高等数学习题课(1)
- 格式:doc
- 大小:562.00 KB
- 文档页数:9
高等数学第六版课后习题及答案 第一章第二节 习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限:(1)n n x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=; 解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n . (3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ; 解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n . (5) x n =n (-1)n.解 当n →∞时, x n =n (-1)n 没有极限. 2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n 与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N . 解 0lim =∞→n n x . n n n x n 1|2cos ||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000. 3. 根据数列极限的定义证明:(1)01lim 2=∞→nn ; 分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim 2=∞→n n . (2)231213lim =++∞→n n n ; 分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n . 证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n . (3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n . (4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而 ||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→. 数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x . 证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M . 又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有 εε=⋅<≤=-M M y M y x y x n n n n n |||||0|, 所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞), 证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε . 取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞).。
高等数学课后答案习题1-11. 设A =(-∞, -5)⋃(5, +∞), B =[-10, 3), 写出A ⋃B , A ⋂B , A \B 及A \(A \B )的表达式. 解 A ⋃B =(-∞, 3)⋃(5, +∞), A ⋂B =[-10, -5), A \B =(-∞, -10)⋃(5, +∞), A \(A \B )=[-10, -5).2. 设A 、B 是任意两个集合, 证明对偶律: (A ⋂B )C =A C ⋃B C . 证明 因为x ∈(A ⋂B )C ⇔x ∉A ⋂B ⇔ x ∉A 或x ∉B ⇔ x ∈A C 或x ∈B C ⇔ x ∈A C ⋃B C , 所以 (A ⋂B )C =A C ⋃B C .3. 设映射f : X →Y , A ⊂X , B ⊂X . 证明 (1)f (A ⋃B )=f (A )⋃f (B ); (2)f (A ⋂B )⊂f (A )⋂f (B ). 证明 因为y ∈f (A ⋃B )⇔∃x ∈A ⋃B , 使f (x )=y⇔(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ⇔ y ∈f (A )⋃f (B ), 所以 f (A ⋃B )=f (A )⋃f (B ). (2)因为y ∈f (A ⋂B )⇒∃x ∈A ⋂B , 使f (x )=y ⇔(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )⇒ y ∈ f (A )⋂f (B ), 所以 f (A ⋂B )⊂f (A )⋂f (B ).4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g = , Y I g f = , 其中I X 、I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1.证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中任意元素都是X 中某元素的像, 所以f 为X 到Y 的满射.又因为对于任意的x 1≠x 2, 必有f (x 1)≠f (x 2), 否则若f (x 1)=f (x 2)⇒g [ f (x 1)]=g [f (x 2)] ⇒ x 1=x 2.因此f 既是单射, 又是满射, 即f 是双射.对于映射g : Y →X , 因为对每个y ∈Y , 有g (y )=x ∈X , 且满足f (x )=f [g (y )]=I y y =y , 按逆映射的定义, g 是f 的逆映射.5. 设映射f : X →Y , A ⊂X . 证明: (1)f -1(f (A ))⊃A ;(2)当f 是单射时, 有f -1(f (A ))=A .证明 (1)因为x ∈A ⇒ f (x )=y ∈f (A ) ⇒ f -1(y )=x ∈f -1(f (A )), 所以 f -1(f (A ))⊃A . (2)由(1)知f -1(f (A ))⊃A .另一方面, 对于任意的x ∈f -1(f (A ))⇒存在y ∈f (A ), 使f -1(y )=x ⇒f (x )=y . 因为y ∈f (A )且f 是单射, 所以x ∈A . 这就证明了f -1(f (A ))⊂A . 因此f -1(f (A ))=A .6. 求下列函数的自然定义域: (1)23+=x y ;解 由3x +2≥0得32->x . 函数的定义域为) ,32[∞+-.(2)211xy -=;解 由1-x 2≠0得x ≠±1. 函数的定义域为(-∞, -1)⋃(-1, 1)⋃(1, +∞). (3)211x xy --=;解 由x ≠0且1-x 2≥0得函数的定义域D =[-1, 0)⋃(0, 1]. (4)241x y -=; 解 由4-x 2>0得 |x |<2. 函数的定义域为(-2, 2). (5)x y sin =;解 由x ≥0得函数的定义D =[0, +∞). (6) y =tan(x +1);解 由21π≠+x (k =0, ±1, ±2, ⋅ ⋅ ⋅)得函数的定义域为 12-+≠ππk x (k =0, ±1, ±2, ⋅ ⋅ ⋅).(7) y =arcsin(x -3);解 由|x -3|≤1得函数的定义域D =[2, 4]. (8)xx y 1arctan 3+-=;解 由3-x ≥0且x ≠0得函数的定义域D =(-∞, 0)⋃(0, 3).(9) y =ln(x +1);解 由x +1>0得函数的定义域D =(-1, +∞). (10)xe y 1=.解 由x ≠0得函数的定义域D =(-∞, 0)⋃(0, +∞). 7. 下列各题中, 函数f (x )和g (x )是否相同?为什么? (1)f (x )=lg x 2, g (x )=2lg x ; (2) f (x )=x , g (x )=2x ;(3)334)(x x x f -=,31)(-=x x x g . (4)f (x )=1, g (x )=sec 2x -tan 2x . 解 (1)不同. 因为定义域不同.(2)不同. 因为对应法则不同, x <0时, g (x )=-x . (3)相同. 因为定义域、对应法则均相相同. (4)不同. 因为定义域不同.8. 设⎪⎩⎪⎨⎧≥<=3||03|| |sin |)(ππϕx x x x , 求)6(πϕ, )4(πϕ, )4(πϕ-, ϕ(-2), 并作出函数y =ϕ(x )的图形.解 21|6sin |)6(==ππϕ, 22|4sin |)4(==ππϕ, 22|)4sin(|)4(=-=-ππϕ, 0)2(=-ϕ. 9. 试证下列函数在指定区间内的单调性: (1)x x y -=1, (-∞, 1);(2)y =x +ln x , (0, +∞).证明 (1)对于任意的x 1, x 2∈(-∞, 1), 有1-x 1>0, 1-x 2>0. 因为当x 1<x 2时, 0)1)(1(112121221121<---=---=-x x x x x x x x y y , 所以函数x x y -=1在区间(-∞, 1)内是单调增加的.(2)对于任意的x 1, x 2∈(0, +∞), 当x 1<x 2时, 有0l n )()l n ()l n (2121221121<+-=+-+=-x xx x x x x x y y ,所以函数y =x +ln x 在区间(0, +∞)内是单调增加的.10. 设 f (x )为定义在(-l , l )内的奇函数, 若f (x )在(0, l )内单调增加, 证明f (x )在(-l , 0)内也单调增加.证明 对于∀x 1, x 2∈(-l , 0)且x 1<x 2, 有-x 1, -x 2∈(0, l )且-x 1>-x 2. 因为f (x )在(0, l )内单调增加且为奇函数, 所以f (-x 2)<f (-x 1), -f (x 2)<-f (x 1), f (x 2)>f (x 1),这就证明了对于∀x 1, x 2∈(-l , 0), 有f (x 1)< f (x 2), 所以f (x )在(-l , 0)内也单调增加. 11. 设下面所考虑的函数都是定义在对称区间(-l , l )上的, 证明: (1)两个偶函数的和是偶函数, 两个奇函数的和是奇函数;(2)两个偶函数的乘积是偶函数, 两个奇函数的乘积是偶函数, 偶函数与奇函数的乘积是奇函数.证明 (1)设F (x )=f (x )+g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )+g (-x )=f (x )+g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的和是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )+g (-x )=-f (x )-g (x )=-F (x ), 所以F (x )为奇函数, 即两个奇函数的和是奇函数. (2)设F (x )=f (x )⋅g (x ). 