四边形的性质矩形也都具有.注意问题归纳:证明一个四边形是矩形,若题设条件与这个四边形的对角线有关,通常证这个四边形的对角线相等.【例1】如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ACB=30°,则∠AOB 的大小为()A、30°B、60°C、90°D、120°【答案】B.考点:矩形的性质.归纳2:菱形基础知识归纳:1、菱形的概念有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)具有平行四边形的一切性质(2)菱形的四条边相等(3)菱形的对角线互相垂直,并且每一条对角线平分一组对角(4)菱形是轴对称图形3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长×高=两条对角线乘积的一半注意问题归纳:菱形是在平行四边形的前提下定义的,首先它是平行四边形,但它是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而就增加了一些特殊的性质和不同于平行四边形的判定方法.【例2】如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.考点:菱形的性质.归纳3:正方形基础知识归纳:1、正方形的概念有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2、正方形的性质(1)具有平行四边形、矩形、菱形的一切性质(2)正方形的四个角都是直角,四条边都相等(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(4)正方形是轴对称图形,有4条对称轴(5)正方形的一条对角线把正方形分成两个全等的等腰直角三角形,两条对角线把正方形分成四个全等的小等腰直角三角形(6)正方形的一条对角线上的一点到另一条对角线的两端点的距离相等.注意问题归纳:正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定. 【例3】如图,ABCD 是正方形场地,点E 在DC 的延长线上,AE 与BC 相交于点F .有甲、乙、丙三名同学同时从点A 出发,甲沿着A ﹣B ﹣F ﹣C 的路径行走至C ,乙沿着A ﹣F ﹣E ﹣C ﹣D 的路径行走至D ,丙沿着A ﹣F ﹣C ﹣D 的路径行走至D .若三名同学行走的速度都相同,则他们到达各自的目的地的先后顺序(由先至后)是( )A . 甲乙丙B . 甲丙乙C . 乙丙甲D .丙甲乙【答案】B .考点:正方形的性质. ☞1年模拟 1.(2015届山东省潍坊市昌乐县中考一模)下列说法中,错误的是( ) A .平行四边形的对角线互相平分B .对角线互相平分的四边形是平行四边形C .菱形的对角线互相垂直D .对角线互相垂直的四边形是菱形 【答案】D . 【解析】试题分析:根据平行四边形的菱形的性质得到A 、B 、C 选项均正确,而D 不正确,因为对角线互相垂直的四边形也可能是梯形.故选D .考点:1.菱形的判定与性质;2.平行四边形的判定与性质. 2.(2015届广东省广州市中考模拟)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,∠ACB=30°,则∠AOB 的大小为( )A.30°B.60°C.90°D.120°【答案】B.考点:矩形的性质.3.(2015届山东省日照市中考模拟)如图,在边长为2的菱形ABCD中,∠B=45°,AE 为BC边上的高,将△ABE沿AE所在直线翻折得△AB1E,则△AB1E与四边形AECD重叠部分的面积为()A.0.7 B.0.9 C.2−2 D2【答案】C.【解析】试题分析:如图,∵∠B=45°,AE⊥BC,∴∠BAE=∠B=45°,∴AE=BE,由勾股定理得:BE2+AE2=22,解得:2,由题意得:△ABE≌△AB1E,∴∠BAB1=2∠BAE=90°,2,∴2,2-2,∵四边形ABCD为菱形,∴∠FCB1=∠B=45°,∠CFB1=∠BAB1=90°,∴∠CB1F=45°,CF=B1F,∵CF∥AB,∴△CFB1∽△BAB1,∴11B CCFAB BB=,解得:2,∴△AEB1、△CFB1的面积分别为:12212=,21(22)3222⨯=-,∴△AB1E与四边形AECD重叠部分的面积=1(322)222--=.故选C.考点:1.菱形的性质;2.翻折变换(折叠问题).4.(2015届山东省济南市平阴县中考二模)如图,菱形OABC的顶点O在坐标系原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点O顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为()A.(-2,2)B.(2,-2)C.(2,-2)D.(3,-3)【答案】B.考点:1.菱形的性质;2.坐标与图形变化-旋转.5.(2015届山东省青岛市李沧区中考一模)如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=13AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=4EQ;④△PBF是等边三角形.其中正确的是()A.①②B.②③C.①③D.①④【答案】D.综上所述,结论正确的是①④.故选D.考点:1.翻折变换(折叠问题);2.矩形的性质.6.(2015届山东省日照市中考一模)小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是()A .①②B .②③C .①③D .②④ 【答案】B .考点:正方形的判定.7.(2015届山东省青岛市李沧区中考一模)如图,在矩形ABCD 中,AB=3,AD=1,把该矩形绕点A 顺时针旋转α度得矩形AB′C′D′,点C′落在AB 的延长线上,则图中阴影部分的面积是 .34π-.考点:1.旋转的性质;2.矩形的性质;3.扇形面积的计算. 8.(2015届河北省中考模拟二)如图,在矩形ABCD中,AB=3,⊙O 与边BC ,CD 相切,现有一条过点B 的直线与⊙O 相切于点E ,连接BE ,△ABE 恰为等边三角形,则⊙O 的半径为 .【答案】3【解析】试题分析:过O 点作GH ⊥BC 于G ,交BE 于H ,连接OB 、OE ,∴G 是BC 的切点,OE ⊥BH ,∴BG=BE ,∵△ABE 为等边三角形,∴BE=AB=3,∴BG=BE=3,∵∠HBG=30°,∴3,BH=23,设OG=OE=x ,则3-3,3-x ,在RT △OEH 中,EH2+OE2=OH2,即(3-3)2+x2=3-x )2,解得3,∴⊙O 的半径为3.故答案为:3考点:1.切线的性质;2.矩形的性质. 9.(2015届山东省日照市中考一模)边长为1的一个正方形和一个等边三角形如图摆放,则△ABC 的面积为.【答案】14.考点:1.正方形的性质;2.等边三角形的性质;3.含30度角的直角三角形. 10.