抚州市崇仁县2017届九年级上期中数学试卷含答案
- 格式:doc
- 大小:374.01 KB
- 文档页数:26
崇仁一中2016----2017学年度九年级上学期期中数学试题(时刻:120分钟,总分值120分)初三数学备课组一、选择题(本大题共6分,每题3分,共18分,每题只有一个正确选项。
)1.一元二次方程x(x-3)=0的根是()A、0B、0或3C、3D、0或-32.2021年末,我国核电装机容量大约为2000万千瓦,到2016年末我国核电装机容量将达到约3200万千瓦.假设设平均每一年的增加率为x,那么可列方程为()A.2000(1+x)=3200 B.2000(1+2x)=3200C.2000(1+x)2=3200 D.2000(1+x2)=32003.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根,那么k的取值范围是()A.k>-1 B. k≥-1 C.k≠0 D.k>-1且k≠04.已知,那么的值是()A .B .C .D .5.如图1,菱形ABCD的周长为48cm,对角线AC、BD相交于O点, E是AD的中点,连接OE,那么线段OE的长等于()A.4cm B.5cm C.6cm D.8cm6.将矩形纸片ABCD按如图2所示的方式折叠,AE、EF为折痕,∠BAE=30°,AB=,折叠后,点C落在AD边上的C1处,而且点B落在EC1边上的B1处.那么BC的长为()A . B.3 C.2 D.2二、填空题(本大题共6小题,每题3分,共18分)7.把方程x(x-1) = 2(x-2)化为一元二次方程的一样形式为8.把方程x2+4x+1=0配方成(x+m)2=n的形式,配方后所得方程是9.已知一元二次方程:x2﹣3x﹣1=0的两个根别离是x1、x2,那么x12x2+x1x22= .10.箱子里放有2个黑球和2个红球,它们除颜色外其余都相同,现从箱子里随机摸出两个球,恰好为1个黑球和1个红球的概率是.11.如图3,在△ABC中,点D、E别离在边AB、AC上,要使△AED∽△ABC,添加一个条件(只能填一个)即可.12..如图4矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把△ADE沿AE折叠,当点D 的对应点D′落在∠ABC的角平分线上时,DE的长为.三、解答题(本大题共5小题,每题6分,总分值30分,)13.解方程:0982=-+xx14.已知2是关于x的方程x2+ax+a﹣3=0的一个根,求a的值及方程的另一个根;15. 如图,已知四边形ABCD是平行四边形,DE⊥AB,DF⊥BC,垂足别离是为E,F,而且DE=DF.求证:四边形ABCD是菱形.图1图2图3图416.如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图(1)如图1,在CD上找点F,使点F是CD的中点;(2)如图2,在AD上找点G,使点G是AD的中点.17.一个不透明的布袋里装有三个球,其中2个红球,1个白球,它们除颜色不同外其余都相同:(1)摸出一个球记下颜色后放回,并搅匀,再摸出一个球,求两次摸出的球恰好颜色不同的概率(要求画树状图或列表);(2)现再将n 个白球放入布袋中搅匀后使摸出一个球是白球的概率为57,求n的值。
抚州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列说法:①垂线段最短;②两条直线不平行必相交;③过一点有且只有一条直线与已知直线垂直;④过一点有且只有一条直线与已知直线平行。
其中正确的有()A . 1个B . 2个C . 3个D . 4个2. (2分)下列说法不正确的是()A . 经过两点有且只有一条直线B . 为了解全国七年级学生的数学成绩,选用普查的方式比较合适C . 绝对值最小的数是零D . 折线统计图能清楚地反映事物的变化情况3. (2分) (2018九上·罗湖期末) 下列命题中,属于假命题的是()A . 有一个锐角相等的两个直角三角形一定相似B . 对角线相等的菱形是正方形C . 抛物线y=y2-20x+17的开口向上D . 在一次抛掷图钉的试验中,若钉尖朝上的频率为3/5,则钉尖朝上的概率也为3/54. (2分)(2018·宜宾模拟) 已知下列命题:①对顶角相等;②若a>b>0,则<;③对角线相等且互相垂直的四边形是正方形;④抛物线y=x2﹣2x与坐标轴有3个不同交点;⑤边长相等的多边形内角都相等.从中任选一个命题是真命题的概率为()A .B .C .D .5. (2分)下列命题:①坐标平面内,点(a,b)与点(b,a)表示同一个点;②要了解一批电视机的使用寿命,从中任意抽取40台电视机进行试验,在这个问题中,样本容量是40台电视机;③过一点有且只有一条直线与这条直线平行;④如果a<b,那么ac<bc;其中真命题有()A . 3个B . 2个C . 1个D . 0个6. (2分)下列说法错误的是()A . Rt△ABC中,AB=3,BC=4,则AC=5B . 极差能反映一组数据的变化范围C . 经过点A(2,3)的双曲线一定经过点B(-3,-2)D . 连接菱形各边中点所得的四边形是矩形7. (2分)(2014·百色) 在下列叙述中:①一组对边相等的四边形是平行四边形;②函数y= 中,y随x的增大而减小;③有一组邻边相等的平行四边形是菱形;④有不可能事件A发生的概率为0.0001.正确的叙述有()A . 0个B . 1个C . 2个D . 3个8. (2分) (2020九下·深圳月考) 以下说法正确的是()A . 小明做了次掷图钉的实验,发现次钉尖朝上,由此他说钉尖朝上的概率是B . 一组对边平行,另一组对边相等的四边形是平行四边形C . 点都在反比例函数图象上,且则;D . 对于一元二元方程,若则方程的两个根互为相反数9. (2分) (2016九上·莒县期中) 某科研小组为了考查某河流野生鱼的数量,从中捕捞200条,作上标记后,放回河里,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该河流中有野生鱼()A . 8000条B . 4000条C . 2000条D . 1000条10. (2分) (2016九上·莒县期中) 以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A .B .C .D .11. (2分) (2017九下·萧山开学考) 如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A .B .C .D . 212. (2分)(2017·开封模拟) 如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y= 在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A . 36B . 12C . 6D . 3二、填空题 (共4题;共5分)13. (1分)如图,点A、C、B、D在⊙O上,∠AOB=60°,OC平分∠AOB,则∠CDB的度数是________ °.14. (1分) (2015八上·晋江期末) 如图,在△ABC中,AC的垂直平分线交AB于点E,D为垂足,连接EC.若∠A=30°,则∠BEC=________°.15. (1分) (2018九上·上虞月考) 如图,在平面直角坐标系中,抛物线y=-x2+4x与x轴交于点A,点M 是抛物线x轴上方任意一点,过点M作MP⊥x轴于点P,以MP为对角线作矩形MNPQ,连结NQ,则对角线NQ的取值范围为________.16. (2分)(2020·呼和浩特模拟) 如图,将正六边形ABCDEF放在直角坐标系中,中心与坐标原点重合,若点A的坐标为(﹣2,0),则AB=________,点C的坐标为________.三、解答题 (共6题;共61分)17. (10分)(2014·成都) 第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.18. (10分)(2017·天津模拟) 有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.19. (15分)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.20. (6分) (2017九下·盐城期中) 如图所示,在方格纸中,△ABC的三个顶点及D , E , F , G , H 五个点分别位于小正方形的顶点上.(1)现以D , E , F , G , H中的三个点为顶点画三角形,在所画的三角形中与△ABC不全等但面积相等的三角形是________(只需要填一个三角形);(2)先从D , E两个点中任意取一个点,再从F , G , H三个点中任意取两个不同的点,以所取的这三个点为顶点画三角形,画树状图求所画三角形与△ABC面积相等的概率.21. (5分) (2016九上·莒县期中) 阅读资料:我们把顶点在圆上,并且一边和圆相交、另一边和圆相切的角叫做弦切角,如图1∠ABC所示.同学们研究发现:P为圆上任意一点,当弦AC经过圆心O时,且AB切⊙O于点A,此时弦切角∠CAB=∠P(图2)证明:∵AB切⊙O于点A,∴∠CAB=90°,又∵AC是直径,∴∠P=90°∴∠CAB=∠P问题拓展:若AC不经过圆心O(如图3),该结论:弦切角∠CAB=∠P还成立吗?请说明理由.知识运用:如图4,AD是△ABC中∠BAC的平分线,经过点A的⊙O与BC切于点D,与AB、AC分别相交于E、F.求证:EF∥BC.22. (15分) (2016九上·莒县期中) 如图1,反比例函数y= (x>0)的图象经过点A(2 ,1),射线AB与反比例函数图象交与另一点B(1,a),射线AC与y轴交于点C,∠BAC=75°,AD⊥y轴,垂足为D.(1)求k和a的值;(2)直线AC的解析式;(3)如图3,M是线段AC上方反比例函数图象上一动点,过M作直线l⊥x轴,与AC相交于N,连接CM,求△CMN面积的最大值.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共5分)13-1、14-1、15-1、16-1、三、解答题 (共6题;共61分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、。
2016-2017学年江西省抚州市崇仁一中九年级(上)第一次月考数学试卷一、选择题(本大题共6分,每小题3分,共18分)1.下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.一组对边平行,另一组对边相等的四边形是平行四边形2.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是()A.100°B.105°C.115°D.120°3.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是()A.AB=BC B.AC=BDC.∠ABC=90°D.AC与BD互相平分4.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±25.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.146.根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围3.24<x<3.25 D.3.25<x<3.26二、填空题(本大题共6小题,每小题3分共18分)7.若关于x的一元二次方程ax2﹣bx+c=0有一个根为0,则c= .8.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于.10.如图,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD 上.若正方形ABCD的面积为16,AE=1,则正方形EFGH的面积为.11.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.12.如图,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点F是对角线BD 上的一点,EF∥AB交AD于点E,FG∥BC交DC于点G,四边形EFGP是平行四边形,给出如下结论:①四边形EFGP是菱形;②△PED为等腰三角形;③若∠ABD=90°,则△EFP≌△GPD;④若四边形FPDG也是平行四边形,则BC∥AD且∠CDA=60°.其中正确的结论的序号是(把所有正确结论的序号都填在横线上).三、解答题13.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.14.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.15.如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB.求证:四边形BEDF是正方形.16.