如果f (x )和g (x )都是偶函数, 则 F (-x )=f (-x )⋅g (-x )=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个偶函数的积是偶函数. 如果f (x )和g (x )都是奇函数, 则F (-x )=f (-x )⋅g (-x )=[-f (x )][-g (x )]=f (x )⋅g (x )=F (x ), 所以F (x )为偶函数, 即两个奇函数的积是偶函数. 如果f (x )是偶函数, 而g (x )是奇函数, 则F (-x )=f (-x )⋅g (-x )=f (x )[-g (x )]=-f (x )⋅g (x )=-F (x ), 所以F (x )为奇函数, 即偶函数与奇函数的积是奇函数.12. 下列函数中哪些是偶函数, 哪些是奇函数, 哪些既非奇函数又非偶函数? (1)y =x 2(1-x 2); (2)y =3x 2-x 3;(3)2211x xy +-=;(4)y =x (x -1)(x +1);(5)y =sin x -cos x +1;(6)2x x aa y -+=.解 (1)因为f (-x )=(-x )2[1-(-x )2]=x 2(1-x 2)=f (x ), 所以f (x )是偶函数. (2)由f (-x )=3(-x )2-(-x )3=3x 2+x 3可见f (x )既非奇函数又非偶函数.(3)因为())(111)(1)(2222x f x x x x x f =+-=-+--=-, 所以f (x )是偶函数. (4)因为f (-x )=(-x )(-x -1)(-x +1)=-x (x +1)(x -1)=-f (x ), 所以f (x )是奇函数. (5)由f (-x )=sin(-x )-cos(-x )+1=-sin x -cos x +1可见f (x )既非奇函数又非偶函数. (6)因为)(22)()()(x f a a a ax f x x x x =+=+=-----, 所以f (x )是偶函数.13. 下列各函数中哪些是周期函数?对于周期函数, 指出其周期: (1)y =cos(x -2);解 是周期函数, 周期为l =2π. (2)y =cos 4x ;解 是周期函数, 周期为2π=l .(3)y =1+sin πx ;解 是周期函数, 周期为l =2. (4)y =x cos x ; 解 不是周期函数. (5)y =sin 2x .解 是周期函数, 周期为l =π. 14. 求下列函数的反函数: (1)31+=x y ;解 由31+=x y 得x =y 3-1, 所以31+=x y 的反函数为y =x 3-1. (2)xx y +-=11;解 由x x y +-=11得y yx +-=11, 所以x x y +-=11的反函数为xx y +-=11.(3)dcx b ax y ++=(ad -bc ≠0);解 由d cx b ax y ++=得a cy bdy x -+-=, 所以d cx b ax y ++=的反函数为acx b dx y -+-=.(4) y =2sin3x ;解 由y =2sin 3x 得2arcsin 31yx =, 所以y =2sin3x 的反函数为2arcsin 31x y =.(5) y =1+ln(x +2);解 由y =1+ln(x +2)得x =e y -1-2, 所以y =1+ln(x +2)的反函数为y =e x -1-2.(6)122+=x xy .解 由122+=x x y 得y y x -=1log 2, 所以122+=x x y 的反函数为xx y -=1log 2. 15. 设函数f (x )在数集X 上有定义, 试证: 函数f (x )在X 上有界的充分必要条件是它在X 上既有上界又有下界.证明 先证必要性. 设函数f (x )在X 上有界, 则存在正数M , 使|f (x )|≤M , 即-M ≤f (x )≤M . 这就证明了f (x )在X 上有下界-M 和上界M .再证充分性. 设函数f (x )在X 上有下界K 1和上界K 2, 即K 1≤f (x )≤ K 2 . 取M =max{|K 1|, |K 2|}, 则 -M ≤ K 1≤f (x )≤ K 2≤M ,即 |f (x )|≤M .这就证明了f (x )在X 上有界.16. 在下列各题中, 求由所给函数复合而成的函数, 并求这函数分别对应于给定自变量值x 1和x 2的函数值:(1) y =u 2, u =sin x , 61π=x , 32π=x ; 解 y =sin 2x , 41)21(6sin 221===πy ,43)23(3sin 222===πy .(2) y =sin u , u =2x , 81π=x ,42π=x ;解 y =sin2x , 224sin )82sin(1==⋅=ππy ,12sin )42sin(2==⋅=ππy . (3)u y =, u =1+x 2, x 1=1, x 2= 2;解 21x y +=, 21121=+=y , 52122=+=y . (4) y =e u , u =x 2, x 1 =0, x 2=1;解 2x e y =, 1201==e y , e e y ==212.(5) y =u 2 , u =e x , x 1=1, x 2=-1. 解 y =e 2x , y 1=e 2⋅1=e 2, y 2=e 2⋅(-1)=e -2.17. 设f (x )的定义域D =[0, 1], 求下列各函数的定义域: (1) f (x 2);解 由0≤x 2≤1得|x |≤1, 所以函数f (x 2)的定义域为[-1, 1]. (2) f (sin x );解 由0≤sin x ≤1得2n π≤x ≤(2n +1)π (n =0, ±1, ±2⋅ ⋅ ⋅), 所以函数f (sin x )的定义域为 [2n π, (2n +1)π] (n =0, ±1, ±2⋅ ⋅ ⋅) . (3) f (x +a )(a >0);解 由0≤x +a ≤1得-a ≤x ≤1-a , 所以函数f (x +a )的定义域为[-a , 1-a ]. (4) f (x +a )+f (x -a )(a >0).解 由0≤x +a ≤1且0≤x -a ≤1得: 当210≤<a 时, a ≤x ≤1-a ; 当21>a 时, 无解. 因此当210≤<a 时函数的定义域为[a , 1-a ], 当21>a 时函数无意义.18. 设⎪⎩⎪⎨⎧>-=<=1||11||01||1)(x x x x f , g (x )=e x , 求f [g (x )]和g [f (x )], 并作出这两个函数的图形. 解 ⎪⎩⎪⎨⎧>-=<=1|| 11|| 01|| 1)]([x x x e e e x g f , 即⎪⎩⎪⎨⎧>-=<=0 10 001)]([x x x x g f .⎪⎩⎪⎨⎧>=<==-1|| 1|| e 1|| )]([101)(x e x x e e x f g x f , 即⎪⎩⎪⎨⎧>=<=-1|| 1|| 11|| )]([1x e x x e x f g . 19. 已知水渠的横断面为等腰梯形, 斜角ϕ=40︒(图1-37). 当过水断面ABCD 的面积为定值S 0时, 求湿周L (L =AB +BC +CD )与水深h 之间的函数关系式, 并指明其定义域.图1-37解 40sin hDC AB ==, 又从)]40cot 2([21Sh BC BC h =⋅++ 得h hS BC ⋅-=40cot 0, 所以h h S L 40sin 40cos 20-+=. 自变量h 的取值范围应由不等式组h >0,040cot 0>⋅-h hS确定, 定义域为40cot 00S h <<.20. 收敛音机每台售价为90元, 成本为60元. 厂方为鼓励销售商大量采购, 决定凡是订购量超过100台以上的, 每多订购1台, 售价就降低1分, 但最低价为每台75元.(1)将每台的实际售价p 表示为订购量x 的函数; (2)将厂方所获的利润P 表示成订购量x 的函数; (3)某一商行订购了1000台, 厂方可获利润多少? 解 (1)当0≤x ≤100时, p =90.令0.01(x 0-100)=90-75, 得x 0=1600. 因此当x ≥1600时, p =75. 当100<x <1600时,p =90-(x -100)⨯0.01=91-0. 01x . 综合上述结果得到⎪⎩⎪⎨⎧≥<<-≤≤=1600 75160010001.091100090x x x x p . (2)⎪⎩⎪⎨⎧≥<<-≤≤=-=1600 15160010001.0311000 30)60(2x x x x x x x x p P . (3) P =31⨯1000-0.01⨯10002=21000(元).习题1-21. 观察一般项x n 如下的数列{x n }的变化趋势, 写出它们的极限: (1)nn x 21=; 解 当n →∞时, nn x 21=→0, 021lim =∞→n n . (2)nx n n 1)1(-=;解 当n →∞时, n x n n 1)1(-=→0, 01)1(lim =-∞→nn n .(3)212nx n +=; 解 当n →∞时, 212n x n +=→2, 2)12(lim 2=+∞→n n . (4)11+-=n n x n ;解 当n →∞时, 12111+-=+-=n n n x n →0, 111lim =+-∞→n n n .(5) x n =n (-1)n .解 当n →∞时, x n =n (-1)n 没有极限.2. 设数列{x n }的一般项nn x n 2cos π=. 问n n x ∞→lim =? 求出N , 使当n >N 时, x n与其极限之差的绝对值小于正数ε , 当ε =0.001时, 求出数N .解 0lim =∞→n n x .n n n x n 1|2c o s||0|≤=-π. ∀ε >0, 要使|x n -0|<ε , 只要ε<n 1, 也就是ε1>n . 取]1[ε=N , 则∀n >N , 有|x n -0|<ε .当ε =0.001时, ]1[ε=N =1000.3. 根据数列极限的定义证明:(1)01lim 2=∞→n n ;分析 要使ε<=-221|01|n n , 只须ε12>n , 即ε1>n . 证明 因为∀ε>0, ∃]1[ε=N , 当n >N 时, 有ε<-|01|2n , 所以01lim2=∞→n n .(2)231213lim =++∞→n n n ;分析 要使ε<<+=-++n n n n 41)12(21|231213|, 只须ε<n41, 即ε41>n .证明 因为∀ε>0, ∃]41[ε=N , 当n >N 时, 有ε<-++|231213|n n , 所以231213lim =++∞→n n n .(3)1lim 22=+∞→na n n ; 分析 要使ε<<++=-+=-+na n a n n a n n a n n a n 22222222)(|1|, 只须ε2a n >. 