(2015届山东省青岛市李沧区中考一模)如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,H 是AF 的中点,那么CH 的长是 .5考点:1.正方形的性质;2.直角三角形斜边上的中线;3.勾股定理.11.(2015届山西省晋中市平遥县九年级下学期4月中考模拟)如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【答案】(1)FG⊥ED.理由见解析;(2)证明见解析.【解析】考点:1.旋转的性质;2.正方形的判定;3.平移的性质;4.探究型. 12.(2015届北京市平谷区中考二模)如图,已知点E ,F 分别是□ABCD 的边BC ,AD 上的中点,且∠BAC=90°.(1)求证:四边形AECF 是菱形; (2)若∠B=30°,BC=10,求菱形AECF 面积.【答案】(1)见解析(22532【解析】试题分析:(1)利用平行四边形的性质和菱形的性质即可判定四边形AECF 是菱形;(2)连接EF 交于点O ,运用解直角三角形的知识点,可以求得AC 与EF 的长,再利用菱形的面积公式即可求得菱形AECF 的面积. 试题解析:(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC .在Rt △ABC 中,∠BAC=90°,点E 是BC 边的中点,∴AE=CE=12BC . 同理,AF=CF=12AD .∴AF=CE .∴四边形AECF 是平行四边形. ∴平行四边形AECF 是菱形.考点:1.菱形的性质;2.平行四边形的性质;3.解直角三角形. 13.(2015届山东省日照市中考模拟)如图,▱ABCD 在平面直角坐标系中,AD=6,若OA 、OB 的长是关于x 的一元二次方程x2-7x+12=0的两个根,且OA >OB .(1)求sin ∠ABC 的值;(2)若E 为x 轴上的点,且S △AOE=163,求经过D 、E 两点的直线的解析式,并判断△AOE与△DAO 是否相似?(3)若点M 在平面直角坐标系内,则在直线AB 上是否存在点F ,使以A 、C 、F 、M 为顶点的四边形为菱形?若存在,请直接写出F 点的坐标;若不存在,请说明理由.【答案】(1)45.(2)△AOE ∽△DAO .(3)F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).【解析】 试题分析:(1)求得一元二次方程的两个根后,判断出OA 、OB 长度,根据勾股定理求得AB 长,那么就能求得sin ∠ABC 的值; (2)易得到点D 的坐标为(6,4),还需求得点E 的坐标,OA 之间的距离是一定的,那么点E 的坐标可能在点O 的左边,也有可能在点O 的右边.根据所给的面积可求得点E 的坐标,把A、E代入一次函数解析式即可.然后看所求的两个三角形的对应边是否成比例,成比例就是相似三角形;(3)根据菱形的性质,分AC与AF是邻边并且点F在射线AB上与射线BA上两种情况,以及AC与AF分别是对角线的情况分别进行求解计算.试题解析:(1)解x2-7x+12=0,得x1=4,x2=3.∵OA>OB ,∴OA=4,OB=3.在Rt△AOB中,由勾股定理有AB=225OA OB+=,∴sin∠ABC=54OAAB=;(3)根据计算的数据,OB=OC=3,∴AO平分∠BAC,①AC、AF是邻边,点F在射线AB上时,AF=AC=5,所以点F与B重合,即F(-3,0);②AC、AF是邻边,点F在射线BA上时,M应在直线AD上,且FC垂直平分AM,点F (3,8);③AC是对角线时,做AC垂直平分线L,AC解析式为y=-43x+4,直线L过(32,2),且k值为34(平面内互相垂直的两条直线k值乘积为-1),L解析式为y=34x+78,联立直线L 与直线AB求交点,∴F(4751-,722-);④AF是对角线时,过C做AB垂线,垂足为N,根据等积法求出CN=245,勾股定理得出,AN=75,做A关于N的对称点即为F,AF=145,过F做y轴垂线,垂足为G,FG=145×35=4225,∴F(-4225,4425).综上所述,满足条件的点有四个:F1(3,8);F2(-3,0);F3(4751-,722-),F4(-4225,4425).考点:1.相似三角形的判定;2.解一元二次方程-因式分解法;3.待定系数法求一次函数解析式;4.平行四边形的性质;5.菱形的判定;6.分类讨论;7.存在型;8.探究型. 14.(2015届河北省中考模拟二)如图,已知正方形ABCD ,E 是AB 延长线上一点,F 是DC 延长线上一点,连接BF 、EF ,恰有BF=EF ,将线段EF 绕点F 顺时针旋转90°得FG ,过点B 作EF 的垂线,交EF 于点M ,交DA 的延长线于点N ,连接NG .(1)求证:BE=2CF ;(2)试猜想四边形BFGN 是什么特殊的四边形,并对你的猜想加以证明. 【答案】(1)证明见解析.(2)四边形BFGN 为菱形,证明见解析.(2)解:四边形BFGN为菱形,证明如下:考点:1.正方形的性质;2.全等三角形的判定与性质;3.菱形的判定;4.旋转的性质;5.和差倍分.15.(2015届广东省广州市中考模拟)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为¼CC',则图中阴影部分的面积为.【答案】33 42π+.【解析】试题分析:连接CD′和BC′,∵∠DAB=60°,∴∠DAC=∠CAB=30°,∵∠C′AB′=30°,∴A、D′、C及A、B、C′分别共线∴AC=3,∴扇形ACC′230(3)3604ππ⨯⨯=.∵AC=AC′,AD′=AB,∴在△OCD′和△OC'B中,CD BCACO AC DCOD C OB''=⎧⎪''∠=∠⎨⎪''∠=∠⎩,∴△OCD′≌△OC′B (AAS),∴OB=OD′,CO=C′O.∵∠CBC′=60°,∠BC′O=30°,∴∠COD′=90°.∵CD′=AC-AD′=3-1,OB+C′O=1,∴在Rt△BOC′中,BO2+(1-BO)2=(3-1)2,解得BO=3122-,3322C O'=-,∴考点:1.菱形的性质;2.全等三角形的判定与性质;3.扇形面积的计算;4.旋转的性质.。