已知a是方程x2﹣x﹣1=0的一个根,求的值.17.按要求解下列一元二次方程:(1)x2+12x+27=0(配方法);(2)(2x﹣1)(x+3)=4 (公式法).18.如图是一个正方形网格图,图中已画了线段AB和线段EG,请使用无刻度的直尺在正方形网格中画图.(1)画一个以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH,且面积与(1)中正方形的面积相等.19.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.20.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.21.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.22.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.23.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.2016-2017学年江西省抚州市崇仁一中九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共6分,每小题3分,共18分)1.下列命题中,真命题是()A.两条对角线垂直且相等的四边形是正方形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相平分且相等的四边形是矩形D.一组对边平行,另一组对边相等的四边形是平行四边形【考点】命题与定理.【分析】根据正方形的判定方法对A进行判断;根据菱形的判定方法对B进行判断;根据矩形的判定方法对C进行判断;根据平行四边形的判定方法对D进行判断.【解答】解:A、两条对角线互相垂直平分且相等的四边形是正方形,所以A选项为假命题;B、两条对角线互相垂直平分的四边形是菱形,所以B选项为假命题;C、两条对角线互相平分且相等的四边形是矩形,所以C选项为真命题;D、一组对边平行且这组对边相等的四边形是平行四边形,所以D选项为假命题.故选C.2.如图,一个含有30°角的直角三角板的两个顶点放在一个矩形的对边上,如果∠1=25°,那么∠2的度数是()A.100°B.105°C.115°D.120°【考点】平行线的性质.【分析】根据矩形性质得出AD∥BC,推出∠2=∠DEF,求出∠DEF即可.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEF,∵∠1=25°,∠GEF=90°,∴∠2=25°+90°=115°,故选C.3.如图,要使平行四边形ABCD成为菱形,需添加的一个条件是()A.AB=BC B.AC=BDC.∠ABC=90°D.AC与BD互相平分【考点】菱形的判定.【分析】根据菱形的判定方法得出A正确,B、C、D不正确;即可得出结果.【解答】解:A、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,故本选项正确;B、∵四边形ABCD是平行四边形,AC=BD,∴平行四边形ABCD是矩形,故本选项错误;C、∵四边形ABCD是平行四边形,∠ABC=90°,∴四边形ABCD是矩形,不能推出,平行四边形ABCD是菱形,故本选项错误;D、∵四边形ABCD是平行四边形,AC与BD互相平分,∴四边形ABCD是矩形,不是菱形;故选:A.4.方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则()A.m=±2 B.m=2 C.m=﹣2 D.m≠±2【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义,必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此即可求解.【解答】解:由一元二次方程的定义可得,解得:m=2.故选B.5.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是()A.9 B.11 C.13 D.14【考点】解一元二次方程-因式分解法;三角形三边关系.【分析】易得方程的两根,那么根据三角形的三边关系,得到合题意的边,进而求得三角形周长即可.【解答】解:解方程x2﹣6x+8=0得,x=2或4,∴第三边长为2或4.边长为2,3,6不能构成三角形;而3,4,6能构成三角形,∴三角形的周长为3+4+6=13,故选:C.6.根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a、b、c为常数)一个解的范围是()3.24<x<3.25 D.3.25<x<3.26【考点】图象法求一元二次方程的近似根.【分析】根据函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,再根据函数的增减性即可判断方程ax2+bx+c=0一个解的范围.【解答】解:函数y=ax2+bx+c的图象与x轴的交点就是方程ax2+bx+c=0的根,函数y=ax2+bx+c的图象与x轴的交点的纵坐标为0;由表中数据可知:y=0在y=﹣0.02与y=0.03之间,∴对应的x的值在3.24与3.25之间,即3.24<x<3.25.故选:C.二、填空题(本大题共6小题,每小题3分共18分)7.若关于x的一元二次方程ax2﹣bx+c=0有一个根为0,则c= 0 .【考点】一元二次方程的解.【分析】方程的根就是能使方程的左右两边相等的未知数的值,因而把x=0代入方程就得到一个关于c的方程,就可以求出k的值.【解答】解:根据题意,得0﹣0+c=0,解得c=0.故答案是:0.8.菱形ABCD的周长为36,其相邻两内角的度数比为1:5,则此菱形的面积为40.5 .【考点】菱形的性质.【分析】根据相邻两内角的度数比为1:5,可求出一个30°角,根据周长为36,求出菱形的边长,根据直角三角形里30°角的性质求出高,从而求出面积.【解答】解:作AE⊥BC于E点,∵其相邻两内角的度数比为1:5,∴∠B=180°×=30°,∵菱形ABCD的周长为36,∴AB=BC=×36=9.∴AE=×9=.∴菱形的面积为:BC•AE=9×=40.5.故答案为:40.5.9.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于60°.【考点】菱形的性质;线段垂直平分线的性质.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°,故答案为:60°.10.如图,已知:正方形EFGH的顶点E、F、G、H分别在正方形ABCD的边DA、AB、BC、CD 上.若正方形ABCD的面积为16,AE=1,则正方形EFGH的面积为10 .【考点】正方形的性质.【分析】根据正方形的性质找出相等的边角关系,从而证出△AFE≌△BGF≌△CHG≌△DEH,再由正方形ABCD的面积为16,AE=1,找出AF的长度,根据S正方形EFGH=S正方形ABCD﹣4S△AFE即可得出结论.【解答】解:∵四边形ABCD、EFGH均为正方形,∴∠A=∠B=90°,∠EFG=90°,EF=FG.∵∠AFE+∠BFG=90°,∠BFG+∠BGF=90°,∴∠AFE=∠BGF.在△AFE和△BGF中,,∴△AFE≌△BGF(AAS),∴BF=AE=1.∵正方形ABCD的面积为16,∴AB=4,AF=AB﹣BF=3.同理可证出△AFE≌△BGF≌△CHG≌△DEH.∴S正方形EFGH=S正方形ABCD﹣4S△AFE=16﹣4××1×3=10.故答案为:10.11.在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7 .【考点】解一元二次方程-因式分解法.【分析】此题考查学生的分析问题和探索问题的能力.解题的关键是理解题意,在此题中x+2=a,5=b,代入所给公式得:(x+2)*5=(x+2)2﹣52,则可得一元二次方程,解方程即可求得.【解答】解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣712.如图,在四边形ABCD中,已知AB=BC=CD,∠BAD和∠CDA均为锐角,点F是对角线BD 上的一点,EF∥AB交AD于点E,FG∥BC交DC于点G,四边形EFGP是平行四边形,给出如下结论:①四边形EFGP是菱形;②△PED为等腰三角形;③若∠ABD=90°,则△EFP≌△GPD;④若四边形FPDG也是平行四边形,则BC∥AD且∠CDA=60°.其中正确的结论的序号是①③④(把所有正确结论的序号都填在横线上).【考点】四边形综合题.【分析】①根据平行线分线段成比例定理得出=,即可证得EF=FG,从而证得四边形EFGP是菱形;②因为无法证得△PDG是等边三角形,所以PD不一定等于PE,则△PED不一定是等腰三角形;③证PG⊥BD,根据等腰三角形“三线合一”的性质,求得∠FGP=∠DGP,进而求得∠DGP=∠PEF,然后根据SAS可证△EFP≌△GPD;④由FG∥PE,FG∥PD知,点P在AD上,故BC∥AD.又由FG=PG=PD=DG.证得△PDG是等边三角形,故∠CDA=60度.因此四边形ABCD还应满足BC∥AD,∠CDA=60°【解答】解:∵EF∥AB,∴=,∵FG∥BC,∴=,∴=,∵AB=BC,∴EF=EG,∵四边形EFGP是平行四边形,∴四边形EFGP是菱形,故①正确;∵BC=CD,∴∠DBC=∠BDC,∵FG∥BC,∴∠DBC=∠DFG,∴∠DFG=∠BDC,∴FG=DG,∵PG=FG=PE,∴PG=DG,∵无法证得△PDG是等边三角形,∴PD不一定等于PE,∴△PED不一定是等腰三角形,故②错误;∵∠ABD=90°,PG∥EF,∴PG⊥BD,∵FG=DG,∴∠FGP=∠DGP.∵四边形EFGP是平行四边形,∴∠PEF=∠FGP.∴∠DGP=∠PEF.在△EFP和△GPD中∴△EFP≌△GPD(SAS).故③正确;∵四边形FPDG也是平行四边形,∴FG∥PD,∵FG∥EP,∴E、P、D在一条直线上,∵FG∥BC∥PE,∴BC∥AD,∵四边形FPDG也是平行四边形,∵FG=PD,∵FG=DG=PG,∴PG=PD=DG,∴△PGD是等边三角形,∴∠CDA=60°.∴四边形ABCD还应满足BC∥AD,∠CDA=60°.故④正确.故答案为①③④.三、解答题13.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BED=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.14.如图,梯形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于点E.求证:四边形AECD 是菱形.【考点】菱形的判定;梯形.【分析】首先证明四边形AECD是平行四边形,再由AB∥CD,得∠EAC=∠DCA,AC平分∠BAD,得∠DAC=∠CAE,从而得到∠ACD=∠DAC,即AD=DC,有一组邻边相等的平行四边形是菱形.【解答】证明:∵AB∥CD,CE∥AD,∴四边形AECD是平行四边形.∵AC平分∠BAD,∴∠BAC=∠DAC,又∵AB∥CD,∴∠ACD=∠BAC=∠DAC,∴AD=DC,∴四边形AECD是菱形.15.如图所示,在△ABC中,∠ABC=90°,BD平分∠ABC,DE⊥BC,DF⊥AB.求证:四边形BEDF是正方形.【考点】正方形的判定.【分析】由题意知,四边形BEDF是矩形,只要证明有一组邻边相等即可得到,四边形BEDF 是正方形.【解答】证明:∵∠ABC=90°,DE⊥BC,DF⊥AB,∴∠BFD=∠BED=∠ABC=90°.∴四边形BEDF为矩形.又∵BD平分∠ABC,DE⊥BC,DF⊥AB,∴DF=DE.∴矩形BEDF为正方形.16.已知a是方程x2﹣x﹣1=0的一个根,求的值.【考点】分式的化简求值;二次根式的化简求值;一元二次方程的解.【分析】根据a为方程的解,将x=a代入方程求出a2﹣a的值,代入原式计算即可得到结果.【解答】解:由题意将x=a代入方程得:a2﹣a﹣1=0,即a2﹣a=1,则原式==.17.按要求解下列一元二次方程:(1)x2+12x+27=0(配方法);(2)(2x﹣1)(x+3)=4 (公式法).【考点】解一元二次方程-配方法;解一元二次方程-公式法.【分析】(1)先利用配方法得到(x+6)2=9,然后根据直接开平方法求解;(2)先把方程化为一般式,然后利用求根公式求解.【解答】解:(1)x2+12x=﹣27,x2+12x+36=9,(x+6)2=9,x+6=±3,所以x1=﹣3,x2=﹣9;(2)方程化为2x2+5x﹣7=0,△=52﹣4×2×(﹣7)=81,x=,所以x1=1,x2=﹣.18.如图是一个正方形网格图,图中已画了线段AB和线段EG,请使用无刻度的直尺在正方形网格中画图.(1)画一个以AB为边的正方形ABCD;(2)画一个以EG为一条对角线的菱形EFGH,且面积与(1)中正方形的面积相等.【考点】作图—应用与设计作图.【分析】(1)利用网格结合勾股定理得出正方形ABCD的各边;(2)利用菱形的面积公式得出其另一条对角线长为8,进而得出答案.