证明 因为∀ε>0, ∃][2εa N =, 当∀n >N 时, 有ε<-+|1|22n a n , 所以1lim 22=+∞→na n n .(4)19 999.0lim =⋅⋅⋅∞→个n n . 分析 要使|0.99 ⋅ ⋅ ⋅ 9-1|ε<=-1101n , 只须1101-n <ε , 即ε1lg 1+>n . 证明 因为∀ε>0, ∃]1lg 1[ε+=N , 当∀n >N 时, 有|0.99 ⋅ ⋅ ⋅ 9-1|<ε , 所以19 999.0lim =⋅⋅⋅∞→个n n . 4. a u n n =∞→lim , 证明||||lim a u n n =∞→. 并举例说明: 如果数列{|x n |}有极限, 但数列{x n }未必有极限.证明 因为a u n n =∞→lim , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有ε<-||a u n , 从而||u n |-|a ||≤|u n -a |<ε .这就证明了||||lim a u n n =∞→.数列{|x n |}有极限, 但数列{x n }未必有极限. 例如1|)1(|lim =-∞→n n , 但n n )1(lim -∞→不存在.5. 设数列{x n }有界, 又0lim =∞→n n y , 证明: 0lim =∞→n n n y x .证明 因为数列{x n }有界, 所以存在M , 使∀n ∈Z , 有|x n |≤M .又0lim =∞→n n y , 所以∀ε>0, ∃N ∈N , 当n >N 时, 有M y n ε<||. 从而当n >N 时, 有εε=⋅<≤=-M M y M y x y x n n n n n |||||0|,所以0lim =∞→n n n y x .6. 对于数列{x n }, 若x 2k -1→a (k →∞), x 2k →a (k →∞),证明: x n →a (n →∞).证明 因为x 2k -1→a (k →∞), x 2k →a (k →∞), 所以∀ε>0, ∃K 1, 当2k -1>2K 1-1时, 有| x 2k -1-a |<ε ; ∃K 2, 当2k >2K 2时, 有|x 2k -a |<ε .取N =max{2K 1-1, 2K 2}, 只要n >N , 就有|x n -a |<ε . 因此x n →a (n →∞). 习题1-31. 根据函数极限的定义证明: (1)8)13(lim 3=-→x x ;分析 因为|(3x -1)-8|=|3x -9|=3|x -3|,所以要使|(3x -1)-8|<ε , 只须ε31|3|<-x .证明 因为∀ε>0, ∃εδ31=, 当0<|x -3|<δ时, 有|(3x -1)-8|<ε , 所以8)13(lim 3=-→x x .(2)12)25(lim 2=+→x x ;分析 因为|(5x +2)-12|=|5x -10|=5|x -2|, 所以要使|(5x +2)-12|<ε , 只须ε51|2|<-x .证明 因为∀ε >0, ∃εδ51=, 当0<|x -2|<δ时, 有 |(5x +2)-12|<ε , 所以12)25(lim 2=+→x x .(3)424lim 22-=+--→x x x ; 分析 因为|)2(||2|244)4(2422--=+=+++=--+-x x x x x x x ,所以要使ε<--+-)4(242x x , 只须ε<--|)2(|x . 证明 因为∀ε >0, ∃εδ=, 当0<|x -(-2)|<δ时, 有ε<--+-)4(242x x , 所以424lim 22-=+--→x x x .(4)21241lim 321=+--→x x x . 分析 因为|)21(|2|221|212413--=--=-+-x x x x ,所以要使ε<-+-212413x x , 只须ε21|)21(|<--x . 证明 因为∀ε >0, ∃εδ21=, 当δ<--<|)21(|0x 时, 有ε<-+-212413x x , 所以21241lim 321=+--→x x x . 2. 根据函数极限的定义证明:(1)2121lim 33=+∞→x xx ; 分析 因为333333||21212121x x x x x x =-+=-+, 所以要使ε<-+212133x x , 只须ε<3||21x , 即321||ε>x . 证明 因为∀ε >0, ∃321ε=X , 当|x |>X 时, 有 ε<-+212133x x , 所以2121lim 33=+∞→x xx . (2)0sin lim =+∞→xx x .分析 因为x xx x x 1|s i n |0s i n≤=-.所以要使ε<-0sin xx , 只须ε<x1, 即21ε>x . 证明 因为∀ε>0, ∃21ε=X , 当x >X 时, 有ε<-0s i n xx , 所以0sin lim =+∞→xx x .3. 当x →2时, y =x 2→4. 问δ等于多少, 使当|x -2|<δ时, |y -4|<0.001? 解 由于当x →2时, |x -2|→0, 故可设|x -2|<1, 即1<x <3. 要使|x 2-4|=|x +2||x -2|<5|x -2|<0.001, 只要0002.05001.0|2|=<-x .取δ=0.0002, 则当0<|x -2|<δ时, 就有|x 2-4|<0. 001.4. 当x →∞时, 13122→+-=x x y , 问X 等于多少, 使当|x |>X 时, |y -1|<0.01?解 要使01.034131222<+=-+-x x x , 只要397301.04||=->x , 故397=X . 5. 证明函数f (x )=|x |当x →0时极限为零. 证明 因为|f (x )-0|=||x |-0|=|x |=|x -0|, 所以要使|f (x )-0|<ε, 只须|x |<ε.因为对∀ε>0, ∃δ=ε, 使当0<|x -0|<δ, 时有 |f (x )-0|=||x |-0|<ε, 所以0||lim 0=→x x .6. 求,)(x x x f = xx x ||)(=ϕ当x →0时的左﹑右极限, 并说明它们在x →0时的极限是否存在.证明 因为11lim lim )(lim 000===---→→→x x x x x x f , 11lim lim )(lim 000===+++→→→x x x x x x f ,)(lim )(lim 0x f x f x x +→→=-,所以极限)(lim 0x f x →存在.因为1lim ||lim )(lim 000-=-==---→→→xx x x x x x x ϕ,1lim||lim )(lim 000===+++→→→x x x x x x x x ϕ, )(lim )(lim 0x x x x ϕϕ+→→≠-,所以极限)(lim 0x x ϕ→不存在.7. 证明: 若x →+∞及x →-∞时, 函数f (x )的极限都存在且都等于A , 则A x f x =∞→)(lim .证明 因为A x f x =-∞→)(lim , A x f x =+∞→)(lim , 所以∀ε>0,∃X 1>0, 使当x <-X 1时, 有|f (x )-A |<ε ; ∃X 2>0, 使当x >X 2时, 有|f (x )-A |<ε .取X =max{X 1, X 2}, 则当|x |>X 时, 有|f (x )-A |<ε , 即A x f x =∞→)(lim .8. 根据极限的定义证明: 函数f (x )当x →x 0 时极限存在的充分必要条件是左极限、右极限各自存在并且相等.证明 先证明必要性. 设f (x )→A (x →x 0), 则∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ 时, 有 |f (x )-A |<ε .因此当x 0-δ<x <x 0和x 0<x <x 0+δ 时都有 |f (x )-A |<ε .这说明f (x )当x →x 0时左右极限都存在并且都等于A . 再证明充分性. 设f (x 0-0)=f (x 0+0)=A , 则∀ε>0, ∃δ1>0, 使当x 0-δ1<x <x 0时, 有| f (x )-A <ε ; ∃δ2>0, 使当x 0<x <x 0+δ2时, 有| f (x )-A |<ε .取δ=min{δ1, δ2}, 则当0<|x -x 0|<δ 时, 有x 0-δ1<x <x 0及x 0<x <x 0+δ2 , 从而有 | f (x )-A |<ε , 即f (x )→A (x →x 0).9. 试给出x →∞时函数极限的局部有界性的定理, 并加以证明.解 x →∞时函数极限的局部有界性的定理: 如果f (x )当x →∞时的极限存在, 则存在X >0及M >0, 使当|x |>X 时, |f (x )|<M .证明 设f (x )→A (x →∞), 则对于ε =1, ∃X >0, 当|x |>X 时, 有|f (x )-A |<ε =1. 所以 |f (x )|=|f (x )-A +A |≤|f (x )-A |+|A |<1+|A |.这就是说存在X >0及M >0, 使当|x |>X 时, |f (x )|<M , 其中M =1+|A |. 习题1-41. 两个无穷小的商是否一定是无穷小?举例说明之. 解 不一定.例如, 当x →0时, α(x )=2x , β(x )=3x 都是无穷小, 但32)()(lim 0=→x x x βα, )()(x x βα不是无穷小.2. 根据定义证明:(1)392+-=x xy 当x →3时为无穷小;(2)xx y 1sin =当x →0时为无穷小.证明 (1)当x ≠3时|3|39||2-=+-=x x x y . 因为∀ε>0, ∃δ=ε , 当0<|x -3|<δ时, 有εδ=<-=+-=|3|39||2x x x y ,所以当x →3时392+-=x xy 为无穷小.(2)当x ≠0时|0||1sin |||||-≤=x xx y . 因为∀ε>0, ∃δ=ε , 当0<|x -0|<δ时, 有εδ=<-≤=|0||1sin |||||x xx y ,所以当x →0时xx y 1sin =为无穷小.3. 根据定义证明: 函数x x y 21+=为当x →0时的无穷大. 问x 应满足什么条件, 能使|y |>104?证明 分析2||11221||-≥+=+=x x x x y , 要使|y |>M , 只须M x >-2||1, 即21||+<M x .证明 因为∀M >0, ∃21+=M δ, 使当0<|x -0|<δ时, 有M x x >+21,所以当x →0时, 函数xx y 21+=是无穷大.取M =104, 则21014+=δ. 当2101|0|04+<-<x 时, |y |>104. 4. 求下列极限并说明理由:(1)xx x 12lim +∞→;(2)xxx --→11lim 20.解 (1)因为xx x 1212+=+, 而当x →∞ 时x 1是无穷小, 所以212lim =+∞→x x x .