2-SCR-SNCR脱硝全部计算公式
- 格式:xls
- 大小:362.00 KB
- 文档页数:15
选择性催化还原选择性催化还原法(Selective Catalytic Reduction,SCR)的原理是在催化剂作用下,还原剂NH3在相对较低的温度下将NO和NO2还原成N2,而几乎不发生NH3的氧化反应,从而提高了N2的选择性,减少了NH3的消耗。
其中主要反应如下:4NH3+6NO=5N2+6H2O8NH3+6NO2=7N2+12H2O4NH3+3O2=2N2+6H2O4NH3+5O2=4NO+6H2O2NH3可逆生成N2+3H2SCR系统由氨供应系统、氨气/空气喷射系统、催化反应系统以及控制系统等组成,为避免烟气再加热消耗能量,一般将SCR反应器置于省煤器后、空气预热器之前,即高尘段布置。
氨气在加入空气预热器前的水平管道上加入,与烟气混合。
催化反应系统是SCR 工艺的核心,设有NH3的喷嘴和粉煤灰的吹扫装置,烟气顺着烟道进入装载了催化剂的SCR 反应器,在催化剂的表面发生NH3催化还原成N2。
催化剂是整个SCR系统关键,催化剂的设计和选择是由烟气条件、组分来确定的,影响其设计的三个相互作用的因素是NOx脱除率、NH3的逃逸率和催化剂体积。
目前普遍使用的是商用钒系催化剂,如V2O5/TiO2和V2O5-WO3/TiO2。
在形式上主要有板式、蜂窝式和波纹板式三种。
该工艺于20 世纪70年代末首先在日本开发成功,80 年代以后,欧洲和美国相继投入工业应用。
在NH3/NO x的摩尔比为1时,NO x的脱除率可达90%,NH3的逃逸量控制在5 mg/L以下。
由于技术的成熟和高的脱硝率,SCR法现已在世界范围内成为大型工业锅炉烟气脱硝的主流工艺。
截至2010年底,我国已投运的烟气脱硝机组容量超过2亿kW,约占煤电机组容量的28%,其中SCR机组占95% 。
柴油机所产生的微粒(PM)和氮氧化物(NOx)是排放中两种最主要的污染物。
从目前降低汽车尾气排放的技术途径来看,要达到欧Ⅳ排放标准,一般不再从发动机本身的结构方面采取措施,通常是采取排气后处理的方式来降低污染物的排放量,而尿素-SCR 选择性催化还原法是最具现实意义的方法,它能把发动机尾气中的NOx减少50%以上。
sncr脱硝原理反应公式
摘要:
1.引言
2.sncr 脱硝原理介绍
3.sncr 脱硝反应公式
4.总结
正文:
sncr 脱硝原理是利用氨或尿素等还原剂,在燃烧过程中选择性地将氮氧化物还原成氮气和水。
这种方法被称为选择性非催化还原法,它是一种有效、低成本的脱硝技术。
sncr 脱硝原理的反应公式如下:
NH3 + 3NOx → 3N2 + 3H2O
或
CO(NH2)2 + 4NOx → 4N2 + 6H2O + 2CO2
其中,NH3 表示氨,CO(NH2)2 表示尿素,NOx 表示氮氧化物,N2 表示氮气,H2O 表示水,CO2 表示二氧化碳。
通过这个反应公式,我们可以看到,sncr 脱硝原理是通过还原剂与氮氧化物反应,生成氮气和水,从而达到脱硝的目的。
这种方法不需要催化剂,因此成本较低,同时具有较高的脱硝效率。
总结起来,sncr 脱硝原理是一种有效的脱硝技术,其原理是通过氨或尿素等还原剂与氮氧化物反应,达到脱硝的目的。
项目单位数值软件信息名称SCR/SNCR脱硝版本beta版作者信息姓名-XX 地点XX 日期2014 Email XXX 标态压力P0Pa101325标态温度T0K273.15理想气体标态摩尔体积V0m3/kmol22.4干空气成分N2%(V)79 O2%(V)21 N2%(m)76.70829988 O2%(m)23.29170012原子量H kg/kmol 1.00794 O kg/kmol15.9994 N kg/kmol14.00674 C kg/kmol12.0107 S kg/kmol32.066 Cl kg/kmol35.4527 F kg/kmol18.9984 Ca kg/kmol40.078 Mg kg/kmol24.305 K kg/kmol39.0983 Na kg/kmol22.98977 