【解答】解:(1)如图所示:正方形ABCD,即为所求;(2)如图所示:菱形EFGH,即为所求.19.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.【考点】换元法解一元二次方程.【分析】(1)本题主要是利用换元法降次来达到把一元四次方程转化为一元二次方程,来求解,然后再解这个一元二次方程.(2)利用题中给出的方法先把x2+x当成一个整体y来计算,求出y的值,再解一元二次方程.【解答】解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.20.如图,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连接EF,试判别四边形BCEF的形状,并说明理由.【考点】矩形的性质;平行线的判定;全等三角形的判定与性质;平行四边形的判定.【分析】(1)要证AC∥DE,只要证明,∠EDC=∠ACD即可;(2)要判断四边形BCEF的形状,可以先猜后证,利用三角形的全等,证明四边形的两组对边分别相等.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,∴∠ACD=∠CAB,∵∠EDC=∠CAB,∴∠EDC=∠ACD,∴AC∥DE;(2)解:四边形BCEF是平行四边形.理由如下:∵BF⊥AC,四边形ABCD是矩形,∴∠DEC=∠AFB=90°,DC=AB在△CDE和△BAF中,,∴△CDE≌△BAF(AAS),∴CE=BF,DE=AF(全等三角形的对应边相等),∵AC∥DE,即DE=AF,DE∥AF,∴四边形ADEF是平行四边形,∴AD=EF,∵AD=BC,∴EF=BC,∵CE=BF,∴四边形BCEF是平行四边形(两组对边分别相等的四边形是平行四边形).21.如图,在四边形ABCD中,AB=DC,E、F分别是AD、BC的中点,G、H分别是对角线BD、AC的中点.(1)求证:四边形EGFH是菱形;(2)若AB=1,则当∠ABC+∠DCB=90°时,求四边形EGFH的面积.【考点】菱形的判定与性质;正方形的判定与性质;中点四边形.【分析】(1)利用三角形的中位线定理可以证得四边形EGFH的四边相等,即可证得;(2)根据平行线的性质可以证得∠GFH=90°,得到菱形EGFH是正方形,利用三角形的中位线定理求得GE的长,则正方形的面积可以求得.【解答】(1)证明:∵四边形ABCD中,E、F、G、H分别是AD、BC、BD、AC的中点,∴FG=CD,HE=CD,FH=AB,GE=AB.∵AB=CD,∴FG=FH=HE=EG.∴四边形EGFH是菱形.(2)解:∵四边形ABCD中,G、F、H分别是BD、BC、AC的中点,∴GF∥DC,HF∥AB.∴∠GFB=∠DCB,∠HFC=∠ABC.∴∠HFC+∠GFB=∠ABC+∠DCB=90°.∴∠GFH=90°.∴菱形EGFH是正方形.∵AB=1,∴EG=AB=.∴正方形EGFH的面积=()2=.22.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D 作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.23.(1)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,求∠EAF的度数.(2)如图②,在Rt△ABD中,∠BAD=90°,AB=AD,点M,N是BD边上的任意两点,且∠MAN=45°,将△ABM绕点A逆时针旋转90°至△ADH位置,连接NH,试判断MN,ND,DH之间的数量关系,并说明理由.(3)在图①中,连接BD分别交AE,AF于点M,N,若EG=4,GF=6,BM=3,求AG,MN的长.【考点】正方形的性质;全等三角形的判定与性质;勾股定理.【分析】(1)根据高AG与正方形的边长相等,证明三角形全等,进而证明角相等,从而求出解.(2)用三角形全等和正方形的对角线平分每一组对角的知识可证明结论.(3)设出线段的长,结合方程思想,用数形结合得到结果.【解答】解:(1)在Rt△ABE和Rt△AGE中,AB=AG,AE=AE,∴Rt△ABE≌Rt△AGE(HL).∴∠BAE=∠GAE.同理,∠GAF=∠DAF.∴.(2)MN2=ND2+DH2.∵∠BAM=∠DAH,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN.又∵AM=AH,AN=AN,∴△AMN≌△AHN.∴MN=HN.∵∠BAD=90°,AB=AD,∴∠ABD=∠ADB=45°.∴∠HDN=∠HDA+∠ADB=90°.∴NH2=ND2+DH2.∴MN2=ND2+DH2.(3)由(1)知,BE=EG,DF=FG.设AG=x,则CE=x﹣4,CF=x﹣6.在Rt△CEF中,∵CE2+CF2=EF2,∴(x﹣4)2+(x﹣6)2=102.解这个方程,得x1=12,x2=﹣2(舍去负根).即AG=12.在Rt△ABD中,∴.在(2)中,MN2=ND2+DH2,BM=DH,∴MN2=ND2+BM2.设MN=a,则.即a 2=(9﹣a)2+(3) 2,∴.即.。
2016-2017学年江西省抚州市九年级(上)期中数学试卷一、选择题(本大题共6个小题,每小题3分,共18分,每小题只有一个正确选项)1.已知关于x的一元二次方程x2+x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣7 B.k≥﹣7 C.k≥0 D.k≥12.如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为()A.0.36π米2B.0.81π米2C.2π米2D.3.24π米23.在某次聚会上,每两人都握了一次手,所有人共握手15次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=15 B.x(x+1)=15 C.D.4.已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且x1<x2,则y1﹣y2的值是()A.正数 B.负数 C.非正数D.不能确定5.如图,在△ABC中,DE∥BC, =,△ADE的面积是8,则四边形DBCE的面积是()A.10 B.18 C.8 D.46.菱形ABCD的一条对角线长为6,边AB的长为方程y2﹣7y+10=0的一个根,则菱形ABCD 的周长为()A.8 B.20 C.8或20 D.10二、填空题(本大题共6小题,每小题3分,共18分)7.若m,n是方程x2+x﹣2=0的两个实数根,则m2+2m+n的值为.8.如图,在平面直角坐标系中,已知A(1,0),D(3,0),△ABC与△DEF位似,原点O 是位似中心.若AB=1.5,则DE= .9.如图,P是菱形ABCD对角线BD上的一点,PE⊥BC于点E,PE=4cm,则点P到直线AB的距离等于cm.10.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B,点C为y轴上的一点,连接AC、BC,若△ABC的面积为3,则k的值是.11.如图,反比例函数y1=的图象与直线y2=k2x+b的一个交点的横坐标为2,当x=3时,y1y2(填“>”、“=”或“<”).12.如图,在Rt△ABC中,∠C=90°,翻折∠C,使点C落在斜边AB上某一点D处,折痕为EF(点E、F分别在边AC、BC上).若以CEF为顶点的△与以ABC为顶点的三角形相似且AC=3,。
江西省抚州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)一元二次方程x2+5x=6的一次项系数、常数项分别是()A . 1,5B . 1,﹣6C . 5,﹣6D . 5,62. (2分)下列四个几何体中,主视图、左视图与俯视图是全等形的几何体是()A . 球B . 圆柱C . 三棱柱D . 圆锥3. (2分)在一比例尺为1:100 000的地图上,一块绿地面积为3cm2 ,则这块绿地实际面积为()A . 300000cm2B . 300m2C . 900000m2D . 3×106m24. (2分)如图,P (x,y)是反比例函数y=的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y 轴于点B,随着自变量x的增大,矩形OAPB的面积A . 不变B . 增大C . 减小D . 无法确定5. (2分)如图所示,数学小组发现8米高旗杆DE的影子EF落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高1.6米,测得其影长为2.4米,同时测得EG的长为3米,HF的长为1米,测得小桥拱高(弧GH的中点到弦GH的距离,即MN的长)为2米,则小桥所在圆的半径为()米.A .B . 5C .D . 66. (2分) (2019八下·岑溪期末) 下列条件中,不能判定一个四边形是平行四边形的是()A . 两组对边分别平行B . 一组对边平行且相等C . 一组对边相等且一组对角相等D . 两组对角分别相等7. (2分) (2020八下·吉林期中) 如图,在中,,将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A .B .C .D .8. (2分)某化肥厂第一季度生产了m肥,后每季度比上一季度多生产x%,第三季度生产的化肥为n,则可列方程为()A . m(1+x2)=nB . m(1+x%)²=nC . (1+x%)²=nD . a+a (x%)²=n9. (2分)在边长为2的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为2的概率为()A .B .C .D .10. (2分)(2017·市中区模拟) 关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是()A . k<1B . k>1C . k<﹣1D . k>﹣111. (2分) (2020八上·张店期末) 在平面直角坐标系中,若点与点之间的距离是5,那么的值是()A .B . 8C . 2或8D . 或812. (2分) (2019九上·石家庄期中) 如图,定点C、动点D在⊙O上,并且位于直径AB的两侧,AB=5,AC=3,过点C在作CE⊥CD交DB的延长线于点E,则线段CE长度的最大值为()A . 5B . 8C .D .13. (2分) (2018九上·淮阳期中) 如图:把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中阴影部分)的面积是△ABC面积的一半,若AB= ,则此三角形移动的距离AA′是()A . -1B .C . 1D .14. (2分) (2019九上·成都月考) 如图,菱形ABCD中,AC交BD于O,于点E,连接OE,若,则的度数是()A . 20°B . 30°C . 50°D . 70°15. (2分) (2017九上·顺德月考) 如图,等腰△ABC中,AB=AC=3,BC=4,P是BC上不与B和C重合的一个动点,过点P分别作AB和AC的垂线,垂足为E,F. 则PE+PF=()A .B .C . 6D .16. (2分)顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()A . 菱形B . 对角线互相垂直的四边形C . 矩形D . 对角线相等的四边形二、填空题 (共3题;共3分)17. (1分)(2018·成都) 已知,且,则的值为________.18. (1分) (2016九上·端州期末) 若x1、x2是一元二次方程x2-3x-1=0的两个根,则x1+x2的值是________。