正方形创新题例析正方形是最为特殊的平行四边形,既是矩形又是菱形,具有平行四边形、矩形、菱形的一切性质.有关正方形的问题逐渐成为中考热点问题,下面举几例供大家参考.一. 图案设计问题例1.(辽宁)将一个正方形纸片依次按图(1),图(2)方式对折,然后沿图(3)中的虚线裁剪,最后将图(4)的纸再展开铺平,所看到的图案是( )解析:实际操作一下,就可以知道本题选D . 二. 寻找规律问题例2.(成都)如图,如果以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形ABCD 的面积1S 为1,按上述方法所作的正方形的面积依次为23S S ,,…,S n (n 为正整数),那么第8个正方形的面积8S =_______.解析:通过计算或拼图可以知道:1S =1; 2S =2;(向上对折) 图(1)(向右对折)图(2)图(3)图(4)ABCDABCD EFGHIJ3S=4=22……从而可以归纳得到Sn =12n-,所以第8个正方形的面积8S=72128=.三、图形折叠问题例3.(荆门)如图,有一张面积为1的正方形纸片ABCD,M、N分别是AD,BC边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结PQ,则PQ=______.解析:由折叠过程可得到BP=CB=2BN,所以∠PBN=60°,从而∠CBQ=30°,在Rt△BCQ中,运用与上题类似的方法可求得PQ=33.四、开放型问题例4.(深圳)如图所示,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O.若不增加任何字母与辅助线,要使得四边形ABCD是正方形,则还需增加的一个条件是__________________.解析:本题是一道条件开放题,答案不唯一,例如可添加AC=BD或∠BAD=90°等.ABCDO。
正方形的判定(4种题型)【知识梳理】一.正方形的判定正方形的判定方法:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2进行判定.二.正方形的判定与性质(1)正方形的性质:正方形具有平行四边形、矩形、菱形的所有性质.(2)正方形的判定正方形的判定没有固定的方法,只要判定既是矩形又是菱形就可以判定.【考点剖析】题型一:正方形判定定理的理解例1.(2023·湖北襄阳·统考模拟预测)满足下列条件的四边形是正方形的是()A.对角线互相垂直且相等的平行四边形B.对角线互相垂直的菱形C.对角线相等的矩形D.对角线互相垂直平分的四边形【答案】A【分析】根据正方形的判定方法即可求解.【详解】解:A选项,对角线互相垂直且相等的平行四边形是正方形,故A选项正确,符合题意;B选项,对角线互相垂直的长方形是正方形,故B选项错误,不符合题意;C选项,对角线相等的菱形是正方形,故C选项错误,不符合题意;D选项,对角线互相垂直平分的长方形是正方形,故D选项错误,不符合题意;故选:A .【点睛】本题主要考查正方形的判定,掌握“对角线相互垂直的矩形是正方形”,“对角线相等的菱形是正方形”,“对角线互相垂直且相等的平行四边形是正方形”的知识是解题的关键. 【变式】(2023·江苏无锡·江苏省天一中学校考三模)如图,在矩形ABCD 中,对角线AC 与BD 相交O ,添加下列条件不能判定矩形ABCD 是正方形的是( )A .AB BC =B .AC BD = C .AC BD ⊥ D .12∠=∠【答案】B 【分析】根据正方形的判定方法即可一一判断.【详解】解:A 、正确.邻边相等的矩形是正方形,不符合题意;B 、错误.矩形的对角线相等,但对角线相等的矩形不一定是正方形,故符合题意;C 、正确.∵四边形ABCD 是矩形,∴OD OB =,OC OA =,∵AC BD ⊥,∴AD AB =,∴矩形ABCD 为正方形,故不符合题意;D 、正确,∵12∠=∠,AB CD ,∴2ACD ∠=∠,∴1ACD ∠=∠,∴AD CD =,∴矩形ABCD 是正方形,故不符合题意.故选:B .【点睛】本题考查了正方形的判定定理,解题的关键是熟练掌握正方形的判定方法.题型二:添加一个条件使四边形是正方形 例2.(2023·陕西西安·西安市铁一中学校考模拟预测)如图,D 是ABC 内一点,AD BC ⊥,E 、F 、G 、H 分别是AB BD CD AC 、、、的中点,添加下列哪个条件,能使得四边形EFGH 成为正方形()A .BD CD =B .BD CD ⊥C .AD BC = D .AB AC =【答案】C 【分析】根据三角形中位线的性质可证EF GH =,EH FG =,推出四边形EFGH 是平行四边形,再根据AD BC ⊥证明EF FG ⊥,可得四边形EFGH 是矩形,根据邻边相等的矩形是正方形可得选项C 为正确答案.【详解】解: E 、F 、G 、H 分别是AB BD CD AC 、、、的中点,∴ EF 是ABD △的中位线,CH 是ADC △的中位线,FG 是DBC △的中位线,EH 是ABC 的中位线, ∴12EF AD =,EF AD ∥,12GH AD =,GH AD ∥,12FG BC =,FG BC ∥,12EH BC =,EH BC ∥, ∴EF GH =,EH FG =,∴四边形EFGH 是平行四边形,EF AD ∥,FG BC ∥,AD BC ⊥,∴EF FG ⊥,∴四边形EFGH 是矩形,当AD BC =时,1122EF AD BC FG ===,可得四边形EFGH 是正方形.故选C .【点睛】本题考查三角形中位线的性质,正方形的判定,解题的关键是掌握正方形的判定方法,以及中位线的性质,即平行于三角形的第三条边,且等于第三边长度的一半.【变式】.(2023秋·河南郑州·九年级校考期末)数学活动课上,何老师布置了一道题目:如图,你能用一张锐角三角形纸片ABC 折出一个以A ∠为内角的菱形吗?石雨的折法如下:第一步,折出A ∠的平分线,交BC 于点D ,第二步,折出AD 的垂直平分线,分别交AB 、AC 于点E 、F ,把纸片展平,第三步,折出DE 、DF ,得到四边形AEDF ,(1)请根据石雨的折法在图中画出对应的图形,并证明四边形AEDF 是菱形;(2)ABC 满足什么条件时,四边形AEDF 是正方形?请说明理由.【答案】(1)见解析;(2)ABC 为直角三角形且90BAC ∠=︒,理由见解析.【分析】(1)根据要求画出图形,根据邻边相等的平行四边形是菱形证明即可;(2)根据正方形与菱形的关系即可得知ABC 为直角三角形且90BAC ∠=︒,有一个角为直角的菱形为正方形.【详解】(1)解:图形如图所示:理由:∵AD 是BAC ∠ 的平分线,∴BAD CAD ∠=∠,∵EF 是AD 的垂直平分线,∴EA ED =,∴EAD EDA ∠=∠,∴EDA CAD ∠=∠,∴ED AF ∥.同理AE FD ∥,∴四边形 AEDF 是平行四边形,又EA ED =,∴四边形 AEDF 是菱形.(2)ABC 为直角三角形且90BAC ∠=︒,理由如下:∵四边形 AEDF 是菱形,90BAC ∠=︒,∴四边形AEDF 是正方形.【点睛】本题考查作图——复杂作图,菱形的判定,正方形的判定,平行四边形的判定等知识解题的关键是理解题意,灵活运用所学知识解决问题.题型三:证明四边形是正方形例3.如图,等边△AEF 的顶点E ,F 在矩形ABCD 的边BC ,CD 上,且∠CEF =45°.求证:矩形ABCD 是正方形.【分析】先判断出AE =AF ,∠AEF =∠AFE =60°,进而求出∠AFD =∠AEB =75°,进而判断出△AEB ≌△AFD ,即可得出结论.【解答】解:∵四边形ABCD 是矩形,∴∠B =∠D =∠C =90°,∵△AEF 是等边三角形,∴AE =AF ,∠AEF =∠AFE =60°,∵∠CEF =45°,∴∠CFE =∠CEF =45°,∴∠AFD =∠AEB =180°﹣45°﹣60°=75°,∴△AEB≌△AFD(AAS),∴AB=AD,∴矩形ABCD是正方形.