(2)因为x x x +=--1112(x ≠1), 而当x →0时x 为无穷小, 所以111lim 20=--→x x x .5. 根据函数极限或无穷大定义, 填写下表:f (x )→Af (x )→∞f (x )→+∞f (x )→-∞x→x 0 ∀ε>0, ∃δ>0, 使 当0<|x -x 0|<δ时,有恒|f (x )-A |<ε.x →x 0+x →x 0-x →∞∀ε>0, ∃X >0, 使当|x |>X 时,有恒|f (x )|>M .x →+∞x →-∞解 f (x )→A f (x )→∞ f (x )→+∞ f (x )→-∞ x →x 0∀ε>0, ∃δ>0, 使当0<|x -x 0|<δ∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当∀M >0, ∃δ>0, 使当时, 有恒|f (x )-A |<ε.0<|x -x 0|<δ时, 有恒|f (x )|>M .0<|x -x 0|<δ时, 有恒f (x )>M .0<|x -x 0|<δ时, 有恒f (x )<-M .x→x 0+ ∀ε>0, ∃δ>0,使当0<x -x 0<δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x -x 0<δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x -x 0<δ时, 有恒f (x )<-M .x →x 0- ∀ε>0, ∃δ>0,使当0<x 0-x <δ时, 有恒|f (x )-A |<ε.∀M >0,∃δ>0, 使当0<x 0-x <δ时, 有恒|f (x )|>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )>M .∀M >0, ∃δ>0, 使当0<x 0-x <δ时, 有恒f (x )<-M .x →∞∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当|x |>X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当|x |>X 时, 有恒f (x )<-M .x →+∞∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0, 使当x >X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )>M .∀ε>0, ∃X >0, 使当x >X 时, 有恒f (x )<-M .x →-∞∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )-A |<ε.∀ε>0, ∃X >0,使当x <-X 时, 有恒|f (x )|>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )>M .∀ε>0, ∃X >0,使当x <-X 时, 有恒f (x )<-M .6. 函数y =x cos x 在(-∞, +∞)内是否有界?这个函数是否为当x →+∞ 时的无穷大?为什么?解 函数y =x cos x 在(-∞, +∞)内无界.这是因为∀M >0, 在(-∞, +∞)内总能找到这样的x , 使得|y (x )|>M . 例如y (2k π)=2k π cos2k π=2k π (k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, 就有| y (2k π)|>M .当x →+∞ 时, 函数y =x cos x 不是无穷大.这是因为∀M >0, 找不到这样一个时刻N , 使对一切大于N 的x , 都有|y (x )|>M . 例如0)22cos()22()22(=++=+ππππππk k k y (k =0, 1, 2, ⋅ ⋅ ⋅),对任何大的N , 当k 充分大时, 总有N k x >+=22ππ, 但|y (x )|=0<M .7. 证明: 函数xx y 1sin 1=在区间(0, 1]上无界, 但这函数不是当x →0+时的无穷大.证明 函数x x y 1sin 1=在区间(0, 1]上无界. 这是因为∀M >0, 在(0, 1]中总可以找到点x k , 使y (x k )>M . 例如当221ππ+=k x k (k =0, 1, 2, ⋅ ⋅ ⋅)时, 有22)(ππ+=k x y k ,当k 充分大时, y (x k )>M .当x →0+ 时, 函数xx y 1sin 1=不是无穷大. 这是因为∀M >0, 对所有的δ>0, 总可以找到这样的点x k , 使0<x k <δ, 但y (x k )<M . 例如可取πk x k 21=(k =0, 1, 2, ⋅ ⋅ ⋅),当k 充分大时, x k <δ, 但y (x k )=2k πsin2k π=0<M . 习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x .(5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2x x x +-∞→;解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零). 或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x . (9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim nn +⋅⋅⋅+++∞→;解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n . (12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n .(13)35)3)(2)(1(limnn n n n +++∞→; 解 515)3)(2)(1(lim3=+++∞→n n n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n . (14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x .2. 计算下列极限:(1)2232)2(2lim -+→x x x x ;解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2lim x x x x . (2)12lim 2+∞→x xx ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题1-51. 计算下列极限:(1)35lim22-+→x x x ;解 9325235lim222-=-+=-+→x x x . (2)13lim 223+-→x x x ; 解 01)3(3)3(13lim 22223=+-=+-→x x x . (3)112lim 221-+-→x x x x ;解 02011lim )1)(1()1(lim 112lim 121221==+-=+--=-+-→→→x x x x x x x x x x x . (4)xx xx x x 2324lim 2230++-→;解 2123124lim 2324lim 202230=++-=++-→→x x x x x x x x x x . (5)hx h x h 220)(lim -+→;解 x h x hx h hx x h x h x h h h 2)2(lim 2lim )(lim 02220220=+=-++=-+→→→. (6))112(lim 2xx x +-∞→; 解 21lim 1lim2)112(lim 22=+-=+-∞→∞→∞→x x x x x x x . (7)121lim 22---∞→x x x x ;解 2111211lim 121lim 2222=---=---∞→∞→xx x x x x x x . (8)13lim 242--+∞→x x xx x ;解 013lim 242=--+∞→x x x x x (分子次数低于分母次数, 极限为零).或 012111lim 13lim 4232242=--+=--+∞→∞→xx x x x x x x x x .(9)4586lim 224+-+-→x x x x x ; 解 32142412lim )4)(1()4)(2(lim 4586lim 44224=--=--=----=+-+-→→→x x x x x x x x x x x x x .(10))12)(11(lim 2x x x -+∞→;解 221)12(lim )11(lim )12)(11(lim 22=⨯=-⋅+=-+∞→∞→∞→x x x x x x x . (11))21 41211(lim n n +⋅⋅⋅+++∞→; 解 2211)21(1lim )21 41211(lim 1=--=+⋅⋅⋅++++∞→∞→n n n n .(12)2)1( 321limn n n -+⋅⋅⋅+++∞→;解 211lim 212)1(lim )1( 321lim 22=-=-=-+⋅⋅⋅+++∞→∞→∞→n n n n n n n n n n . (13)35)3)(2)(1(lim n n n n n +++∞→;解 515)3)(2)(1(lim 3=+++∞→nn n n n (分子与分母的次数相同, 极限为 最高次项系数之比).或 51)31)(21)(11(lim 515)3)(2)(1(lim3=+++=+++∞→∞→n n n n n n n n n .(14))1311(lim 31xx x ---→;解 )1)(1()2)(1(lim )1)(1(31lim )1311(lim 2122131x x x x x x x x x x x x x x x ++-+--=++--++=---→→→ 112l i m 21-=+++-=→x x x x . 2. 计算下列极限:(1)2232)2(2lim -+→x x x x ; 解 因为01602)2(lim 2322==+-→x x x x , 所以∞=-+→2232)2(2limx x x x .(2)12lim 2+∞→x x x ;解 ∞=+∞→12lim2x x x (因为分子次数高于分母次数). (3))12(lim 3+-∞→x x x .解 ∞=+-∞→)12(lim 3x x x (因为分子次数高于分母次数).3. 计算下列极限:(1)xx x 1sin lim 20→;解 01sin lim 20=→xx x (当x →0时, x 2是无穷小, 而x 1sin 是有界变量).(2)xx x arctan lim ∞→.解 0arctan 1lim arctan lim =⋅=∞→∞→x x x x x x (当x →∞时, x 1是无穷小,而arctan x 是有界变量). 4. 证明本节定理3中的(2).