2016-2017学年江西省抚州市崇仁县九年级(上)期中数学试卷一、选择题:每小题3分,共18分1.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=102.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关3.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25+25(1+x)2=64 C.25(1+2x)=64 D.64(1﹣x2)=254.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.555.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:66.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0) B.(6,3) C.(6,5) D.(4,2)二、填空题:每小题3分,共18分7.方程x(x+3)=0的解是.8.已知≠0,则的值为.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.10.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.11.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是米.12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:=2+.①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD其中正确的序号是(把你认为正确的都填上).三、解答题:每小题6分,共30分13.解方程:①4x(2x+1)=3(2x+1)②(x+3)(x﹣1)=5.14.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB 的垂直平分线(保留作图痕迹)15.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为2,那么▱ABCD的周长是多少?16.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC,PF⊥MB,垂足分别为E,F,当AB,BC满足什么条件时,四边形PEMF为矩形?试加以证明.17.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.四、每小题8分,共32分18.甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次. (1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.19.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元. (1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元? 20.如图,在矩形ABCD 中,AB=4cm ,BC=8cm ,AC 的垂直平分线EF 分别交AD ,BC 于点E ,F ,垂足为点O .(1)连接AF ,CE ,求证:四边形AFCE 为菱形; (2)求AF 的长.21.将一副三角尺如图①摆放(在Rt △ABC 中,∠ACB=90°,∠B=60°;在Rt △DEF 中,∠EDF=90°,∠E=45°).点D 为AB 的中点,DE 交AC 于点P ,DF 经过点C .(1)求∠ADE 的度数;(2)如图②,在图①的基础上将△DEF 绕点D 顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC 于点M ,DF′交BC 于点N ,求证: =.五、本大题共10分22.如图①,在正方形ABCD 中,P 是对角线AC 上的一点,点E 在BC 的延长线上,且PE=PB .(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.六、本大题共12分23.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?2016-2017学年江西省抚州市崇仁县九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共18分1.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=10【考点】解一元二次方程﹣配方法.【分析】在本题中,把常数项﹣6移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣6=0的常数项移到等号的右边,得到x2﹣2x=6,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=6+1,配方得(x﹣1)2=7.故选B.2.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【考点】根的判别式.【分析】首先可得根的判别式△=b2﹣4ac=k2+4>0,即可判定根的情况.【解答】解:∵a=2,b=﹣k,c=﹣1,∴△=b2﹣4ac=(﹣k)2﹣4×2×(﹣1)=k2+4>0,∴方程有两个不相等的实数根.故选B.3.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25+25(1+x)2=64 C.25(1+2x)=64 D.64(1﹣x2)=25【考点】由实际问题抽象出一元二次方程.【分析】本题依题意可知四月份的人数=25(1+x),则五月份的人数为:25(1+x)(1+x),列方程25(1+x)(1+x)=64即可得出答案.【解答】解:设每月的平均增长率为x,依题意得:25(1+x)2=64.故选A.4.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55【考点】用样本估计总体.【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【解答】解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.5.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6【考点】位似变换.【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴△ABC与△DEF的面积之比为:1:4.故选:B.6.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0) B.(6,3) C.(6,5) D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二、填空题:每小题3分,共18分7.方程x(x+3)=0的解是0或﹣3.【考点】解一元二次方程﹣因式分解法;等式的性质;解一元一次方程.【分析】推出方程x=0,x+3=0,求出方程的解即可.【解答】解:x(x+3)=0,∴方程的解是x 1=0,x 2=﹣3. 故答案为:0或﹣3.8.已知≠0,则的值为.【考点】比例的性质.【分析】根据比例的性质,可用a 表示b 、c ,根据分式的性质,可得答案. 【解答】解:由比例的性质,得 c=a ,b=a .===.故答案为:.9.如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,已知AE=6,,则EC 的长是 8 .【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可求解. 【解答】解:∵DE ∥BC , ∴=,即=,解得:EC=8. 故答案是:8.10.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.【考点】概率公式.【分析】首先根据题意可得第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,然后利用概率公式求解即可求得答案.【解答】解:如图,第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,故以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是:.故答案为:.11.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是8米.【考点】相似三角形的应用.【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,解得:h=8米.故答案为:8.12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:=2+.①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.三、解答题:每小题6分,共30分13.解方程:①4x(2x+1)=3(2x+1)②(x+3)(x﹣1)=5.【考点】解一元二次方程﹣因式分解法.【分析】①先移项得到4x(2x+1)﹣3(2x+1)=0,然后利用因式分解法解方程;②先把方程化为一般式,然后利用因式分解法解方程.【解答】解:①4x(2x+1)﹣3(2x+1)=0,(2x+1)(4x﹣3)=0,2x+1=0或4x﹣3=0,所以x1=﹣,x2=;②x2+2x﹣8=0,(x﹣2)(x+4)=0,x﹣2=0或x+4=0,所以x1=2,x2=﹣4.14.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB 的垂直平分线(保留作图痕迹)【考点】作图—复杂作图;线段垂直平分线的性质;等边三角形的性质;矩形的性质.【分析】连接矩形ABCD的对角线AC、BD,相交于点O,过O,P作直线,则直线OP就是线段AB的垂直平分线.【解答】解:如图所示,直线OP即为所求.15.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】菱形的判定;平行四边形的性质.【分析】(1)直接利用菱形性质结合根的判别式求出m的值;(2)利用AB=2,代入方程求出m的值,进而解方程得出x的值,再利用平行四边形的性质得出答案.【解答】解:(1)∵▱ABCD是菱形,∴AB=AD,∴△=b2﹣4ac=(﹣m)2﹣4×1×(﹣)=m2﹣2m+1=(m﹣1)2=0,解得:m=1,即m为1时,▱ABCD是菱形;(2)把AB=2代入方程得:4﹣2m+﹣=0,解得:m=,则x2﹣x+1=0,解得:x1=,x2=2,则AD=,故▱ABCD的周长是:2×(2+)=5.16.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC,PF⊥MB,垂足分别为E,F,当AB,BC满足什么条件时,四边形PEMF为矩形?试加以证明.【考点】矩形的判定与性质.【分析】根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.【解答】解:AB=BC时,四边形PEMF是矩形.理由如下:∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.17.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据BP=3PC和Q是CD的中点,可以求得=,即可求证△ADQ∽△QCP;(2)根据△ADQ∽△QCP可以求得∠PQC+∠DQA=90°,即可解题.【解答】解:(1)∵BP=3PC,Q是CD的中点∴==,又∵∠ADQ=∠QCP=90°,∴△ADQ∽△QCP;(2)∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,∴AQ⊥QP.四、每小题8分,共32分18.甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.【考点】列表法与树状图法.【分析】(1)画出树状图,然后根据概率公式列式进行计算即可得解;(2)根据(1)中的概率解答.【解答】解:(1)根据题意画出树状图如下:一共有8种情况,最后球传回到甲手中的情况有2种,=;所以,P(球传回到甲手中)=(2)根据(1)最后球在丙、乙手中的概率都是,所以,乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在甲或丙的手中.19.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【考点】一元二次方程的应用.【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.【解答】解:(1)∵÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺的年租金增加x万元,则每间的租金是(10+x)万元,5000元=0.5万元,有间商铺没有出租,出租的商铺有(30﹣)间,出租的商铺需要交(30﹣)×1万元费用,没有出租的需要交×0.5万元的费用,则(30﹣)×(10+x)﹣(30﹣)×1﹣×0.5=2752x2﹣11x+5=0解得:x1=5,x2=0.55+10=15万元;0.5+10=10.5万元∴每间商铺的年租金定为10.5万元或15万元.20.如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求AF的长.【考点】矩形的性质;线段垂直平分线的性质;菱形的判定与性质.【分析】(1)根据矩形的性质得出AD∥BC,求出∠AEO=∠CFO,根据全等三角形的判定得出△AEO≌△CFO,根据全等三角形的性质得出OE=OF,根据菱形的判定推出即可;(2)设AF=acm,根据菱形的性质得出AF=CF=acm,在Rt△ABF中,由勾股定理得出42+(8﹣a)2=a2,求出a即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵∴△AEO≌△CFO(AAS),∴OE=OF,∵O A=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,解得:a=5,即AF=5cm.21.将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°).点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证:=.【考点】相似三角形的判定与性质.【分析】(1)首先证明∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=.五、本大题共10分22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=58度.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;(3)根据(2)的结论解答.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.六、本大题共12分23.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,S△APQ=AP•QE=t•(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位2017年3月4日。