【点评】此题主要考查了矩形的性质,等边三角形的性质,全等三角形的判定和性质,正方形的判定,判断出∠AFD=∠AEB是解本题的关键.【变式1】如图所示,在△ABC中,∠ACB=90°,CD平分△ACB,DE⊥AC于E,DF⊥BC于F,求证:四边形CEDF是正方形.【分析】根据有三个角是直角的四边形是矩形判定四边形CEDF是矩形,再根据正方形的判定方法即可得出结论.【解答】证明:∵CD平分∠ACB,DE⊥AC,DF⊥BC,∴DE=DF,∠DFC=∠DEC=90°,又∵∠ACB=90°,∴四边形CEDF是矩形,∵DE=DF,∴矩形CEDF是正方形.【点评】本题考查正方形的判定、角平分线的性质和矩形的判定.要注意判定一个四边形是正方形,必须先证明这个四边形为矩形或菱形.【变式2】如图,已知点E,F,G,H分别是正方形ABCD四条边上的点,并且AE=BF=CG=DH.求证:四边形EFGH是正方形.【分析】可通过证明△AEH,△DHG,△CGF,△BFE全等,先得出四边形EFGH是菱形,再证明四边形EFGH 中一个内角为90°,从而得出四边形EFGH是正方形的结论【解答】解:四边形EFGH是正方形.证明:∵AE=BF=CG=GH,∴AH=DG=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEH≌△DHG≌△CGF≌△BFE,∴EF=EH=HG=GF,∠EHA=∠HGD.∴四边形EFGH是菱形.∵∠EHA=∠HGD,∠HGD+∠GHD=90°,∴∠EHA+∠GHD=90°.∴∠EHG=90°.∴四边形EFGH是正方形.【点评】本题主要考查了全等三角形的判定及性质、菱形的判定和性质、正方形的性质和判定,熟练掌握应用全等三角形的性质是解题的关键.题型四:根据正方形的判定与性质求线段长例4.如图所示△ABC中,∠C=90A,∠B的平分线交于D点,DE⊥BC于点E,DF⊥AC于点F.(1)求证:四边形CEDF为正方形;(2)若AC=6,BC=8,求CE的长.【分析】(1)直接利用矩形的判定方法以及角平分线的性质得出四边形CEDF为正方形;(2)利用三角形面积求法得出EC的长.【解答】(1)证明:过点D作DN⊥AB于点N,∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,∴四边形FCED是矩形,又∵∠A,∠B的平分线交于D点,∴DF=DE=DN,∴矩形FCED是正方形;(2)解:∵AC=6,BC=8,∠C=90°,∴AB=10,∵四边形CEDF为正方形,∴DF=DE=DN,∴DF×AC+DE×BC+DN×AB=AC×BC,则EC(AC+BC+AB)=AC×BC,故EC==2.【点评】此题主要考查了正方形的判定以及三角形面积求法和角平分线的性质等知识,得出DF=DE是解题关键.【变式】如图,在四边形ABCD中,AD∥BC,∠A=90°,AB=BC,∠D=45°,CD的垂直平分线交CD于E,交AD于F,交BC的延长线于G,若AD=a.(1)求证:四边形ABCF是正方形;(2)求BG的长.【分析】(1)先根据∠B=∠A=∠AFC=90°,判定四边形ABCF是矩形,再根据AB=BC,即可得到四边形ABCF是正方形;(2)先判定△CEG≌△DEF(AAS),得出CG=FD,再根据正方形ABCF中,BC=AF,即可得到AF+FD=BC+CG,即AD=BG=a.【解答】解:(1)∵CD的垂直平分线交CD于E,交AD于F,∴FC=FD,∴∠D=∠FCD=45°,∴∠CFD=90°,即∠AFC=90°,又∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABCF是矩形,又∵AB=BC,∴四边形ABCF是正方形;(2)∵FG垂直平分CD,∴CE=DE,∠CEG=∠DEF=90°,∵BG∥AD,∴∠G=∠EFD,在△CEG和△DEF中,,∴△CEG≌△DEF(AAS),∴CG=FD,又∵正方形ABCF中,BC=AF,∴AF+FD=BC+CG,∴AD=BG=a.【点评】本题主要考查了正方形的判定与性质,线段垂直平分线的性质以及全等三角形的判定与性质的综合应用,解决问题的关键是掌握:有一组邻边相等的矩形是正方形;线段垂直平分线上任意一点,到线段两端点的距离相等.题型五:中点四边形 例5(2023·陕西西安·校考二模)已知四边形ABCD 为菱形,点E 、F 、G 、H 分别AD 、AB 、BC 、CD 边的中点,依次连接E 、F 、G 、H 得到四边形EFGH ,则四边形EFGH 为( )A .平行四边形B .菱形C .矩形D .正方形【答案】C【分析】连接AC BD 、,根据三角形中位线定理得到1122HG EF BD FG EH AC ====,,根据菱形的性质得到AC BD ⊥,即可判断四边形EFGH 为矩形.【详解】连接AC BD 、交于O ,∵点E 、F 、G 、H 分别AD 、AB 、BC 、CD 边的中点,∴1122HG EF BD FG EH AC ====,,FG AC ∥,EF BD ∥,∴四边形EFGH 为平行四边形,∵四边形ABCD 为菱形,∴90AOB ∠=︒,∴90AOB BPF GFE ∠=∠=∠=︒,∴四边形EFGH 为矩形,故选:C .【点睛】本题考查的是中点四边形,掌握三角形中位线定理、矩形的判定、菱形的性质是解题的关键.【变式】(2023·山东临沂·统考一模)四边形ABCD 的对角线AC ,BD 交点O ,点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点.有下列四个推断,①对于任意四边形ABCD ,四边形MNPQ 可能不是平行四边形;②若AC BD =,则四边形MNPQ 一定是菱形;③若AC BD ⊥,则四边形MNPQ 一定是矩形;④若四边形ABCD 是菱形,则四边形MNPQ 也是菱形. 所有正确推断的序号是_____________.【答案】②③【分析】根据四边形的性质及中位线的性质推导即可.【详解】解:点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点,MN AC ∴∥且12MN AC =,PQ AC ∥且12PQ AC =,MN PQ ∴∥且MN PQ =,MNPQ ∴是平行四边形,故①错误; 点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点,∴12MN AC =,12PN BD =,AC BD =,MN PN ∴=,MNPQ 是平行四边形,∴四边形MNPQ 是菱形,故②正确;点M ,N ,P ,Q 分别为边AB , BC ,CD ,DA 的中点,MN AC ∴∥,MQ BD ∥,AC BD ⊥,MN MQ ∴⊥,90QMN ∴∠=︒,MNPQ 是平行四边形,∴MNPQ 是矩形,故③正确;若要四边形MNPQ 是菱形,需满足AC BD =,当四边形ABCD 是菱形,AC 不一定等于BD ,故④错误;综上,正确的有:②③,故答案为:②③.【点睛】本题考查了中位线定理,菱形的判定和性质,矩形的判定和性质,平行四边形的判定和性质,熟练掌握知识点是解题的关键.