习题 1-71. 当x →0时, 2x -x 2 与x 2-x 3相比, 哪一个是高阶无穷小?解 因为02lim 2lim202320=--=--→→xx x x x x x x x , 所以当x →0时, x 2-x 3是高阶无穷小, 即x 2-x 3=o (2x -x 2).2. 当x →1时, 无穷小1-x 和(1)1-x 3, (2))1(212x -是否同阶?是否等价?解 (1)因为3)1(lim 1)1)(1(lim 11lim212131=++=-++-=--→→→x x x x x x x x x x x , 所以当x →1时, 1-x 和1-x 3是同阶的无穷小, 但不是等价无穷小.(2)因为1)1(lim 211)1(21lim 121=+=--→→x x x x x , 所以当x →1时, 1-x 和)1(212x -是同阶的无穷小, 而且是等价无穷小.3. 证明: 当x →0时, 有: (1) arctan x ~x ;(2)2~1sec 2xx -.证明 (1)因为1tan limarctan lim 00==→→y yxx y x (提示: 令y =arctan x , 则当x →0时, y →0), 所以当x →0时, arctan x ~x .(2)因为1)22sin 2(lim 22sin 2lim cos cos 1lim 2211sec lim 202202020===-=-→→→→x xx x x x x xx x x x x , 所以当x →0时, 2~1s e c2x x -. 4. 利用等价无穷小的性质, 求下列极限: (1)xx x 23tan lim 0→;(2)mn x x x )(sin )sin(lim 0→(n , m 为正整数);(3)x x x x 30sin sin tan lim -→; (4))1sin 1)(11(tan sin lim320-+-+-→x x x x x . 解 (1)2323lim 23tan lim 00==→→x x x x x x .(2)⎪⎩⎪⎨⎧<∞>===→→mn m n m n x x x x mn x m n x 0 1lim )(sin )sin(lim00. (3)21cos 21lim sin cos cos 1lim sin )1cos 1(sin lim sin sin tan lim 220203030==-=-=-→→→→x x x x x x xx x x x x x x x x . (4)因为32221)2(2~2s i n t a n 2)1(c o s t a n t a n s i n x x x x x x x x x -=⋅--=-=-(x →0),23232223231~11)1(11x x x x x ++++=-+(x →0), x x x x x ~s i n ~1s i n 1s i n 1s i n1++=-+(x →0),所以 33121l i m )1s i n 1)(11(tan sin lim 230320-=⋅-=-+-+-→→xx x x x x x x x .5. 证明无穷小的等价关系具有下列性质: (1) α ~α (自反性);(2) 若α ~β, 则β~α(对称性); (3)若α ~β, β~γ, 则α~γ(传递性). 证明 (1)1lim =αα, 所以α ~α ;(2) 若α ~β, 则1lim =βα, 从而1lim =αβ. 因此β~α ;(3) 若α ~β, β~γ, 1lim lim lim =⋅=βαγβγα. 因此α~γ.习题1-81. 研究下列函数的连续性, 并画出函数的图形:(1)⎩⎨⎧≤<-≤≤=21 210 )(2x x x x x f ;解 已知多项式函数是连续函数, 所以函数f (x )在[0, 1)和(1, 2]内是连续的. 在x =1处, 因为f (1)=1, 并且1lim )(lim 211==--→→x x f x x , 1)2(lim )(lim 11=-=++→→x x f x x . 所以1)(lim 1=→x f x , 从而函数f (x )在x =1处是连续的.综上所述,函数f (x )在[0, 2]上是连续函数.(2)⎩⎨⎧>≤≤-=1|| 111 )(x x x x f .解 只需考察函数在x =-1和x =1处的连续性. 在x =-1处, 因为f (-1)=-1, 并且)1(11l i m )(l i m 11-≠==---→-→f x f x x , )1(1lim )(lim 11-=-==++-→-→f x x f x x ,所以函数在x =-1处间断, 但右连续.在x =1处, 因为f (1)=1, 并且1l i m )(l i m 11==--→→x x f x x =f (1), 11lim )(lim 11==++→→x x x f =f (1), 所以函数在x =1处连续.综合上述讨论, 函数在(-∞, -1)和(-1, +∞)内连续, 在x =-1处间断, 但右连续. 2. 下列函数在指出的点处间断, 说明这些间断点属于哪一类, 如果是可去间断点, 则补充或改变函数的定义使它连续:(1)23122+--=x x xy , x =1, x =2;解 )1)(2()1)(1(23122---+=+--=x x x x x x x y . 因为函数在x =2和x =1处无定义, 所以x =2和x =1是函数的间断点.因为∞=+--=→→231lim lim 2222x x xy x x , 所以x =2是函数的第二类间断点;因为2)2()1(limlim 11-=-+=→→x x y x x , 所以x =1是函数的第一类间断点, 并且是可去间断点. 在x =1处, 令y =-2, 则函数在x =1处成为连续的.(2)x x y tan =, x =k , 2ππ+=k x (k =0, ±1, ±2, ⋅ ⋅ ⋅);解 函数在点x =k π(k ∈Z)和2ππ+=k x (k ∈Z)处无定义, 因而这些点都是函数的间断点.因∞=→x x k x tan lim π(k ≠0), 故x =k π(k ≠0)是第二类间断点;因为1tan lim 0=→x x x ,0tan lim2=+→x x k x ππ(k ∈Z), 所以x =0和2ππ+=k x (k ∈Z) 是第一类间断点且是可去间断点.令y |x =0=1, 则函数在x =0处成为连续的;令2 ππ+=k x 时, y =0, 则函数在2ππ+=k x 处成为连续的.(3)xy 1cos 2=, x =0;解 因为函数x y 1cos 2=在x =0处无定义, 所以x =0是函数xy 1cos 2=的间断点. 又因为xx 1cos lim 20→不存在, 所以x =0是函数的第二类间断点. (4)⎩⎨⎧>-≤-=1311x x x x y , x =1.解 因为0)1(lim )(lim 11=-=--→→x x f x x 2)3(lim )(lim 11=-=++→→x x f x x , 所以x =1是函数的第一类不可去间断点.3. 讨论函数x x x x f nnn 2211lim)(+-=∞→的连续性, 若有间断点, 判别其类型. 解 ⎪⎩⎪⎨⎧<=>-=+-=∞→1|| 1|| 01|| 11lim )(22x x x x x x x x x f nn n . 在分段点x =-1处, 因为1)(lim )(lim 11=-=---→-→x x f x x , 1lim )(lim 11-==++-→-→x x f x x , 所以x =-1为函数的第一类不可去间断点.在分段点x =1处, 因为1lim )(lim 11==--→→x x f x x , 1)(lim )(lim 11-=-=++→→x x f x x , 所以x =1为函数的第一类不可去间断点.4. 证明: 若函数f (x )在点x 0连续且f (x 0)≠0, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.证明 不妨设f (x 0)>0. 因为f (x )在x 0连续, 所以0)()(lim 00>=→x f x f x x , 由极限的局部保号性定理, 存在x 0的某一去心邻域)(0x U , 使当x ∈)(0x U时f (x )>0, 从而当x ∈U (x 0)时, f (x )>0. 这就是说, 则存在x 0的某一邻域U (x 0), 当x ∈U (x 0)时, f (x )≠0.5. 试分别举出具有以下性质的函数f (x )的例子:(1)x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n1±, ⋅ ⋅ ⋅是f (x )的所有间断点, 且它们都是无穷间断点; 解 函数x x x f ππcsc )csc()(+=在点x =0, ±1, ±2, 21±, ⋅ ⋅ ⋅, ±n , n 1±, ⋅ ⋅ ⋅处是间断的且这些点是函数的无穷间断点.(2)f (x )在R 上处处不连续, 但|f (x )|在R 上处处连续;解 函数⎩⎨⎧∉∈-=Q Qx x x f 1 1)(在R 上处处不连续, 但|f (x )|=1在R 上处处连续.(3)f (x )在R 上处处有定义, 但仅在一点连续.解 函数⎩⎨⎧∉-∈=Q Q x x x x x f)(在R 上处处有定义, 它只在x =0处连续.习题1-91. 求函数633)(223-+--+=x x x x x x f 的连续区间, 并求极限)(lim 0x f x →, )(lim 3x f x -→及)(lim 2x f x →.解 )2)(3()1)(1)(3(633)(223-++-+=-+--+=x x x x x x x x x x x f , 函数在(-∞, +∞)内除点x =2和x =-3外是连续的, 所以函数f (x )的连续区间为(-∞, -3)、(-3, 2)、(2, +∞).在函数的连续点x =0处, 21)0()(lim 0==→f x f x . 在函数的间断点x =2和x =-3处, ∞=-++-+=→→)2)(3()1)(1)(3(lim)(lim 22x x x x x x f x x , 582)1)(1(lim)(lim 33-=-+-=-→-→x x x x f x x . 2. 设函数f (x )与g (x )在点x 0连续, 证明函数 ϕ(x )=max{f (x ), g (x )}, ψ(x )=min{f (x ), g (x )} 在点x 0也连续.证明 已知)()(lim 00x f x f x x =→, )()(lim 00x g x g x x =→.可以验证] |)()(|)()([21)(x g x f x g x f x -++=ϕ,] |)()(|)()([21)(x g x f x g x f x --+=ψ.因此 ] |)()(|)()([21)(00000x g x f x g x f x -++=ϕ,] |)()(|)()([21)(00000x g x f x g x f x --+=ψ.因为] |)()(|)()([21lim )(lim 00x g x f x g x f x x x x x -++=→→ϕ] |)(lim )(lim |)(lim )(lim [210000x g x f x g x f x x x x x x x x →→→→-++=] |)()(|)()([210000x g x f x g x f -++==ϕ(x 0),所以ϕ(x )在点x 0也连续.同理可证明ψ(x )在点x 0也连续.3. 求下列极限: (1)52lim 20+-→x x x ;。