2017年数学九年级上册期中试卷满分:150分 考试时间:120分钟一、 选择题(每小题4分,共40分.) 1、 若反比例函数y =x k (k ≠0)的图象经过点(-1,2),则这个函数的图象一定经过点( ).A 、(2,-1) B 、(-21,2) C 、(-2,-1) D 、(21,2)2、一次函数y =kx -k ,y 随x 的增大而减小,那么反比例函数y =xk 满足( ).A 、当x >0时,y >0B 、在每个象限内,y 随x 的增大而减小C 、图象分布在第一、三象限D 、图象分布在第二、四象限 3、下列方程一定是一元二次方程的是( ) A ax 2+bx+c=0 B (x+1)(x-1)=x 2+2x C x 2=1 D x 2-xy+3=0 4、三角形的两边长分别为2和9,第三边长是一元二次方程x 2-14x+48=0的一个根, 则这个三角形的周长为( )A 17或19 B 19 C 17 D 11 5、关于y 的一元二次方程:ky 2-4y-3=3y+4有实数根,则k 的取值范围是( ) A 74k ≥- B k >704k ≠且 C k>704k -≠且 D k 70k ≥-≠且6、下列各组中的四条线段成比列的是()A、1cm 、2cm 、20cm 、30cm B 、5cm 、10cm 、10cm 、20cm C 、4cm 、2cm 、1cm 、3cm D 、1cm 、2cm 、3cm 、4cm 7、如图:点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC的是( )A 、∠ACP =∠B B 、∠APC =∠ACB C 、AC AP AB AC = D 、ABAC BC PC =8、如图,在大小为4×4的正方形网格中,是相似三角形的是( ) A.①和② B.②和③ C.①和③ D.②和④ 9、在一个可以改变容积的密闭容器内,装有一定质量 m 的某种气体,当改变容积V 时,气体的密度ρ也随之改变. ρ与V 在一定范围内满足ρ=V m ,它的图象如图所示,则该 气体的质量m 为( ).A 、7kg B 、1.4kg C 、6.4kg D 、5kg 10、若k b a c a c b c b a =+=+=+,则k 的值为( ) A 、2 B 、-1 C 、2或-1 D 、不存在二、填空题(每小题4分,共32分。
江西省抚州市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共6分)1. (1分)已知一组数据1,7,10,8,x,6,0,3,若,则x的值应等于()。
A . 6B . 5C . 4D . 22. (1分) (2016九上·夏津期中) 若函数y=a 是二次函数且图象开口向上,则a=()A . ﹣2B . 4C . 4或﹣2D . 4或33. (1分)计算机键盘上的字母是()A . 随机排列B . 按英文字母的排列顺序排列C . 设计前并没有什么目的D . 经过科学考察后设计而成4. (1分) 1.下列说法中,不正确的是()A . 三角形的内心是三角形三条内角平分线的交点B . 锐角三角形、直角三角形、钝角三角形的内心都在三角形内部C . 垂直于半径的直线是圆的切线D . 三角形的内心到三角形的三边的距离相等5. (1分) (2016九上·大石桥期中) 某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:x…﹣5﹣4﹣3﹣2﹣1…y…﹣7.5﹣2.50.5 1.50.5…根据表格提供的信息,下列说法错误的是()A . 该抛物线的对称轴是直线x=﹣2B . 该抛物线与y轴的交点坐标为(0,﹣2.5)C . b2﹣4ac=0D . 若点A(0.5,y1)是该抛物线上一点.则y1<﹣2.56. (1分)半径为6的圆中,120°的圆心角所对的弧长是()A . 4πB . 5πC . 6πD . 8π二、填空题 (共10题;共10分)7. (1分) (2019九上·香坊期末) 小明掷一枚均匀的骰子,骰子的六个面上分别刻有1,2,3,4,5,6点,得到的点数为奇数的概率是________.8. (1分)(2017·徐汇模拟) 甲,乙,丙,丁四名跳高运动员赛前几次选拔赛成绩如表所示,根据表中的信息,如果要从中,选择一名成绩好又发挥稳定的运动员参加比赛,那么应选________.甲乙丙丁平均数(cm)185180185180方差 3.6 3.67.98.29. (1分) (2019九上·湖州月考) 请写出一个开口向下,且顶点坐标为(-3,2)的抛物线解析式________.10. (1分)(2019·盐城) 如图,转盘中6个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针落在阴影部分的概率为________.11. (1分)(2018·嘉定模拟) 已知弓形的高是厘米,弓形的半径长是厘米,那么弓形的弦长是________厘米.12. (1分)各边相等的圆内接多边形________ 正多边形;各角相等的圆内接多边形________ 正多边形.(填“是”或“不是”)13. (1分) (2018九上·佳木斯期中) 将抛物线y=x2-4x-4向左平移3个单位,再向上平移5个单位,得到抛物线的解析式为________.14. (1分)(2019·平房模拟) 已知一个半径为4的扇形的面积为12π,则此扇形的弧长为________.15. (1分)(2011·百色) 如图,已知一动圆的圆心P在抛物线y= x2﹣3x+3上运动.若⊙P半径为1,点P的坐标为(m,n),当⊙P与x轴相交时,点P的横坐标m的取值范围是________.16. (1分)(2020·衢州) 图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等。
2017-2018学年江西省抚州市崇仁一中九年级(上)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个准确选项1.(3分)下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x2﹣x=02.(3分)下列四个几何体中,主视图为圆的是()A. B.C.D.3.(3分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.4.(3分)在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A.16m B.18m C.20m D.22m5.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:46.(3分)如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF :S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)菱形的两条对角线长分别为3和4,则菱形的面积是.8.(3分)方程x(x﹣3)=x﹣3的根是.9.(3分)如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是.10.(3分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为m.11.(3分)已知m是方程x2+x﹣1=0的一个根,则(m+1)2+(m+1)(m﹣1)=.12.(3分)如图,已知直线y=﹣x+2与x轴交于点A,与y轴交于点B,在x 轴上有一点C,使B、O、C三点构成的三角形与△AOB相似,则点C的坐标为.三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)解一元二次方程:x2+4x=1.14.(6分)不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.15.(6分)已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED=∠B.若AE=5,AB=9,CB=6,求ED的长.16.(6分)确定图中路灯灯泡的位置,并作出小赵在灯光下的影子(仅用无刻度的直尺作图).17.(6分)将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少销售10个.为了赚得8000元的利润,售价应定为多少?这时应进货多少个.四、(本大题共3小题,每小题8分,共24分).18.(8分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如下示意图的测量方案:把镜子放在离树(AB)8.1米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.19.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.20.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.五、(本大题共2小题,每小题9分,共18分).21.(9分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.22.(9分)猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(1)如图①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;(2)如图②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(3)如图③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(4)猜想:如图④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?(已知:AC=40,BC=30,∠C=90°)六、(本大题共12分)23.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C″D′,连接BD′,CC″使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题.2017-2018学年江西省抚州市崇仁一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)每小题只有一个准确选项1.(3分)下列方程中,是一元二次方程的是()A.2x﹣y=3 B.x2+=2 C.x2+1=x2﹣1 D.x2﹣x=0【解答】解:A、是二元一次方程,故A错误;B、是分式方程,故B错误;C、是一元二次方程,故C错误;D、是一元二次方程,故D正确;故选:D.2.(3分)下列四个几何体中,主视图为圆的是()A. B.C.D.【解答】解:主视图为圆的为,故选:B.3.(3分)小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选:C.4.(3分)在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A.16m B.18m C.20m D.22m【解答】解:设旗杆高为xm,根据题意得=,解得x=20,即旗杆高为20.故选:C.5.