Hg kg/kmol200.59摩尔质量H2O kg/kmol18.01528 N2kg/kmol28.01348 O2kg/kmol31.9988 CO kg/kmol28.0101 CO2kg/kmol44.0095 SO2kg/kmol64.0648 SO3kg/kmol80.0642 HCl kg/kmol36.46064 HF kg/kmol20.00634 NO kg/kmol30.00614 NO2kg/kmol46.00554 N2O kg/kmol44.01288H+kg/kmol 1.00794OH-kg/kmol17.00734 SO42-kg/kmol96.0636 SO32-kg/kmol80.0642 CO32-kg/kmol60.0089 MgCl2kg/kmol95.2104 CaCl2kg/kmol110.9834 MgCO3kg/kmol84.3139 CaCO3kg/kmol100.0869 MgSO4kg/kmol120.3686 CaSO4kg/kmol136.1416 CaSO4* 2H2O kg/kmol172.17216 CaF2kg/kmol78.0748 CaSO3kg/kmol120.1422 CaSO3 * 0.5H2O kg/kmol129.14984 CaO kg/kmol56.0774 MgO kg/kmol40.3044 Ca(OH)2kg/kmol74.09268 Mg(OH)2kg/kmol58.31968 NH3kg/kmol17.03056 NH4+kg/kmol18.0385 NH2-kg/kmol16.02262 CO2+kg/kmol28.0101 (NH4)2SO4kg/kmol132.1406 NH4HSO4kg/kmol115.11004 (NH4)2SO3kg/kmol116.1412 NH4HSO3kg/kmol99.11064 CO(NH2)2kg/kmol60.05534气体标态密度H2O kg/m30.804253571 N2kg/m3 1.250601786 O2kg/m3 1.428517857 CO kg/m3 1.250450893 CO2kg/m3 1.964709821 SO2kg/m3 2.860035714 SO3kg/m3 3.574294643 HCl kg/m3 1.627707143 HF kg/m30.893140179 NO kg/m3 1.339559821 NO2kg/m3 2.05381875 N2O kg/m3 1.964860714 NH3kg/m30.760292857干空气kg/m3 1.287964161气体常数H2O kJ/(kg*K)461.2351634 N2kJ/(kg*K)296.617222 O2kJ/(kg*K)259.674757 CO kJ/(kg*K)296.653015CO2kJ/(kg*K)188.8065217 SO2kJ/(kg*K)129.7011872 SO3kJ/(kg*K)103.7827221 HCl kJ/(kg*K)227.8972781 HF kJ/(kg*K)415.3323704 NO kJ/(kg*K)276.9193443 NO2kJ/(kg*K)180.6147828 N2O kJ/(kg*K)188.7920221 NH3kJ/(kg*K)487.9041332干空气kJ/(kg*K)288.0126938反应热SO2kJ/kmol356098 HCl kJ/kmol37306 NO kJ/kmol407400 NO2kJ/kmol462000 NO+NO2kJ/kmol407400生成焓H2O kJ/kmol-241781.7928 CO2kJ/kmol-393418.2978 NH3kJ/kmol-45679.18992 CO(NH2)2kJ/kmol-245433.6181比热容H2O kJ/(kg*K) 4.2 NH3kJ/(kg*K) 4.609 CO(NH2)2kJ/(kg*K) 2.1溶解热CO(NH2)2-H2O kJ/kg241.6。