【过关检测】一、单选题 A .AC BD =B .【答案】B 【分析】已知四边形ABCD 是矩形,要使它成为正方形只有两种方法:(1)一组邻边相等;(2)对角线互相垂直,据此求解即可.【详解】解:∵四边形ABCD 是矩形,∴当AC BD ⊥或当AD AB =或AB BC =或BC CD =或AD CD =时,四边形ABCD 是正方形;故选:B.【点睛】本题主要考查了正方形的判定,熟练地掌握正方形的判定方法是解题的关键.(1)一组邻边相等的矩形是正方形;(2)对角线互相垂直的矩形是正方形.2.(2023春·广东深圳·九年级深圳市福田区石厦学校校考开学考试)下列命题正确的是()A.对角线垂直的四边形是菱形B.一组对边平行,一组对边相等的四边形是平行四边形C.顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是正方形D.对角线互相垂直的四边形面积等于对角线乘积的一半【答案】D【分析】利用平行四边形、菱形及正方形的判定方法及菱形的面积计算方法等知识分别判断后即可确定正确的选项.【详解】解:A、对角线垂直的平行四边形是菱形,故原命题错误,不符合题意;B、一组对边平行,一组对边相等的四边形可能是平行四边形,也可能是等腰梯形,故原命题错误,不符合题意;C、顺次连结一个四边形各边中点得到的是一个正方形,那么原四边形一定是对角线相等且互相垂直的四边形,故原命题错误,不符合题意;D、对角线互相垂直的四边形面积等于对角线乘积的一半,正确,符合题意.故选:D.【点睛】本题考查了命题与定理的知识,解题的关键是了解平行四边形、菱形及正方形的判定方法及菱形的面积计算方法等知识.【答案】B【分析】根据正方形的判定方法,逐一进行判断即可.【详解】解:A、四边都相等的四边形是菱形,原命题是假命题,不符合题意;B、一组邻边相等的矩形是正方形,是真命题,符合题意;C、对角线互相垂直平分的四边形是菱形,原命题是假命题,不符合题意;D、对角线互相垂直且相等的四边形不一定是正方形,原命题是假命题,不符合题意;故选:B.【点睛】本题考查判断命题的真假.熟练掌握正方形的判定方法,是解题的关键.A .①③B .①②【答案】C 【分析】①根据正方形的性质和中位线定理可以解决问题;②利用①中结论可以证明OM MP ≠,可以解决问题;③利用①③中的结论,确定四边形EFNB 的面积与OMP 的面积比,正方形ABCD 面积与OMP 的面积比,可以解决问题.【详解】∵四边形ABCD 是正方形,BD 为对角线∴45ABO ADB CBD BDC ∠=∠=∠=∠=︒,90BAD BCD ∠=∠=︒∴ABD △、BCD △是等腰直角三角形∵E ,F 分别为BC ,CD 的中点,∴EF BD ∥,12EF BD =,CE CF =∵90ECF ∠=︒,CE CF =∴CEF △是等腰直角三角形∵AP EF ⊥,EF BD ∥∴90AOD AOB ∠=∠=︒又∴45ABO ADB ∠=∠=︒∴ABO 、ADO △是等腰直角三角形∴AO BO =,AO DO =∴BO DO =∴AOB AOD △≌△∴AO BD ⊥又∵OP BD ⊥∴A 、O 、P 三点共线 ∴12PE PF EF ==又∵M ,N 分别为BO ,DO 的中点∴F O P M MB ON P ND E =====连接PC ,如图,∵FD CF =,ON ND =∴NF 是CDO 的中位线,∴NF AC ∥∵90DNF ∠=︒,45FDB ∠=︒∴DNF △是等腰直角三角形∴NF ND ON ==∵90ONF NOP OPF ∠=∠=∠=︒∴四边形FNOP 是矩形∵NF ON =∴四边形FNOP 是正方形∴OM OP =∴OMP 是等腰直角三角形∴图中的三角形都是等腰直角三角形故①正确;∵OMP 是等腰直角三角形∵45FDB ∠=︒∴MP BC ∥∴四边形MPEB 是平行四边形,在Rt OMP △中,MP OM >即BE BM >∵BE BM ≠∴四边形MPEB 不是菱形故②错误;∵OM BM ON ==,SBEPM BM OP =⨯,1S 2OMP OM OP =⨯⨯,S ONFP ON OP =⨯ ∴S S 2S BEPM ONFP OMP == ∴S S S S 5S BEPM OMP OMP ONFP EFNB =++=正方形四边形 ∵11S 2222AOB OB OA OM OP =⨯⨯=⨯⨯⨯⨯ 即1S 44S 2AOB OMP OM OP =⨯⨯⨯= 又∵S 4S AOB ABCD =正方形 ∴S 16S OMP ABCD =正方形5S S 16ABCD EFNB =正方形四边形故③错误;故选:C .【点睛】此题考查了正方形的判定和性质,平行四边形的判定和性质,三角形的中位线定理、三角形全等的判定和性质、等腰直角三角形的判定和性质等知识,正确的识别图形是解题的关键.二、填空题【答案】【分析】四边形ABCD和四边形CEFG均为正方形,且G是AB的中点,AB=,如图所示,过点E作EH AD⊥于H,交BC于Q,AE与BC交于点P,可证(SAS)BCG QEC△≌△,(SAS)EQP ABP△≌△,根据勾股定理即可求解.【详解】解:∵四边形ABCD和四边形CEFG均为正方形,且G是AB的中点,AB=∴1122BG AG AB===,∴在Rt BCG中,52CG===,如图所示,过点E作EH AD⊥于H,交BC于Q,AE与BC交于点P,∵四边形CEFG为正方形,∴CE CG=,∵12902390∠+∠=︒∠+∠=︒,,∴13∠=∠,在,BCG QEC△△中,1390EQC B CE CG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴(SAS)BCG QEC △≌△,∴EQ BC ==CQ GB ==,即Q 为BC 中点, 同理,可证(SAS)EQP ABP △≌△,∴1122QP BP BQ ====,12EP AP AE ==∴在Rt ABP 中,AP ====,∴22AE AP ===,故答案为:.【点睛】本题主要考查正方形与直角三角形勾股定理的综合,掌握正方形的性质,全等三角形的判定和性质,勾股定理是解题的关键. 6.(2023·湖南娄底·统考一模)如图,正方形ABCD 的对角线AC 、BD 交于点O ,M 是边AD 上一点,连接OM ,过点O 作ON OM ⊥,交CD 于点N .若四边形MOND 的面积是5,则AB 的长为______.【答案】【分析】如图,过O 作OE AD ⊥于E ,OF CD ⊥于F ,则四边形OEDF 是正方形,证明()ASA EOM FON ≌,则EOM FON S S =,5OEDF MOND S S ==四边形,即25OE =,解得OE =,根据2AB OE =,计算求解即可.【详解】解:如图,过O 作OE AD ⊥于E ,OF CD ⊥于F ,则四边形OEDF 是正方形,∴OE OF =,90EOF EOM MOF ∠=︒=∠+∠,∵90MON FON MOF ∠=︒=∠+∠,∴EOM FON ∠=∠,∵EOM FON ∠=∠,OE OF =,90OEM OFM ∠=∠=︒,∴()ASA EOM FON ≌, ∴EOM FON SS =,∴5OEDF MOND S S ==四边形,即25OE =,解得OE =OE =,∴2AB OE ==故答案为:【点睛】本题考查了正方形的判定与性质,全等三角形的判定与性质等知识.