(3分)如图,在△ABC中,点D、E分别为AB、AC的中点,则△ADE与四边形BCED的面积比为()A.1:1 B.1:2 C.1:3 D.1:4【解答】解:∵D、E分别为△ABC的边AB、AC上的中点,∴DE是△ABC的中位线,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴△ADE的面积:△ABC的面积=()2=1:4,∴△ADE的面积:四边形BCED的面积=1:3;故选:C.6.(3分)如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF :S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11【解答】解:∵O为平行四边形ABCD对角线的交点,∴DO=BO,又∵E为OD的中点,∴DE=DB,∴DE:EB=1:3,又∵AB∥DC,∴△DFE∽△BAE,∴=()2=,∴S△DEF=S△BAE,∵=,∴S△AOB=S△BAE,∴S△DEF :S△AOB==1:6,故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)菱形的两条对角线长分别为3和4,则菱形的面积是6.【解答】解:∵菱形的两条对角线长分别为3和4,∴菱形的面积=×3×4=6.故答案为:6.8.(3分)方程x(x﹣3)=x﹣3的根是1或3.【解答】解:x(x﹣3)=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1,故答案为:1或3.9.(3分)如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长是15.【解答】解:∵▱ABCD的周长为36,∴2(BC+CD)=36,则BC+CD=18.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=6.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=BD+(BC+CD)=6+9=15,即△DOE的周长为15.故答案为:15.10.(3分)如图,数学活动小组为了测量学校旗杆AB的高度,使用长为2m的竹竿CD作为测量工具.移动竹竿,使竹竿顶端的影子与旗杆顶端的影子在地面O处重合,测得OD=4m,BD=14m,则旗杆AB的高为9m.【解答】解:∵OD=4m,BD=14m,∴OB=OD+BD=18m,由题意可知∠ODC=∠OBA,且∠O为公共角,∴△OCD∽△OAB,∴=,即=,解得AB=9,即旗杆AB的高为9m.故答案为:9.11.(3分)已知m是方程x2+x﹣1=0的一个根,则(m+1)2+(m+1)(m﹣1)= 2.【解答】解:∵m是方程x2+x﹣1=0的一个根,∴m2+m=1,∴(m+1)2+(m+1)(m﹣1)=m2+2m+1+m2﹣1=2m2+2m=2(m2+m)=2×1=2,故答案为:2.12.(3分)如图,已知直线y=﹣x+2与x轴交于点A,与y轴交于点B,在x 轴上有一点C,使B、O、C三点构成的三角形与△AOB相似,则点C的坐标为(﹣4,0)或(4,0)或(﹣1,0)或(1,0).【解答】解:∵直线y=﹣x+2与x轴交于点A,与y轴交于点B,∴A(4,0),B(0,2).当△AOB∽△COB时,==1,即=1,∴OC=4,∴C(﹣4,0),(4,0);当△AOB∽△BOC时,=,即=,解得OC=1,∴C(﹣1,0),(1,0).综上所述,C(﹣4,0)或(4,0)或(﹣1,0)或(1,0).故答案为:(﹣4,0)或(4,0)或(﹣1,0)或(1,0).三、解答题(本大题共5小题,每小题6分,共30分.解答应写出文字说明、证明过程或演算步骤.)13.(6分)解一元二次方程:x2+4x=1.【解答】解:∵x2+4x=1,∴x2+4x+4=1+4,∴(x+2)2=5,∴x+2=±,∴x1=﹣2+;x2=﹣2﹣.14.(6分)不透明的口袋中装有2个红球、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.【解答】解:列表如下:所有等可能的情况有12种,其中两次都摸到红球有2种可能,则P(两次摸到红球)==.15.(6分)已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED=∠B.若AE=5,AB=9,CB=6,求ED的长.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,∴=,∵AE=5,AB=9,CB=6,∴=,解得:DE=.16.(6分)确定图中路灯灯泡的位置,并作出小赵在灯光下的影子(仅用无刻度的直尺作图).【解答】解:如图所示,点P即为灯泡所在位置,线段AB即为小赵的影子.17.(6分)将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少销售10个.为了赚得8000元的利润,售价应定为多少?这时应进货多少个.【解答】解:设涨价x元能赚得8000元的利润,即售价定为每个(x+50)元,应进货(500﹣10x)个,依题意得:(50﹣40+x)(500﹣10x)=8000,解得x1=10,x2=30,当x=10时,x+50=60,500﹣10x=400;当x=30时,x+50=80,500﹣10x=200.答:售价定为每个60元时应进货400个,或售价定为每个80元时应进货200个.四、(本大题共3小题,每小题8分,共24分).18.(8分)为了测量校园内一棵不可攀的树的高度,学校数学应用实践小组做了如下的探索:实践:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如下示意图的测量方案:把镜子放在离树(AB)8.1米的点E处,然后沿着直线BE后退到点D,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.6米,请你计算树(AB)的高度.【解答】解:由题意知∠CED=∠AEB,∠CDE=∠ABE=90°,∴△CED∽△AEB,∴,∴,∴AB=4.8米.19.(8分)如图,矩形ABCD中,∠ABD、∠CDB的平分线BE、DF分别交边AD、BC于点E、F.(1)求证:四边形BEDF是平行四边形;(2)当∠ABE为多少度时,四边形BEDF是菱形?请说明理由.【解答】证明:(1)∵四边形ABCD是矩形,∴AB∥DC、AD∥BC,∴∠ABD=∠CDB,∵BE平分∠ABD、DF平分∠BDC,∴∠EBD=∠ABD,∠FDB=∠BDC,∴∠EBD=∠FDB,∴BE∥DF,又∵AD∥BC,∴四边形BEDF是平行四边形;(2)当∠ABE=30°时,四边形BEDF是菱形,∵BE平分∠ABD,∴∠ABD=2∠ABE=60°,∠EBD=∠ABE=30°,∵四边形ABCD是矩形,∴∠A=90°,∴∠EDB=90°﹣∠ABD=30°,∴∠EDB=∠EBD=30°,∴EB=ED,又∵四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.(8分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC 于点G,AF⊥DE于点F,∠EAF=∠GAC.(1)求证:△ADE∽△ABC;(2)若AD=3,AB=5,求的值.【解答】解:(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴=由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴,∴=另解:∵AG⊥BC,AF⊥DE,△ADE∽△ABC,∴==五、(本大题共2小题,每小题9分,共18分).21.(9分)关于x的一元二次方程x2﹣(k+3)x+2k+2=0.(1)求证:方程总有两个实数根;(2)若方程有一个根小于1,求k的取值范围.【解答】(1)证明:∵在方程x2﹣(k+3)x+2k+2=0中,△=[﹣(k+3)]2﹣4×1×(2k+2)=k2﹣2k+1=(k﹣1)2≥0,∴方程总有两个实数根.(2)解:∵x2﹣(k+3)x+2k+2=(x﹣2)(x﹣k﹣1)=0,∴x1=2,x2=k+1.∵方程有一根小于1,∴k+1<1,解得:k<0,∴k的取值范围为k<0.22.(9分)猜想归纳:为了建设经济型节约型社会,“先锋”材料厂把一批三角形废料重新利用,因此工人师傅需要把它们截成不同大小的正方形铁片.(1)如图①,若截取△ABC的内接正方形DEFG,请你求出此正方形的边长;(2)如图②,若在△ABC内并排截取两个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(3)如图③,若在△ABC内并排截取三个相同的正方形(它们组成的矩形内接于△ABC),请你求此正方形的边长;(4)猜想:如图④,假设在△ABC内并排截取n个相同的正方形,使它们组成的矩形内接于△ABC,则此正方形的边长是多少?(已知:AC=40,BC=30,∠C=90°)【解答】解:(1)在图1中作△ABC的高CN交GF于M,在Rt△ABC中,∵AC=40,BC=30,∴AB=50,CN=24.由GF∥AB,得△CGF∽△CAB,∴.设正方形的边长为x,则,解得.即正方形的边长为.(2)方法同(1),如图2.△CGF∽△CAB,则.设小正方形的边长为x,则,解得.即小正方形的边长为.(3)在图3中,作CN⊥AB,交GF于点M,交AB于点N,∵GF∥AB,∴△CGF∽△CAB,∴=,设每个正方形的边长为x,则=,∴x=;(4)设每个正方形的边长为x,同理得到:则=,则x=.∴每个小正方形的边长为.六、(本大题共12分)23.(12分)综合与实践问题情境在综合与实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图1,将一张菱形纸片ABCD(∠BAD>90°)沿对角线AC剪开,得到△ABC和△ACD.操作发现(1)将图1中的△ACD以A为旋转中心,逆时针方向旋转角α,使α=∠BAC,得到如图2所示的△AC′D,分别延长BC和DC′交于点E,则四边形ACEC′的形状是菱形;(2)创新小组将图1中的△ACD以A为旋转中心,按逆时针方向旋转角α,使α=2∠BAC,得到如图3所示的△AC′D,连接DB,C′C,得到四边形BCC′D,发现它是矩形,请你证明这个结论;实践探究(3)缜密小组在创新小组发现结论的基础上,量得图3中BC=13cm,AC=10cm,然后提出一个问题:将△AC′D沿着射线DB方向平移acm,得到△A′C″D′,连接BD′,CC″使四边形BCC″D′恰好为正方形,求a的值.请你解答此问题.【解答】解:(1)如图(2)对图形进行角标注,由题意可得:∠1=∠2,∠2=∠3,∠1=∠4,AC=AC′,∴AC′∥EC,AC∥C′E,∴四边形ACEC′是平行四边形.∵AC=AC′,∴四边形ACEC′的形状是菱形;(2)证明:如图3,作AE⊥CC′于点E,由旋转得:AC′=AC,则∠CAE=∠C′AE=α=∠BAC,∵四边形ABCD是菱形,∴BA=BC,∴∠BCA=∠BAC,∴∠CAE=∠BCA,∴AE∥BC,同理可得:AE∥DC′,∴BC∥DC′.又∵BC=DC′,∴四边形BCC′D是平行四边形.∵AE∥BC,∠CEA=90°,∵∠BCC′=90°=180°﹣∠CEA=90°,∴四边形BCC′D是矩形;(3)如图(3),过点B作BF⊥AC,垂足为F,∵BA=BC,∴CF=AF=AC=×10=5,在Rt△BCF中,BF==12,在△ACE和△CBF中,∵∠CAE=∠BCF,∠CEA=∠BFC=90°,∴△ACE∽△CBF,∴=,即=,解得:EC=,∵AC=AC′,AE⊥CC′,∴CC′=2CE=2×=,当四边形BCC″D′恰好为正方形时,分两种情况:①点C″在边C′C上,a=C′C﹣13=﹣13=,②点C″在C′C的延长线上,a=C′C+13=+13=,综上所述:a的值为:或.。