上海财经大学《高等数学》习题一及解答在学习高等数学课程的过程中,不可避免地会遇到各种各样的习题。
习题的目的是帮助学生巩固所学的内容,提高解题能力和应用能力。
本文将介绍上海财经大学《高等数学》课程中的习题一及解答,旨在帮助学生更好地理解和掌握相关知识。
一、习题一1. 计算下列极限:lim(x→∞) (2x^2 + 3x - 1) / (4x^2 - x + 1)lim(x→0) sin3x / sin2x2. 求函数f(x) = √(4x + 3) + √(x - 1) 的定义域和值域。
3. 设函数f(x) = √x,g(x) = x^2 + 1,求函数 h(x) = (f∘g)(x) 的表达式。
二、解答1. 对于第一题,我们可以将分子和分母都除以 x^2,得到:lim(x→∞) (2 + 3/x - 1/x^2) / (4 - 1/x + 1/x^2)当 x 趋向于正无穷时,分别以最高项的系数来比较三个项,得到极限为 2/4 = 1/2。
对于第二题,我们可以将 sin3x 和 sin2x 都展开为泰勒级数的形式,并截取最低阶的项,得到:lim(x→0) (3x - (1/6)x^3) / (2x - (1/6)x^3)当 x 趋向于 0 时,分别以最高项的系数来比较两个项,得到极限为3/2。
2. 对于函数f(x) = √(4x + 3) + √(x - 1),要使得函数有定义,需要满足以下两个条件:4x + 3 ≥ 0(根式内部不可小于0)x - 1 ≥ 0(根式内部不可小于0)解得x ≥ -3/4 和x ≥ 1。
因此,定义域为x ≥ 1。
对于值域,我们可以利用函数的图像进行分析。
函数f(x) = √(4x + 3) + √(x - 1) 是两个平方根函数之和,其中第一个平方根函数的图像为右移3/4单位,上移3单位的开口向上的抛物线;第二个平方根函数的图像为右移1单位,上移1单位的开口向上的抛物线。
中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
第八章 空间解析几何与向量代数第1次课 空间直角坐标系 向量及其线性运算1.在x 轴上求与点(3,1,7)A -及(7,5,5)B -等距离的点. 解:设所求点为(,0,0)x ,据题意知:22(3)149(7)2525x x --++=-++得2x =,于是所求点为(2,0,0).2.把ABC ∆的BC 边三等分,设分点依次为12,D D ,再把各分点与点A 连接起来,试以,AB c BC a −−→→−−→→==表示向量−→−−→−A D A D 21,.解:113D A c a −−→=-- ,2D A −−→23c a =-- .3.已知两点)1,2,4(1M 和)2,0,3(2M ,计算向量123M M -的模、方向角.解:1236M M -= ,2,,343πππαβγ===.4.求平行于向量(3,2,1)a →=-的单位向量.解:0(aa→=5.已知||3a →=,其方向余弦31cos ,32cos ==βα,求向量a →的坐标表示式.解:设(,,)x y z a a a a →=,则2cos 3x aaα==,1cos 3y a a β== ,所以2x a =,1y a =. 又222cos cos cos 1αβγ++=,得24cos 9γ=,2cos 3γ=±. 2cos 3z a aγ==± ,所以2z a =±,于是,所求向量a →的坐标表示式为(2,1,2)a →=±.6.一向量的终点为)7,1,2(-B ,它在x 轴,y 轴和z 轴上的投影依次为4,4-和1,求该向量的起点A 的坐标.解:设起点A 的坐标为(,,)x y z ,则由24,14,71x y z -=--=--=可得(,,)(2,3,6)x y z =-.7.设32a i j k →→→→=--,2b i j k →→→→=+-,求(1)→→→→⨯⋅b a b a ,;(2) ,3)2(→→⋅-b a →→⨯b a 2;(3) ),cos(→∧→b a ;(4)b prj a →.解:(1)3,57a b a b i j k →→→→⋅=⨯=++ ;(2)(2)318a b →→-⋅=-,210214a b i j k →→⨯=++ ;(3)cos(,)14a ba b a b→→→∧→→→⋅==; (4)cos 14b prj a a ϕ→→===.8.已知)2,1,1(M 1-,)1,3,3(M 2,)3,1,3(M 3,求与−→−21M M 、−→−32M M 同时垂直的单位向量.解:设所求单位向量(,,)a x y z →=.12(2,4,1)M M −−→=-,23(0,2,2)M M −−→=-.1223M M M M ⨯241644022i j ki j k =-=---所求单位向量a →=12231223M M M M M M M M ⨯⨯=±. 9.已知(3,0,4),(5,2,14)OA OB =-=--,求AOB ∠平分线上的单位向量.解:AOB ∠平分线上的一个向量为011(3,0,4)(5,2,14)515OC OA OB =+=-+-- 2(2,1,1)15=-.所以,所求的AOB ∠平分线上的单位向量为OC OC= . 10.若向量3a b + 垂直于75a b - ,4a b - 垂直于72a b - ,求a 和b之间的夹角.解:由题意知:(3)(75)0a b a b +⋅-= ,(4)(72)0a b a b -⋅-=22716150a a b b +⋅-= ,2273080a a b b -⋅+=整理得:24623a b b ⋅= ,22a b b ⋅= ,将22a b b ⋅= 代入22716150a a b b +⋅-= 得,a b = ,又22112cos(,)2b a b a b a b b→→→→∧→→→→⋅===故1(,)arccos23a b π→∧→==. 11.在Oxy 面上,求垂直于(5,3,4)a =-,并与a 等长的向量b .解:设b (,,0)x y =,则b ===2250x y +=又由a b ⊥ ,可得 530x y -=.于是解方程组2250x y +=,530x y -=得1717x y ==或,1717x y =-=- 即b(,1717=或b(,0)1717=--. 12.求向量(3,12,4)a =- 在向量(1,0,2)(1,3,4)b =-⨯-上的投影.解:(1,0,2)(1,3,4)b =-⨯-102(6,2,3)134i j k=-=-.b prj a→(3,12,4)a b →→=⋅=-67=13.设向量4=α,3=β,6),(^πβα=,求以βα2+和βα3-为边的平行四边形的面积.解:以βα2+和βα3-为边的平行四边形的面积为22(2)(3)3()2()6S αβαβααββαβ=+⨯-=-⨯+⨯-^55s i n (,)543s i n6παβαβαβ=⨯=⋅⋅=⨯⨯30=提高题:设(2,1,2),(1,1,)a b z =--=,问z 为何值时^(,)a b 最小?并求出此最小值. 解:记^(,)a b ϕ=,则cos a ba bϕ→→→→⋅==所以,ϕ=d1d3zϕ==当4z<-时,dd zϕ<;当4z>-,dd zϕ<.所以,当4z=-时,^(,)a bϕ=有最小值,且min4πϕ==.第2次课平面及其方程空间直线及其方程1.求满足下列条件的平面方程:(1)过点1(1,2,0)M和2(2,1,1)M且垂直于平面П:1=-xy.解:所求平面的法向量()1,1,0(1,1,1)110111i j kn=-⨯-=--i j=+.所求平面方程为1(1)1(2)0x y⋅-+⋅-=,即30x y+-=.(2)过点(2,3,0)A -,(1,1,2)B -且与向量{4,5,1}a →=平行.解:所求平面的法向量()3,4,2(4,5,1)342451i j kn =-⨯=- 14531i j k =-++所求平面方程为14(2)5(3)310x y z -⋅++⋅-+=,即14531430x y z --+=(3)过(1,1,1),(2,2,2)A B ---和(1,1,2)C -.解:所求平面的法向量()3,3,3(0,2,3)333023i j kn =--⨯-=--- 396i j k =-++.所求平面方程为3(1)9(1)6(1)0x y z -⋅-+⋅-++=,即320x y z -++=.2.求平行于平面6650x y z +++=,而与三坐标面所构成的四面体体积为一个单位的平面.解:设所求平面方程为1x y za b c++=.由题意知 116111/6/1/6abc t ab c ⎧=⎪⎪⎨⎪===⎪⎩得111,,66a b c t t t ===,将其代入116abc =,得16t =.所以 1,6,1a b c ===故所求平面方程为116x y z ++=. 3.一平面通过Oz轴与平面27x y +=的夹角为3π,试求此平面方程. 解:因为所求平面过Oz ,所以可设平面方程为0Ax By += (1) 则其法向量为(,,)A B O .平面27x y +=的法向量为(2,1,.因为所求平面与已知平面的夹角为3π,所以cos 3π=223830A AB B +-= (2) 联立(1)、(2)解得 13A B =再由A B 、不同时为零,代入式(1)可得所求平面方程为 30x y +=或30x y -=.4.求与两直线112x y t z t=⎧⎪=-+⎨⎪=+⎩及121121x y z ++-==都平行、且过原点的平面方程. 解:{}{}120,1,1,1,2,1s s ==由题意所求平面平行于两直线,则平面的法向量n与该两直线的方向向量垂直,即12011121i j kn s s i j k =⨯==-+-又平面过原点,所以所求平面方程为 即 0x y z -+=.5.求满足下列条件的直线方程:(1)过点(4,1,3)-且平行于直线31122-=-=-z y x . 解:方向向量(2,1,3)s =- ,故所求直线方程为413213x y z -+-==-.(2)过点(5,2,3)-且垂直于平面132=+-z y x 的直线方程.解:方向向量(2,3,1)s = ,故所求直线方程为523213x y z --+==-.(3)过点(0,2,4)且与直线⎩⎨⎧=-=+2312z y z x 平行.解:12(1,0,2),(0,1,3)n n ==-.方向向量s = 12102(2,3,1)013i j kn n ⨯==--故所求直线方程为34221x y z --==-.6.试求直线21:24x y z L x y z ++=⎧⎨++=⎩的对称式方程和参数方程.