解题的关键在于对知识的熟练掌握与灵活运用. 7.(2023·四川凉山·统考一模)如图,正方形ABCD 的边长为2,,E F 分别是,AD AB 边上一点,且AE BF =,连接,BE CF 交于点P ,则线段DP 的最小值为___________1【分析】如图所示,线段DP 中,点P 运动的路径是以BC 中点为圆心,12BC 为半径的半圆,分类讨论,①当E F 、在线段AD AB 、上时;②当E F 、在线段AD AB 、延长线上时;图形结合,根据勾股定理即可求解.【详解】解:如图所示,线段DP 中,点P 运动的路径是以BC 中点为圆心,12BC 为半径的半圆,①当E F 、在线段AD AB 、上时,如图所示,∴当BE CF ⊥时,DP 的值最小,∵正方形ABCD 的边长为2,∴如图所示,由此,对角线的长为AC BD ===∴1122DP AB ===②当E F 、在线段AD AB 、延长线上时,如图所示,∴当BE CF ⊥时,即点,,O P D 在一条直线,DP 的值最小,如图所示,连接OP ,∵BE CF ⊥,∴90BPC ∠=︒, ∵112122OB OP OC BC ====⨯=,2CD AB ==,∴在Rt OCD △中,OD =∴1DP OD OP =−=;综上所示,DP 1,1. 8.(2023·安徽安庆·校考一模)如图,在矩形ABCD 中,8AB =,6AD =,E 为AB 边上一点,将BEC 沿CE 翻折,点B 落在点F 处.当AEF △为直角三角形时,AE =___________.【答案】2或5/5或2【分析】分90,90,90AEF AFE FAE ∠=︒∠=︒∠=︒三种情形计算.【详解】解:当90AFE ∠=︒时,连接AC ,∵四边形ABCD 是矩形,8AB =,6AD =,∴90ABC CFE ∠=∠=︒,10AC ==,6AD BC ==,∵90AFE ∠=︒,∴180AFE CFE ∠+∠=︒,∴,,A F C 三点共线,根据折叠的性质,得6,CF BC EF EB ===,∴4AF AC CF =−=,设AE x =,则8EF EB x ==−,根据勾股定理,得()22284x x =−+,解得5x =,故5AE =;当90AEF ∠=︒时,∵四边形ABCD 是矩形,8AB =,6AD =,∴90ABC CFE ∠=∠=︒,6AD BC ==,∵90AFE ∠=︒,∴四边形BCFE 是矩形,根据折叠的性质,得6,CF BC EF EB ===,∴四边形BCFE 是正方形,∴6CF BC EF EB ====,∴862AE AB BE =−=−=,故2AE =;当90=︒∠FAE 时,∵CD CF >,∴F 点不可能落到AD 上,故90=︒∠FAE 不成立,故2AE =或5AE =,故答案为:2或5.【点睛】本题考查了矩形的性质,折叠的性质,正方形的判定和性质,勾股定理,分类思想,熟练掌握矩形的性质,折叠的性质,正方形的判定和性质,勾股定理是解题的关键.9.(2023·福建·模拟预测)如图,在正八边形ABCDEFGH 中,AC 、AE 是两条对角线,则∠CAE 的度数为_________°.【答案】45【分析】连接AG 、GE 、EC ,易知四边形ACEG 为正方形,根据正方形的性质即可求解.【详解】解:连接AG 、GE 、EC ,如图所示:∵八边形ABCDEFGH 是正八边形∴AB BC CD DE EF FG GH HA=======,(82)1801358ABC BCD CDE DEF EFG FGH GHA HAB −︒∠=∠=∠=∠=∠=∠=∠=∠==︒∴ABC CDE EFG GHA ∆≅∆≅∆≅∆∴AC CE EG GA ===∴四边形ACEG 是菱形又1(180135)22.52BAC BCA ∠=∠=︒−︒=︒,1(180135)22.52HAG HGA ∠=∠=︒−︒=︒∴13522.522.590CAG BAH BAC HAG ∠=∠−∠−∠=︒−︒−︒=︒∴四边形ACEG 为正方形,∵AE 是正方形的对角线,∴∠CAE=119022CAG ∠=⨯︒=45°.故答案为:45.【点睛】本题考查了正多边形的性质、正方形的性质,正确作出辅助线是解决问题的关键.二、解答题 10.(2023·陕西渭南·统考二模)如图,在ABC 中,90ACB ∠=,CD 为角平分线,DE AC ⊥于点E ,DF BC ⊥于点F .求证:四边形DECF 是正方形.【答案】见解析 【分析】先证明四边形DECF 是矩形,再由角平分线的性质得出DE DF =,即可得出结论.【详解】CD 是角平分线,DE AC ⊥,DF BC ⊥,DE DF ∴=,90CED CFD ∠=∠=︒,90ACB ∠=︒,∴四边形DECF 是矩形,又DE DF =,∴四边形DECF 是正方形.【点睛】本题考查了正方形的判定方法、矩形的判定方法、角平分线的性质;熟练掌握正方形的判定方法,11.(2023·山西太原·太原市实验中学校考一模)已知,如图,矩形ABCD 中,6AD =,7DC =,菱形EFGH 的三个顶点E ,G ,H 分别在矩形ABCD 的边AB ,CD ,DA 上,2AH =,连接CF .(1)如图1,若2DG =,求证四边形EFGH 为正方形;(2)如图2,若4DG =,求△FCG 的面积;(3)当DG 为何值时,△FCG 的面积最小.【答案】(1)见解析(2)3(3)当DG =△FCG 的面积最小为7【分析】(1)由于四边形ABCD 为矩形,四边形HEFG 为菱形,那么90D A ∠=∠=︒,HG HE =,而2AH DG ==,易证AHE DGH ≌,从而有DHG HEA ∠=∠,等量代换可得90AHE DHG ∠+∠=︒,易证四边形HEFG 为正方形;(2)过F 作FM DC ⊥,交DC 延长线于M ,连接GE ,由于AB CD ,可得AEG MGE ∠=∠,同理有HEG FGE ∠=∠,利用等式性质有AEH MGF ∠=∠,再结合90A M ∠=∠=︒,HE FG =,可证AHE MFG △△≌,从而有2FM HA ==(即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2),进而可求三角形面积;(3)先设DG x =,由第(2)小题得,7FCG S x ∆=−,在AHE 中,7AE AB ≤=,利用勾股定理可得253HE ≤,在Rt DHG 中,再利用勾股定理可得21653x +≤,进而可求x ≤,从而可得当x GCF ∆的面积最小.