抚州市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)关于x的方程ax2-3x+2=0是一元二次方程,则()A . a>0B . a≠0C . a=1D . a≥02. (2分) (2017八下·天津期末) 下列说法不正确的是()A . 对角线互相垂直的矩形一定是正方形B . 对角线相等的菱形一定是正方形C . 对角线互相垂直且相等的平行四边形一定是正方形D . 顺次连接任意对角线相等的四边形的各边中点所得的四边形一定是正方形3. (2分) (2018八下·瑶海期中) 用配方法解方程x2﹣10x﹣1=0,正确变形是()A . (x﹣5)2=1B . (x+5)2=26C . (x﹣5)2=26D . (x﹣5)2=244. (2分)如图,△ABC中,DE∥BC,AD:DB=1:2,下列选项正确的是()A . DE:BC=1:2B . AE:AC=1:3C . BD:AB=1:3D . S△ADE:S△ABC=1:45. (2分)(2018·武汉模拟) 如图,在直角坐标系中,△OBC的顶点O(0,0),B(﹣6,0),且∠OCB=90°,OC=BC,则点C关于y轴对称的点的坐标是()A . (3,3)B . (﹣3,3)C . (﹣3,﹣3)D . (3 ,3 )6. (2分)在某一时刻,测得一根高为1.8m的竹竿的影长为3m,同时测得一根旗杆的影长为25m,那么这根旗杆的高度为()A . 10mB . 12mC . 15mD . 40m二、填空题 (共6题;共9分)7. (1分)(2018·荆门) 已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k的值为________.8. (1分) (2017九上·钦州期末) 已知 = ,则 =________.9. (1分) (2016九上·佛山期末) 某网店一种玩具原价为100元,“双十一”期间,经过两次降价,售价变成了81元,假设两次降价的百分率相同,则每次降价的百分率为________.10. (4分)顺次连接四边形各边中点,所得的图形是________.顺次连接对角线________的四边形的各边中点所得的图形是矩形.顺次连接对角线________的四边形的各边中点所得的四边形是菱形.顺次连接对角线________的四边形的各边中点所得的四边形是正方形.11. (1分)某小区今年2月份绿化面积为6400m2 ,到了今年4月份增长到8100m2 ,假设绿化面积月平均增长率都相同,则增长率为________.12. (1分) (2018八上·自贡期末) 已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中一个是等腰三角形,则这样的直线最多可画________条.三、解答题 (共11题;共101分)13. (10分) (2017八下·邗江期中) 如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线AB平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.14. (5分)同学们,我们知道一元二次方程ax2+bx+c=0若有根为x1、x2 ,则x1+x2=﹣,x1•x2=,不解方程x2﹣x﹣1=0,设它的根为x1、x2 ,求下列各式的值.(1)x12+x22;(2)x1﹣x2;(3)若实数a、b满足a2﹣a﹣2=0,b2﹣b﹣2=0,且a≠b,试求出+的值.15. (10分) (2017九·龙华月考) 如图,已知矩形ABCD中,E、F分别为BC、AD上的点,将四边形ABEF 沿直线EF折叠后,点B落在CD边上的点G处,点A的对应点为点H.再将折叠后的图形展开,连接BF、GF、BG,若BF⊥GF.(1)求证:△ABF △DFG;(2)已知AB=3,AD=5,求tan∠CBG的值.16. (7分) (2016九上·简阳期末) 《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了________名学生,请补全条形统计图________;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.17. (10分)(2018·枣阳模拟) 如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作⊙O的切线PD交CA的延长线于点P,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.18. (10分) (2016九上·桑植期中) 已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1 , x2 .(1)求k的取值范围;(2)若x1+x2=1﹣x1x2,求k的值.19. (3分)已知:在直角坐标平面内,三个顶点的坐标分别为、、(正方形网格中每个小正方形的边长是一个单位长度).(1)向下平移个单位长度得到的,点的坐标是________;(2)以点为位似中心,在网格内画出,使与位似,且位似比为,点的坐标是________;(画出图形)(3)的面积是________平方单位.20. (6分) (2015八下·青田期中) 某印刷厂印刷某尺寸的广告纸,印刷张数为a(单位:万张),需按整千张印刷计费,收费规定如下:①若a≤1:单价为0.4元/张;②若1<a≤2:每增加0.1万张,所有广告纸每张减少0.01元,费用再9折优惠;③若a>2:每增加0.1万张,所有广告纸每张减少0.02元,费用再8折优惠.(1)若某客户要印刷广告纸1.5万张,则该客户需支付费用________元;(2)若某客户支付了广告纸费用0.6万元,求印刷张数a的值.21. (15分)(2019·萍乡模拟) 如图,已知开口向下的抛物线y1=ax2-2ax+1经过点A(m,1),与y交于点C,顶点为B,将抛物线y1绕点C旋转180°后得到抛物线y2,点A、B的对应点D、E(1)直接写出A、C、D的坐标(2)当四边形ABDE是矩形时,求a的值及抛物线y2的表达式。
2016-2017学年江西省抚州市崇仁县九年级(上)期中数学试卷一、选择题:每小题3分,共18分1.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=102.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关3.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25+25(1+x)2=64 C.25(1+2x)=64 D.64(1﹣x2)=254.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.555.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC 与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:66.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0) B.(6,3) C.(6,5) D.(4,2)二、填空题:每小题3分,共18分7.方程x(x+3)=0的解是.8.已知≠0,则的值为.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是.10.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.11.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是米.12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:=2+.①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD其中正确的序号是(把你认为正确的都填上).三、解答题:每小题6分,共30分13.解方程:①4x(2x+1)=3(2x+1)②(x+3)(x﹣1)=5.14.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB的垂直平分线(保留作图痕迹)15.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为2,那么▱ABCD的周长是多少?16.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC,PF⊥MB,垂足分别为E,F,当AB,BC满足什么条件时,四边形PEMF为矩形?试加以证明.17.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.四、每小题8分,共32分18.甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.19.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?20.如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求AF的长.21.将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°).点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证:=.五、本大题共10分22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.六、本大题共12分23.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B 开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?2016-2017学年江西省抚州市崇仁县九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题3分,共18分1.用配方法解方程x2﹣2x﹣6=0时,原方程应变形为()A.(x+1)2=7 B.(x﹣1)2=7 C.(x+2)2=10 D.(x﹣2)2=10【考点】解一元二次方程﹣配方法.【分析】在本题中,把常数项﹣6移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【解答】解:把方程x2﹣2x﹣6=0的常数项移到等号的右边,得到x2﹣2x=6,方程两边同时加上一次项系数一半的平方,得到x2﹣2x+1=6+1,配方得(x﹣1)2=7.故选B.2.方程2x2﹣kx﹣1=0的根的情况是()A.方程有两个相等的实数根B.方程有两个不相等的实数根C.方程没有实数根D.方程的根的情况与k的取值有关【考点】根的判别式.【分析】首先可得根的判别式△=b2﹣4ac=k2+4>0,即可判定根的情况.【解答】解:∵a=2,b=﹣k,c=﹣1,∴△=b2﹣4ac=(﹣k)2﹣4×2×(﹣1)=k2+4>0,∴方程有两个不相等的实数根.故选B.3.某旅游景点三月份共接待游客25万人次,五月份共接待游客64万人次,设每月的平均增长率为x,则可列方程为()A.25(1+x)2=64 B.25+25(1+x)2=64 C.25(1+2x)=64 D.64(1﹣x2)=25【考点】由实际问题抽象出一元二次方程.【分析】本题依题意可知四月份的人数=25(1+x),则五月份的人数为:25(1+x)(1+x),列方程25(1+x)(1+x)=64即可得出答案.【解答】解:设每月的平均增长率为x,依题意得:25(1+x)2=64.故选A.4.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.55【考点】用样本估计总体.【分析】小亮共摸了100次,其中10次摸到白球,则有90次摸到红球;摸到白球与摸到红球的次数之比为1:9,由此可估计口袋中白球和红球个数之比为1:9;即可计算出红球数.【解答】解:∵小亮共摸了100次,其中10次摸到白球,则有90次摸到红球,∴白球与红球的数量之比为1:9,∵白球有5个,∴红球有9×5=45(个),故选:A.5.如图,以点O为位似中心,将△ABC放大得到△DEF.若AD=OA,则△ABC 与△DEF的面积之比为()A.1:2 B.1:4 C.1:5 D.1:6【考点】位似变换.【分析】利用位似图形的性质首先得出位似比,进而得出面积比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故选:B.6.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是()A.(6,0) B.(6,3) C.(6,5) D.(4,2)【考点】相似三角形的判定;坐标与图形性质.【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=2,DE=2,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,2)时,∠ECD=90°,CD=2,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意;故选:B.二、填空题:每小题3分,共18分7.方程x(x+3)=0的解是0或﹣3.【考点】解一元二次方程﹣因式分解法;等式的性质;解一元一次方程.【分析】推出方程x=0,x+3=0,求出方程的解即可.【解答】解:x(x+3)=0,∴x=0,x+3=0,∴方程的解是x1=0,x2=﹣3.故答案为:0或﹣3.8.已知≠0,则的值为.【考点】比例的性质.【分析】根据比例的性质,可用a表示b、c,根据分式的性质,可得答案.【解答】解:由比例的性质,得c=a,b=a.===.故答案为:.9.如图,在△ABC中,点D,E分别在边AB,AC上,DE∥BC,已知AE=6,,则EC的长是8.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可求解.【解答】解:∵DE∥BC,∴=,即=,解得:EC=8.故答案是:8.10.