解:直线L 的方向向量为{}11321112121--==⨯=,,kj i n n v 点(-2,0,3)在直线L 上,所求直线L 的对称式方程:13132--=-=+z y x7.求直线⎩⎨⎧=--=++003z y x z y x 与平面220x y z -+=的夹角.解:12(1,1,3),(1,1,1),(2,2,1)n n n ==--=-.方向向量s = 12113(2,4,2)111i j kn n ⨯==---.则sin s n s nϕ⨯==⋅故所求夹角为arcsin6. 8.求直线⎩⎨⎧=++-=--+0220532:z y x z y x l 在平面14=+-z y x 上的投影直线方程.解:包含l 的平面束方程为235(22)0x y z x y z λ+--+-++=.(12)(2)(3)520x y z λλλλ++-+--+= 12(4,1,1),(12,2,3)n n λλλ=-=+--则124(12)(2)(3)1010n n λλλλ⋅=+--+-=-= ,得110λ=.故所求投影直线方程为12192948041x y z x y z +--=⎧⎨-+=⎩.提高题:1.已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1),线段AB 绕z 轴旋转一周所成的旋转曲面为S ,求由S 及两平面0,1z z ==所围成的立体体积.第3次课 曲面及其方程 空间曲线及其方程1.建立以点(1,3,2)-为球心,且通过坐标原点的球面方程. 解:2222(1)(3)(2)x y z R -+-++= 因为过原点,得214R =.所求球面方程为222(1)(3)(2)14x y z -+-++=.2.一动点与两定点)1,3,2(和)6,5,4(等距离,求该动点的轨迹方程. 解:设该点坐标为(,,)x y z ,则=所以该动点的轨迹方程为441063x y z ++=.3.求下列旋转曲面的方程:(1)xOy 面上的椭圆22221x y a b+=绕x 轴旋转所形成的旋转面的方程为( 122222=++bz y a x ).(2)zOx 面上的抛物线22x z =绕x 轴旋转的旋转抛物面方程是( 222y z x += ).(3)yOz 面上曲线22yz =绕z 轴旋转一周所得旋转曲面方程为( 222()z x y =+ ). (4)xOy 面上曲线9422=+y x 绕x 轴旋转一周所得旋转曲面方程为( 222()94x z y ++= ). 4.方程222y z x +=表示的二次曲面是( 圆锥面 ).5.方程221x y +=在空间所表示的图形是( 圆柱面 ). 6.方程22201x y x x z ⎧+-=⎨+=⎩代表的图形是( 椭圆 ).7.曲线22251x y z z ⎧++=⎨=⎩在xOy 面上的投影曲线方程为( ⎩⎨⎧==+0422z y x ). 8.曲线222112x y z z ⎧++=⎪⎨=⎪⎩在xOy 面上的投影曲线方程为( ⎪⎩⎪⎨⎧==+04322z y x ). 9.下列曲面是否是旋转曲面?若是,它是如何产生的?(1)z y x 422=+ (2)14425222=--z y x 解:(1)是,由xOz 面上曲线24x z =绕z 轴旋转而成,或yOz 面上曲线24y z =绕z 轴旋转而成. (2)是,由xOy 面上曲线221254x y -=绕x 轴旋转而成,或xOz 面上曲线221254x z -=绕x 轴旋转而成.10.画出下列曲面(或立体)的图形:(1))(222y x z += (2)Rz z y x 2222=++(3)22y x z +=与222y x z --=所围的立体11.求以直线113:234x y z L ---==为中心轴,底半径为2的圆柱面方程. 解:圆柱面是到直线L 的距离为2的动点轨迹,设所求圆柱面上点的坐标为(,,)x y z ,由点到直线的距离公式知2=将上式两边平方,整理即得所求圆柱面方程为16(1)(3)12(1)(1)580x z x y --+--+=2.证明:直线0:x z l a c y b ⎧+=⎪⎨⎪=⎩在曲面2222221x y z a b c +-=上. 证明:曲面2222221x y z a b c+-=是一个单叶双曲面,要证明直线l 在该曲面上,只需证明只需l 上的每一点都在该曲面上.直线l 的参数方程为:x at l y b z ct =⎧⎪=⎨⎪=-⎩将上式代入曲面方程,满足曲面2222221x y z a b c+-=方程,故直线l 在曲面上.13.求曲线222222:x y z l z x y⎧++=⎪⎨=+⎪⎩,在xOy 平面上的投影曲线的方程. 解:在曲线l 方程中消去z ,即得曲线l 在xOy 平面上的投影柱面方程为22222()2x y x y +++=即 2222(2)(1)0x y x y +++-=因为2220x y ++≠,所以有2210x y +-=,故所求投影曲线方程为 2210x y z ⎧+=⎨=⎩提高题:1. 椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是经过点(4,0)且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (1) 求1S 及2S 的方程;(2) 求1S 及2S 之间的立体体积.第4次课 第八章 总复习题1.设3,4a b == ,且a b ⊥ ,求()()a b a b +⨯- .解:因为a b ⊥ ,^sin(,)sin 12a b π== 故^()()22sin(,)243124a b a b b a b a a b +⨯-=⨯==⨯⨯⨯=2.设(2,3,1),(1,2,5),,a b c a c b =-=-⊥⊥ ,且(27)10c i j k ⋅+-= ,求 c .解:设(,,)c x y z = ,由,c a c b ⊥⊥ 有230250270x y z x y z x y z -+=⎧⎪-+=⎨⎪+-=⎩,得65155,,12412x y z ===,所以65155(,,)12412c = . 3.设()2a b c ⨯⋅= ,求[()()]()a b b c c a +⨯+⋅+ .解:[()()]()a b b c c a +⨯+⋅+()()a b b b a c b c c a =⨯+⨯+⨯+⨯⋅+()()a b a c b c c a =⨯+⨯+⨯⋅+()()()()()()a b c a c c b c c a b a a c a b c a =⨯⋅+⨯⋅+⨯⋅+⨯⋅+⨯⋅+⨯⋅()()a b c b c a =⨯⋅+⨯⋅2()a b c =⨯⋅4=4.直线过点(3,5,9)A --,且与两直线135:23y x L z x =+⎧⎨=-⎩和247:510y x L z x =-⎧⎨=+⎩相交,求此直线方程. 解:设所求直线方程3:59x lt L y mt z nt =-+⎧⎪=+⎨⎪=-+⎩因为直线L 与1L 和2L 相交,所以59359623mt lt nt lt +=-++⎧⎨-+=-+-⎩,即(3)92m l t n l-=-⎧⎨=⎩ 51247915510mt lt nt lt +=-+-⎧⎨-+=-++⎩即(4)24(5)4m l t n l t -=-⎧⎨-=⎩得2,22n l m l ==.令1l =,则2,22n m ==.故所求直线方程为3:52292x t L y t z t =-+⎧⎪=+⎨⎪=-+⎩.5.求过点(1,0,4)-,平行于平面340x y z -+=,且与直线132z x y +=-=相交的直线方程. 解:设所求直线方程为1,(,,)4x lt y mts l m n z nt =-+⎧⎪==⎨⎪=+⎩. 平面的法向量(3,4,1)n =- ,由于直线与平面平行,所以n s ⊥ ,即340l m n -+= 因为两直线相交,故有432nt lt mt +=-+=. ()3(2)4m l t l n t -=⎧⎨-=⎩,即43100m n l +-= 于是得419,728l n m n ==. 令28n =,得16,19l m ==.故所求直线方程为31619428x t y t z t =-+⎧⎪=⎨⎪=+⎩.6.求通过下列两平面1:220x y z ∏+--=和2:32210x y z ∏--+=的交线,且与平面3:32360x y z ∏++-=垂直的平面方程.解:设所求平面方程为(22)(3221)x y z x y z λμ+--+--+= 即 (23)(2)(2)(2)x y z λμλμλμλμ++-+--+-+= 由于该平面⊥平面2∏,所以它们的法向量一点互相垂直,于是3(23)2(2)3(2)0λμλμλμ++-+--=得50λμ-=.取1,5λμ==,代入(22)(3221)0x y z x y z λμ+--+--+=,得 所求平面方程为1791130x y z --+=.7.求与两平面632350x y z ---=和632630x y z ---=相切的球面方程,其中的一个切点为(5,1,1)--.解:由两平行平面的距离公式4d ==所以,球半径为2.求出另一个切点,过点作平面的法线方程561312x t y t z t =+⎧⎪=--⎨⎪=--⎩代入另一个平面方程,得47t =.从而得到球心坐标为471311(,,)777--.故所求球面方程为 222471311()()()4777x y z -++++= 8.求曲线22222(1)(1)z x y z x y ⎧=--⎪⎨=-+-⎪⎩在三个坐标面上的投影曲线的方程. 解:方程组消z ,得22x y x y +=+,故曲线在xOy 面上的投影为 2200x y x y z ⎧+--=⎨=⎩ 同理可得曲线在yOz 面上和xOz 面上的投影为222243200y z yz y z x ⎧++--+=⎨=⎩和222243200x z xz x z y ⎧++--+=⎨=⎩。
文科高等数学习题课第一章函数、极限与连续一、判断是非题1.y =y x =相同 ( )2.()(22ln x x y x -=+是奇函数 ( )3.凡是分段函数表示的函数都不是初等函数 ( ) 4.2(0)y x x =>是偶函数 ( )5.复合函数(())y f x ϕ=的定义域就是()x ϕ的定义域 ( )6.若数列{}n n a b 极限存在,则数列{}n a 的极限存在。
( )7.数列{}n x 和{}n y 都发散,则数列{}n n x y +也发散。
( )8.若l i m 0n n n x y →∞= ,则l i m 0n n x →∞=或lim 0n n y →∞=.。
( ) 9.若0lim ()x x f x A →=,则0()f x A =。
( ) 10.已知0()f x 不存在,但0lim ()x x f x →有可能存在。
( ) 11.lim arctan 2x x π→∞=。
( ) 12.1lim 1x x e →+∞=。
( ) 13.非常小的数是无穷小量。
( )14.零是无穷小量。
( )15.无限变小的变量是无穷小量。
16.无限个无穷小量的和还是无穷小量。