【详解】(1)四边形ABCD 为矩形,四边形HEFG 为菱形,90D A ∴∠=∠=︒,HG HE =,又2AH DG ==,()Rt Rt HL AHE DGH ∴≌,DHG HEA ∴∠=∠, 90AHE HEA ∠+∠=︒,90AHE DHG ∴∠+∠=︒,90EHG ∴∠=︒,∴四边形HEFG 为正方形;(2)过F 作FM DC ⊥,交DC 延长线于M ,连接GE , ∥AB CD ,AEG MGE ∴∠=∠,HE GF ∥,HEG FGE ∴∠=∠,∴∠=∠AEH MGF ,在AHE 和MFG 中,90A M ∠=∠=︒,HE FG =,AHE MFG ∴≌,2∴==FM HA ,即无论菱形EFGH 如何变化,点F 到直线CD 的距离始终为定值2, 因此()11274322FCG S FM GC =⨯⨯=⨯⨯−=;(3)设DG x =,则由第(2)小题得,7FCG S x ∆=−,在AHE ∆中,7AE AB ≤=,253HE ∴≤,21653x ∴+≤,x ∴FCG S ∆∴的最小值为7DG∴当DG =FCG ∆的面积最小为(7.【点睛】本题属于四边形综合题,考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是学会添加常用辅助线,构造全等三角形解决问题.12.(2023·山东青岛·山东省青岛第二十六中学校考二模)如图,在平行四边形ABCD 中,AC BD ,相交于点O ,点E ,F 在AC 上,且AE CF =,连接BE DF ,.(1)求证:BOE DOF ≌;(2)连接BF DE ,,若AB AD =,线段OE 满足什么条件时,四边形BEDF 为正方形.【答案】(1)证明见解析(2)当OE OD =时,四边形BEDF 为正方形,理由见解析【分析】(1)由平行四边形的性质得到OD OB OA OC ==,,再证明OE OF =即可利用SAS 证明BOE DOF ≌;(2)根据对角线互相垂直平分且相等的四边形是正方形进行求解即可.【详解】(1)证明:∵四边形ABCD 是平行四边形,AC BD ,相交于点O ,∴OD OB OA OC ==,,∵AE CF =,∴OA AE OC CF −=−,即OE OF =,又∵DOF BOE ∠=∠,∴()SAS BOE DOF ≌△△;(2)解:当OE OD =时,四边形BEDF 为正方形,理由如下:∵四边形ABCD 是平行四边形,AB AD =,∴四边形ABCD 是菱形,∴AC BD OD OB OA OC ==⊥,,,∵AE CF =,∴OA AE OC CF −=−,即OE OF =,又∵OE OD =,∴OE OD OF OB ===,∴EF 与BD 互相垂直平分且相等,∴四边形BEDF 为正方形.【点睛】本题主要考查了平行四边形的性质,正方形的判定,全等三角形的判定,灵活运用所学知识是解题的关键. (1)求证:①EFB EBF ∠=∠②矩形DEFG 是正方形;(2)求AG AE +的值.【答案】(1)①见解析;②见解析(2)【分析】(1)①过E 作EM AD ⊥于M ,EN AB ⊥于N 利用正方形的性质和角平分线的性质得到()SAS ADE ABE ≌,EM EN =进而得到DE BE =,再证明四边形ANEM 是矩形,又四边形DEFG 是矩形和全等三角形的判定证明()ASA EMD ENF ≌,得到EF BE =,利用等腰三角形的性质可证得结论;②根据正方形的判定可得结论;(2)根据正方形的性质和全等三角形的判定证明()SAS ADG CDE ≌△△得到AG CE =,进而得到AG AE AC +=即可求解.【详解】(1)证明:过E 作EM AD ⊥于M ,EN AB ⊥于N ,则90EMA EMD ENF ENB ∠=∠=∠=∠=︒,∵四边形ABCD 是正方形,∴45EAD EAB ∠=∠=︒,AD AB =,又AE AE =,∴()SAS ADE ABE ≌,EM EN =,∴DE BE =,∵90EMA ENA DAB ∠=∠=∠=︒,∴四边形ANEM 是矩形,又四边形DEFG 是矩形,∴90MEN DEF ∠=∠=︒,∴90DEM FEN MEF ∠=∠=︒−∠,又90EMD ENF ∠=∠=︒,EM EN =,∴()ASA EMD ENF ≌,则DE EF =,∴EF BE =,则EFB EBF ∠=∠;②∵四边形DEFG 是矩形,DE EF =,∴四边形DEFG 是正方形;(2)解 :∵四边形DEFG 是正方形,四边形ABCD 是正方形,∴DG DE =,DC DA =,90GDE ADC ∠=∠=︒,∴ADG CDE ∠=∠,∴()SAS ADG CDE ≌△△,∴AG CE =,∴AG AE CE AE AC +=+===【点睛】本题主要考查了正方形的判定与性质、矩形的性质、全等三角形的判定与性质,熟练掌握正方形的判定与性质、全等三角形的判定与性质是解答的关键.14.(2023·山东聊城·统考三模)如图,已知四边形ABCD 为正方形,E 为对角线AC 上一点,连接DE ,过点E 作EF DE ⊥,交BC 延长线于点F ,以DE ,EF 为邻边作矩形DEFG ,连接CG .(1)求证:矩形DEFG 是正方形;(2)求证:CG 平分DCF ∠.【答案】(1)证明见解析(2)证明见解析【分析】(1)过点E 分别作EM BC ⊥于点M ,EN CD ⊥于点N ,先证出四边形EMCN 为正方形,根据正方形的性质可得EM EN =,90MEN ∠=︒,再根据矩形的性质可得90DEF ∠=︒,从而可得DEN FEM ∠=∠,然后根据ASA 定理证出DEN FEM ≅,根据全等三角形的性质可得ED EF =,最后根据正方形的判定即可得证;(2)先根据正方形的性质可得,DE DG AD CD ==,ADE CDG ∠=∠,再根据SAS 定理可得ADE CDG ≅,根据全等三角形的性质可得45DCG DAE ∠=∠=︒,由此即可得证.【详解】(1)证明:如图,过点E 分别作EM BC ⊥于点M ,EN CD ⊥于点N ,∵四边形ABCD 是正方形,∴90BCD ∠=︒,45ECN ∠=︒,∴90EMC ENC BCD ∠=∠=∠=︒,∴NE NC =,∴四边形EMCN 为正方形,∴EM EN =,90MEN ∠=︒,∵四边形DEFG 是矩形,∴90DEF ∠=︒,∴90DEN NEF FEM NEF ∠+∠=∠+∠=︒,DEN FEM ∴∠=∠,在DEN 和FEM △中,90DNE FME EN EM DEN FEM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴()ASA DEN FEM ≅,∴ED EF =,∴矩形DEFG 为正方形.(2)证明:∵矩形DEFG 为正方形,DE DG ∴=,90EDC CDG EDG ∠+∠=∠=︒,∵四边形ABCD 是正方形,AD CD ∴=,90ADE EDC ADC ∠+∠=∠=︒,45DAE =︒∠,∴ADE CDG ∠=∠,在ADE V 和CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADE CDG ≅,∴45DCG DAE ∠=∠=︒,∵90DCF ∠=︒,∴CG 平分DCF ∠.【点睛】本题考查了矩形的性质、正方形的判定与性质、三角形全等的判定与性质等知识点,熟练掌握正方形的判定与性质是解题关键.(2)应用(1)中的结论解决问题:如图2,中山公园有一块菱形场地,其面积为19200m地上修建一个正方形花圃,并且要使正方形花圃的四个顶点分别落在菱形场地的四条边上,则该正方形花圃的边长为________m.