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,若第三枚棋子随机放在其它格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是.【考点】概率公式.【分析】首先根据题意可得第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,然后利用概率公式求解即可求得答案.【解答】解:如图,第三枚棋子有A,B,C,D共4个位置可以选择,而以这三枚棋子所在的格点为顶点的三角形是直角三角形的位置是B,C,D,故以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率是:.故答案为:.11.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是8米.【考点】相似三角形的应用.【分析】因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.【解答】解:设旗杆高度为h,由题意得=,解得:h=8米.故答案为:8.12.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:=2+.①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD其中正确的序号是①②④(把你认为正确的都填上).【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据三角形的全等的知识可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,利用解三角形求正方形的面积等知识可以判断④的正误.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∵△AEF是等边三角形,∴AE=AF,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF,∵BC=DC,∴BC﹣BE=CD﹣DF,∴CE=CF,∴①说法正确;∵CE=CF,∴△ECF是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=75°,∴②说法正确;如图,连接AC,交EF于G点,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,∴③说法错误;∵EF=2,∴CE=CF=,设正方形的边长为a,在Rt△ADF中,AD2+DF2=AF2,即a2+(a﹣)2=4,解得a=,则a2=2+,S正方形ABCD=2+,④说法正确,故答案为:①②④.三、解答题:每小题6分,共30分13.解方程:①4x(2x+1)=3(2x+1)②(x+3)(x﹣1)=5.【考点】解一元二次方程﹣因式分解法.【分析】①先移项得到4x(2x+1)﹣3(2x+1)=0,然后利用因式分解法解方程;②先把方程化为一般式,然后利用因式分解法解方程.【解答】解:①4x(2x+1)﹣3(2x+1)=0,(2x+1)(4x﹣3)=0,2x+1=0或4x﹣3=0,所以x1=﹣,x2=;②x2+2x﹣8=0,(x﹣2)(x+4)=0,x﹣2=0或x+4=0,所以x1=2,x2=﹣4.14.已知,如图,以矩形ABCD的一边CD为边向外作等边△PCD,请你用无刻度的直尺作出线段AB的垂直平分线(保留作图痕迹)【考点】作图—复杂作图;线段垂直平分线的性质;等边三角形的性质;矩形的性质.【分析】连接矩形ABCD的对角线AC、BD,相交于点O,过O,P作直线,则直线OP就是线段AB的垂直平分线.【解答】解:如图所示,直线OP即为所求.15.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣的两个实数根.(1)当m为何值时,▱ABCD是菱形?(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】菱形的判定;平行四边形的性质.【分析】(1)直接利用菱形性质结合根的判别式求出m的值;(2)利用AB=2,代入方程求出m的值,进而解方程得出x的值,再利用平行四边形的性质得出答案.【解答】解:(1)∵▱ABCD是菱形,∴AB=AD,∴△=b2﹣4ac=(﹣m)2﹣4×1×(﹣)=m2﹣2m+1=(m﹣1)2=0,解得:m=1,即m为1时,▱ABCD是菱形;(2)把AB=2代入方程得:4﹣2m+﹣=0,解得:m=,则x2﹣x+1=0,解得:x1=,x2=2,则AD=,故▱ABCD的周长是:2×(2+)=5.16.如图,M是矩形ABCD的边AD的中点,P为BC上一点,PE⊥MC,PF⊥MB,垂足分别为E,F,当AB,BC满足什么条件时,四边形PEMF为矩形?试加以证明.【考点】矩形的判定与性质.【分析】根据已知条件、矩形的性质和判定,欲证明四边形PEMF为矩形,只需证明∠BMC=90°,易得AB=BC时能满足∠BMC=90°的条件.【解答】解:AB=BC时,四边形PEMF是矩形.理由如下:∵在矩形ABCD中,M为AD边的中点,AB=BC,∴AB=DC=AM=MD,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE⊥MC,PF⊥MB,∴∠PFM=∠PEM=90°,∴四边形PEMF是矩形.17.在正方形ABCD中,P是BC上一点,且BP=3PC,Q是CD得中点.(1)证明△ADQ∽△QCP;(2)求证:AQ⊥QP.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)根据BP=3PC和Q是CD的中点,可以求得=,即可求证△ADQ ∽△QCP;(2)根据△ADQ∽△QCP可以求得∠PQC+∠DQA=90°,即可解题.【解答】解:(1)∵BP=3PC,Q是CD的中点∴==,又∵∠ADQ=∠QCP=90°,∴△ADQ∽△QCP;(2)∵△ADQ∽△QCP,∴∠AQD=∠QPC,∠DAQ=∠PQC,∴∠PQC+∠DQA=∠DAQ+∠AQD=90°,∴AQ⊥QP.四、每小题8分,共32分18.甲、乙、丙三人之间相互传球,球从一个人手中随机传到另外一个人手中,共传球三次.(1)若开始时球在甲手中,求经过三次传球后,球传回到甲手中的概率是多少?(2)若乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在谁手中?请说明理由.【考点】列表法与树状图法.【分析】(1)画出树状图,然后根据概率公式列式进行计算即可得解;(2)根据(1)中的概率解答.【解答】解:(1)根据题意画出树状图如下:一共有8种情况,最后球传回到甲手中的情况有2种,=;所以,P(球传回到甲手中)=(2)根据(1)最后球在丙、乙手中的概率都是,所以,乙想使球经过三次传递后,球落在自己手中的概率最大,乙会让球开始时在甲或丙的手中.19.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金﹣各种费用)为275万元?【考点】一元二次方程的应用.【分析】(1)直接根据题意先求出增加的租金是6个5000,从而计算出租出多少间;(2)设每间商铺的年租金增加x万元,直接根据收益=租金﹣各种费用=275万元作为等量关系列方程求解即可.【解答】解:(1)∵÷5000=6,∴能租出30﹣6=24(间).(2)设每间商铺的年租金增加x万元,则每间的租金是(10+x)万元,5000元=0.5万元,有间商铺没有出租,出租的商铺有(30﹣)间,出租的商铺需要交(30﹣)×1万元费用,没有出租的需要交×0.5万元的费用,则(30﹣)×(10+x)﹣(30﹣)×1﹣×0.5=2752x2﹣11x+5=0解得:x1=5,x2=0.55+10=15万元;0.5+10=10.5万元∴每间商铺的年租金定为10.5万元或15万元.20.如图,在矩形ABCD中,AB=4cm,BC=8cm,AC的垂直平分线EF分别交AD,BC于点E,F,垂足为点O.(1)连接AF,CE,求证:四边形AFCE为菱形;(2)求AF的长.【考点】矩形的性质;线段垂直平分线的性质;菱形的判定与性质.【分析】(1)根据矩形的性质得出AD∥BC,求出∠AEO=∠CFO,根据全等三角形的判定得出△AEO≌△CFO,根据全等三角形的性质得出OE=OF,根据菱形的判定推出即可;(2)设AF=acm,根据菱形的性质得出AF=CF=acm,在Rt△ABF中,由勾股定理得出42+(8﹣a)2=a2,求出a即可.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEO=∠CFO,∵AC的垂直平分线EF,∴AO=OC,AC⊥EF,在△AEO和△CFO中∵∴△AEO≌△CFO(AAS),∴OE=OF,∵O A=OC,∴四边形AECF是平行四边形,∵AC⊥EF,∴平行四边形AECF是菱形;(2)解:设AF=acm,∵四边形AECF是菱形,∴AF=CF=acm,∵BC=8cm,∴BF=(8﹣a)cm,在Rt△ABF中,由勾股定理得:42+(8﹣a)2=a2,解得:a=5,即AF=5cm.21.将一副三角尺如图①摆放(在Rt△ABC中,∠ACB=90°,∠B=60°;在Rt△DEF中,∠EDF=90°,∠E=45°).点D为AB的中点,DE交AC于点P,DF经过点C.(1)求∠ADE的度数;(2)如图②,在图①的基础上将△DEF绕点D顺时针方向旋转角α(0°<α<60°),此时的等腰直角三角尺记为△DE′F′,DE′交AC于点M,DF′交BC于点N,求证:=.【考点】相似三角形的判定与性质.【分析】(1)首先证明∠ACD=∠A,再求出∠ADC=120°,再根据∠ADE=∠ADC﹣∠EDF计算即可得解;(2)只要证明△DPM和△DCN相似,再根据相似三角形对应边成比例即可证明.【解答】解:(1)∵∠ACB=90°,点D为AB的中点,∴CD=AD=BD=AB,∴∠ACD=∠A=30°,∴∠ADC=180°﹣30°×2=120°,∴∠ADE=∠ADC﹣∠EDF=120°﹣90°=30°;(2)∵∠EDF=90°,∴∠PDM+∠E′DF=∠CDN+∠E′DF=90°,∴∠PDM=∠CDN,∵∠B=60°,BD=CD,∴△BCD是等边三角形,∴∠BCD=60°,∵∠CPD=∠A+∠ADE=30°+30°=60°,∴∠CPD=∠BCD,在△DPM和△DCN中,,∴△DPM∽△DCN,∴=.五、本大题共10分22.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=58度.【考点】正方形的性质;全等三角形的判定与性质;菱形的性质.【分析】(1)根据正方形的四条边都相等可得BC=DC,对角线平分一组对角可得∠BCP=∠DCP,然后利用“边角边”证明即可;(2)根据全等三角形对应角相等可得∠CBP=∠CDP,根据等边对等角可得∠CBP=∠E,然后求出∠DPE=∠DCE,再根据两直线平行,同位角相等可得∠DCE=∠ABC,从而得证;(3)根据(2)的结论解答.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE,∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:与(2)同理可得:∠DPE=∠ABC,∵∠ABC=58°,∴∠DPE=58°.故答案为:58.六、本大题共12分23.如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O移动,同时动点Q从点B 开始在线段BA上以每秒2个单位长度的速度向点A移动,设点P、Q移动的时间为t秒.(1)求直线AB的解析式;(2)当t为何值时,△APQ与△AOB相似?(3)当t为何值时,△APQ的面积为个平方单位?【考点】相似三角形的判定与性质;待定系数法求一次函数解析式;解直角三角形.【分析】(1)设直线AB的解析式为y=kx+b,解得k,b即可;(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.(3)过点Q作QE垂直AO于点E.在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,再利用三角形面积解得t即可.【解答】解:(1)设直线AB的解析式为y=kx+b,由题意,得,解得,所以,直线AB的解析式为y=﹣x+6;(2)由AO=6,BO=8得AB=10,所以AP=t,AQ=10﹣2t,①当∠APQ=∠AOB时,△APQ∽△AOB.所以=,解得t=(秒),②当∠AQP=∠AOB时,△AQP∽△AOB.所以=,解得t=(秒);∴当t为秒或秒时,△APQ与△AOB相似;(3)过点Q作QE垂直AO于点E.在Rt△AOB中,sin∠BAO==,在Rt△AEQ中,QE=AQ•sin∠BAO=(10﹣2t)•=8﹣t,S△APQ=AP•QE=t•(8﹣t),=﹣t2+4t=,解得t=2(秒)或t=3(秒).∴当t为2秒或3秒时,△APQ的面积为个平方单位2017年3月4日。