( )17.在某极限过程中,若()f x 的极限存在,()g x 无极限,则()()f x g x +无极限。
( )18.在某极限过程中,若(),()f x g x 均无极限,则()()f x g x +无极限。
( )19.22221212limlim lim lim 0n n n n n n n n n n →∞→∞→∞→∞+++=++= 。
( ) 20.00011lim sin lim limsin 0x x x x x x x →→→== 。
( ) 21.22lim(3)lim lim3x x x x x x x →∞→∞→∞-=-=∞-∞。
( )22. 1lim(1)x x e x→∞-= ( ) 23.若(),()f x g x 在点0x 处均不连续,则()()f x g x +在0x 处亦不连续; ( )24.若()f x 在点0x 处连续,()g x 在点0x 处不连续,则()()f x g x 在0x 处必不连续; ( )25.设()y f x =在区间(,)a b 内连续,则()f x 在(,)a b 内必有界。
习题课(一)内容:极限的计算基本要求:1.理解极限定义,了解极限性质。
2.理解无穷小、无穷大定义,掌握其性质。
3.熟练掌握各类极限的计算方法。
内容与方法精讲:一. 极限的基本概念 1. 极限定义0)(lim >∀⇔=εA x f (无论ε多小),总存在一个时刻,当这个时刻以后,恒有ε<-A x f )(.实质:A x f -)(可以任意小。
2. 无穷小定义00)(lim >∀⇔=εx f (无论ε多小),总存在一个时刻,当这个时刻以后,恒有ε<)(x f .实质:)(x f 可以任意小。
3. 无穷大定义0)(lim >∀⇔∞=M x f (无论M 多大),总存在一个时刻,当这个时刻以后,恒有M x f >)(.实质:)(x f 可以任意大。
注:以上“总存在一个时刻,当这个时刻以后”指的是:对∞→n ,意味着:“∃一个正整数N ,当N n >以后”。
对∞→x ,意味着:“∃一个正实数X ,当X x >以后”。
对0x x →,意味着:“∃一个正实数δ,当δ<-<00x x 以后”。
4. 单侧极限定义左极限A x f x f x x ==-→-)(lim )(00 0,0>∃>∀⇔δε,当00x x x <<-δ时,恒有ε<-A x f )(.右极限A x f x f x x ==+→+)(lim )(00 0,0>∃>∀⇔δε,当δ+<<00x x x 时,恒有ε<-A x f )(. 二. 极限的性质1. 惟一性:如果极限存在,则极限值是惟一的 2. 有界性:若数列n x 收敛,则n x 有界。
局部有界性:若)(lim x f 存在,则函数)(x f 在局部有界。
3. 局部保号性:若0)(lim >=A x f (或0<A ),则在局部有0)(>x f (或0)(<x f ).反之,若A x f =)(lim ,且在局部有0)(≥x f (或0)(≤x f ),则0≥A (或0≤A ). 4. 保序性:若B x g A x f ==)(lim )(lim 、,且)()(x g x f ≤,则B A ≤;反之,若B A <,则在局部)()(x g x f <.5. 子列收敛性:若数列n x 收敛于a ,则n x 的任何子列k n x 也收敛于a .6. 沿点列收敛性:若A x f x x =→)(lim 0,则沿以0x 为极限的点列n x (0x x n ≠)函数)(x f 也收敛于.A 即.)(lim A x f n n =∞→7. 夹逼准则:若n n n z x y ≤≤,且a z y n n n n ==∞→∞→lim lim ,则n n x ∞→lim 存在,且为.a8. 单调有界原理:单调有界数列必有极限。
9. 极限与单侧极限关系:A x f x f A x f x x ==⇔=+-→)()()(lim 000.10.复合函数求极限定理:若A u f u x g u u x x ==→→)(lim )(lim 00,,且0)(u x g ≠,则A x g f x x =→)]([lim 0,( 即:若令u x g =)(,则)(lim )]([lim 0u f x g f u u x x →→= ).三. 无穷小与无穷大性质1.).()()(lim x A x f A x f α+=⇔= 2.无穷小的和、差、积仍为无穷小。
3.无穷小与有界变量之积为无穷小。
4.无穷小与无穷大互为倒数。
5.正(负)无穷大之和为正(负)无穷大。
6.无穷大之积为无穷大。
7.无穷大与极限非零变量之积为无穷大。
8.).(~ααββαo +=⇔ 9.若在极限过程中ββαα''~,~,且极限βα'')(limx f 存在或为∞,则 =βα)(limx f βα'')(limx f 四. 几个重要极限1.⎪⎪⎩⎪⎪⎨⎧-==>∞<=∞→.111110lim q q q q q nn 不存在,,,,,,,2.1lim =∞→n n a (0>a ),1lim =∞→n n n .3.(型)在极限过程中,如果函数0)(→x ϕ,则 1)()(s i n l i m=x x ϕϕ; 1)()(tan lim =x x ϕϕ; 1)()](1ln[lim =+x x ϕϕ;1)(1lim )(=-x e x ϕϕ; 1)()(arcsin lim=x x ϕϕ; 1)()(arctan lim =x x ϕϕ. 4.(∞∞型)当∞→x 时,有理函数极限为 ⎪⎪⎩⎪⎪⎨⎧<∞>==++++++++----∞→.,,,0,,lim011101110n m n m n m b a b x b x b x b a x a x a x a m m m m n n n n x (其中000≠b a ) 5.(∞1型)在极限过程中,如果函数0)(→x ϕ,则.)](1lim[)(1e x x =+ϕϕ在极限过程中,如果函数∞→)(x ϕ,则.])(11lim[)(e x x =+ϕϕ 五. 几组常用的等价无穷小1. 当0→x 时,以下无穷小两两等价: .a r c t a n ,a r c s i n ,1),1ln(,tan ,sin ,x x e x x x x x -+2. 当0→x 时,.2~cos 12x x -3. 当0→x 时,.2~sin tan 3x x x -4. 当0→x 时,.~11nx x n -+ 5. 当0→x 时,a x a xln ~1- (0>a ).六. 极限计算方法 (一) 定式极限1. 若)(x f 为初等函数,且在0x 点有定义,则).()(lim 00x f x f x x =→2. 利用无穷小与无穷大的运算性质。
(二) 未定式极限 1.型:① 分子分母同除一个适当的无穷小(通常是约分)。
② 先将函数恒等变形(通常是有理化、三角变形等),然后再约分。
③ 凑重要极限3.④ 利用等价无穷小进行替代。
2.∞∞型: ① 分子分母同除一个适当的无穷大。
② 利用重要极限4. (注意局限性)3.∞-∞型:通过通分、有理化或由对数运算性质等手段将其化为00或∞∞型。
4.∞⋅0型: ① 将无穷小部分利用等价无穷小进行替代。
② 由)(/1)(lim)()(lim x g x f x g x f =将其化为00或∞∞型。
5.∞1型:① 凑重要极限5. ② 进行换底:)](ln[)()(lim )](lim[x f x g x g e x f =. (化为∞⋅0型)③ 利用取对数法:设)()]([x g x f y =,则)](ln[)(ln x f x g y =,如果a x f x g y ==)](ln[)(lim ln lim ,则.)](lim[)(a x g e x f =注:以上方法②、③也适用于00型和0∞型。
(三)n 项和与n 项积的数列极限1.先求出和或积的简化式,再求极限。
2.用夹逼准则。
(四)分段函数在分界点的极限1.若⎩⎨⎧=≠=.,,),()(00x x a x x x g x f 则).(lim )(lim 0x g x f x x x x →→=2.若⎩⎨⎧>≤=.),(,),()(0201x x x g x x x g x f先求左、右极限)(lim )(100x g x f x x -→-=; )(lim )(200x g x f x x +→+=, 如果这两个极限存在且相等,则)()(lim 00-→=x f x f x x (或)(0+x f ),否则)(lim 0x f x x →不存在。
例题精讲:1. 当0→x 时,若函数)(x f 为无穷小,且存在正实数a ,使得)0()(lim0≠=→c c x x f ax ,则称)(x f 为x 的a 阶无穷小。
证明当+→0x 时,函数x x x ++是x 的81阶无穷小。
解:因为11lim lim 43081=++=++++→→x x xxx x x x ,所以,当+→0x 时,函数x x x ++是x 的81阶无穷小。
2. 求极限.lim 33ax ax a x --→解:(这是型极限,将分子有理化,得) .31))((lim lim 3232333233aa a x x a x a x a x a x a x a x =++--=--→→ 3.求极限.)3sin(cos 21lim 3ππ--→x x x解:(这是含有三角函数的00型极限,为方便使用重要极限,)令3π-=x t ,于是.330s i n s i n 3c o s 1lim sin )3cos(21lim)3sin(cos 21lim003=+=+-=+-=--→→→tt t tt x x t t x πππ4.求极限)0().(lim 12>-+∞→a a a n n n nn解:(这是∞⋅0极限,为将无穷小部分用等价无穷小替代,对无穷小部分进行改写。
) ]1[lim ]1)11[(lim )(lim )11ln(121212-=-+=-++∞→∞→∞→nan n n nn n nnn e n naa na a n.11l i m )11l n (1l i m2ana n na n n n n =⋅=+⋅=∞→∞→5.求极限).1sin(lim 2+∞→n n π解:(这是比较特殊的极限,由于当∞→n 时,12+n 与n 非常接近,于是) ]s i n )1[s i n (l i m )1s i n (l i m 22πππn n n n n -+=+∞→∞→.2)1(c o s2)1(s i n2lim 22n n n n n ++-+=∞→ππ而,01sinlim 2)1(sinlim 22=++=-+∞→∞→nn n n n n ππ,2)1(cos2n n ++π有界,所以,=+∞→)1sin(lim 2n n π.02)1(cos2)1(sin2lim 22=++-+∞→n n n n n ππ6.求极限.)(lim 1xxx x e +→解:(这是∞1型极限,为凑重要极限,将xe 开方提出,于是).])1[(lim )(lim 2101e e e ex e x e x x e xe x x xx x =⋅=+=+-→→ 7.求极限)0,0(.)2(lim 10>>+→b a b a xx x x解:(这也是∞1型极限,但是凑重要极限比较困难,为此用取对数的方法。