+【答案】(1)a b(2)48【分析】(1)连接CE ,利用等积法解答即可;(2)如解析图,设菱形CDEF 的两条对角线分别为2,2CE a DF b ==,根据菱形的性质可求出2009600a b ab +=⎧⎨=⎩,然后判定OPGQ 为正方形,且这个正方形为直角三角形COF 的“所容正方形”,再根据(1)的结论求解.【详解】(1)解:连接CE ,如图,设正方形DEFC 的边长为x ,则DE EF x ==,∵在ACB △中,90C ∠=︒,AC b BC a ==,, ∴()111111222222ABC S AC DE BC EF bx ax x a b ab =⋅+⋅=+=+=, ∴abx a b =+; 故答案为:aba b +;(2)如图,设菱形CDEF 的两条对角线交于点O ,且其长度分别为2,2CE a DF b ==,则,,CE DF CO EO a FO DO b ⊥====, 根据题意可得:22400122192002a b a b +=⎧⎪⎨⨯⨯=⎪⎩,整理得:2009600a b ab +=⎧⎨=⎩,若正方形MNGH 为在这个菱形场地上修建的正方形花圃,则根据菱形和正方形的对称性可得,GN DF GH CE ⊥⊥,则四边形OPGQ 也为正方形,且这个正方形为直角三角形COF 的“所容正方形”, 则由(1)的结论可得:这个正方形的边长960048200ab a b ===+m ;故答案为:48.【点睛】本题考查了勾股定理的拓展、菱形的性质以及正方形的判定和性质等知识,正确理解题意、熟练掌握相关图形的性质、合理利用所求的相关结论作答是解题的关键. (1)求证:ABF ECF ≌;(2)若AE AD =,连接BE ,当线段OF 与【答案】(1)证明见解析(2)当BD =时,四边形ABEC 为正方形,证明见解析【分析】(1)利用平行四边形的性质得出ABF ECF ∠=∠,BAF CEF ∠=∠,进而利用全等三角形的判定得出即可;(2)首先判定四边形ABEC 是平行四边形,进而利用矩形的判定定理可得四边形ABEC 是矩形,结合BD =,证明BE CE =,从而可得结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AB CD ∥,AB CD =,OA OC =,。
中考正方形新题赏析
正方形是一种特殊的平行四边形,更是一种特殊的矩形和特殊的菱形.所以处理开放型问题相对而言是比较复杂的,而近年来中考又不断加大有关正方形问题的创新力度,所以求解时一定要充分运用所学知识,抓住有关正方形问题的本质特征.为了方便同学们学习,现以中考试题为例说明如下:
一、正方形的面积问题
例1(临安市)如图1,正方形硬纸片ABCD 的边长是4,点E 、F 分别是AB 、BC 的中点,若沿左图中的虚线剪开,拼成右图的一座“小别墅”,则图中阴影部分的面积是( )
A.2
B.4
C.8
D.10
分析 要求图中阴影部分的面积,由于由剪到拼可知阴影部分的面积应是原正方形面积的四分之一,于是即求.
解 根据题意“小别墅”的图中阴影部分的面积应等于正方形面积的四分之一,而正方形的面积是16,所以阴影部分的面积应等于4.故应选B .
说明 本题的图形在操作过程中,虽然形状发生了改变,但是图形的面积却没有变化,抓住这一点问题就可以简洁求解
.
二、直角三角形拼正方形问题 例2(烟台市)2002年8月在北京召开的国际数学家大会会标如图2所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形.若大正方形的面积是13,小正方形的面积是1,直角三角形的较长直角边为a ,较短直角边为b ,则a 3+b 4的值为( )
A.35
B.43
C.89
D.97
分析 要求a 3+b 4的值,由已知条件,利用勾股定理,
结合方程的知识可以
图2
分别求出a 、b .
解 因为直角三角形的较长直角边为a ,较短直角边为b ,所以大正方形的边长由勾股定理,得c 2=a 2+b 2,小正方形的边长是a -b ,
又因为大正方形的面积是13,小正方形的面积是1,即c 2=a 2+b 2=13,(a -b )2=1,
所以ab =6,消去b ,得a 4-13a 2=-36,配方,得(a 2-132)2=254
. 即a =3或2,所以b =2或3,又较长直角边为a ,较短直角边为b ,
所以a =3, b =2,所以a 3+b 4=43.故应选B .
说明 求解时一定要理解并图的意义,从中找出已知量与未知量之间的关系.
三、用正方形与矩形拼正方形问题
例3(烟台市)如图3,有三种卡片,其中边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张.用这16张卡片拼成一个正方形,则这个正方形的边长为___.
分析 16张卡片,拼成一个正方形,而边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张,由此可知正方形的每边上应有4张,而且这个正方形的边长应为a +3b .
解 因为边长为a 的正方形卡片1张,边长分别为a ,b 的矩形卡片6张,边长为b 的正方形卡片9张,而用这16张卡片拼成一个正方形,所以正方形的每边上应有4张,而且这个正方形的边长应为a +3b .但拼得的正方形的形式是不一样的,如图4就是其中的一种.
说明 这是一道结论开放型问题,只要符合题意且结论正确的都可以.
四、正方形的操作问题
例4(旅顺口区)如图5
,将一块正方形纸片沿对角线折叠一次,然后在得图3 a 图4 b a b
到的三角形的三个角上各挖去一个圆洞,最后将正方形纸片展开,得到的图案是如图6所示的( )
分析 要想知道展开后得到的图案是什么,可以依据题意,结合正方形的图形特征,发挥想象即可求解.
解 因为将正方形沿对角线折叠一次,然后在得到的三角形的三个角上各挖去一个圆洞,就是说这个正方形上共有6个小圆,其中分成3组关于正方形的对角线即折痕对称,且1对圆在两个直角的顶点上,2对圆位于对角线即折痕的两侧.故应选C .
说明 这种图形的操作问题的求解一定要在灵活运用基础知识的同时,充分发挥想象,并能大胆地归纳与推断.
五、利用正方形探索规律问题
例5(江西省)用黑白两种颜色的正方形纸片,按黑色纸片数逐渐加1的规律拼成如图7一列图案:
(1)第4个图案中有白色纸片___张;
(2)第n 个图案中有白色纸片___张.
分析 要解答这两个问题,只要能求出第n 个图案中有白色纸片的张数即可,由于第1个图案中有白色纸片1张,第2个图案中有白色纸片7张,第3个图案中有白色纸片10张,…,由此可以得到第n 个图案中有白色纸片3n + 1张,从而求解.
D C B A 图6
第3个
第2个第1个图7 图5
解因为第1个图案中有白色纸片1张,第2个图案中有白色纸片7张,第3个图案中有白色纸片10张,…,所以可以得到第n个图案中有白色纸片3n+1张.于是(1)当n=4时,3n+1=13;(2)3n + 1.
说明这种利用几何图形探索规律型问题是近年各地中考的热点,同学们在求解时一定要通过认真的观察、归纳、猜想、验证,才能正确地获解.。