脱硝SCR工艺计算
催化剂反应过程k/S V=-ln*(1-η/M)+ln[(1-η)/(1-η/M)]/K*NO*(1-M) k常数,表征催化剂的活性20 S V空间速度15η设计的脱硝效率82.82 M反应器进口的NH3/NO X摩尔比1 K NO X 在催化剂表面的吸附系数
NO催化剂入口的NO X浓度524 k a/A V=-ln*(1-η/M)+ln[(1-η)/(1-η/M)]/K*NO*(1-M)
k a催化剂的面积活性
A V催化剂的面积速度,=S V*比表面积 2.092 SCR反应器截面尺寸估算A catalyst=q Vfluegas/3600*5
A catalyst催化剂横截面积,m218.334 q Vfluegas烟气流量,m3/h催化剂表面速度取5m/s333792 A SCR反应器横截面积22催化剂体积估算V catalyst=q Vfluegas*ln*(1-η/M)/K catalys*βs pecific
V catalyst催化剂估算体积,m343.8247η系统设计的脱硝效率,%0.828244 M NH3/NO X的化学摩尔比1 K catalys催化剂活性常数26.4252βspecific催化剂比表面积,m2/m3205 N layer催化剂层数 2.3925 h layer催化剂模块高度。
M1 H反应器高度12 催化剂节距
P=d+t
P节距10mm
d孔径7mm
t内壁厚3mm。
SCR脱硝耗氨量计算公式SCR脱硝是一种常见的氮氧化物(NOx)排放控制技术,通过将NH3与NOx在催化剂作用下催化反应生成氮气和水,从而将NOx转化为无害氮气。
从脱硝过程来看,其中一个关键参数是耗氨量。
本文将介绍SCR脱硝耗氨量的计算公式。
NH3消耗量(mol) = [SCR出口NOx浓度(mg/m3) - SCR入口NOx浓度(mg/m3)] × SCR出口烟气量(m3/h) / 2401其中:NH3消耗量:单位为摩尔(mol),表示在SCR脱硝过程中所需的氨气消耗量;SCR出口NOx浓度:单位为毫克/立方米(mg/m3),表示SCR脱硝后烟气中NOx的浓度;SCR入口NOx浓度:单位为毫克/立方米(mg/m3),表示SCR脱硝前烟气中NOx的浓度;SCR出口烟气量:单位为立方米/小时(m3/h),表示经过SCR脱硝系统的烟气流量;2401:是一个常数,用于将NOx浓度转化为摩尔。
需要注意的是,在实际应用中,SCR脱硝耗氨量的计算有一定的复杂性。
具体来说,计算过程需要考虑多种因素,包括SCR脱硝催化剂的活性、烟气温度、烟气中氨气浓度等。
因此,上述公式只是一个简化的模型,用于估算SCR脱硝耗氨量的大致数值。
此外,根据实际情况,还可以采用其他更为复杂的模型来计算SCR脱硝耗氨量。
例如,可以考虑催化剂的活性、烟气中的氧气浓度、烟气中其他污染物的影响等。
这些因素的复杂性将增加SCR脱硝耗氨量计算的精确性,但也会增加计算的复杂度和难度。
总之,SCR脱硝耗氨量的计算公式为NH3消耗量(mol) = [SCR出口NOx浓度(mg/m3) - SCR入口NOx浓度(mg/m3)] × SCR出口烟气量(m3/h) / 2401、然而,实际应用中可能需要考虑更多因素,以得到更准确的计算结果。
烟气脱硝计算公式大全 LG GROUP system office room 【LGA16H-LGYY-LGUA8Q8-LGA162】脱硝计算公式一、NO X含量计算二、氨气质量流量三、氨气体积流量四、烟气流量计算五、流量计计算厂家计算书。
W a= (V q ×C N O × 1 7 / ( 3 0 × 1 0 6) +V q×C NO2×17×2/(46×106)) ×m ⑻m =ηNOx /100+γa/(C NO/30+C NO2×2/46) ⑼式中:ηNOx为脱硝效率,%;γa为氨的逃逸率,ppmv(顾问公司导则公式)。
典型逻辑:一、供氨关断阀:允许开(AND):1)一台稀释风机运行;2)稀释风流量大于设计低值;3)供氨管道压力大于设计低值;4)SCR区氨泄漏值低于设计高值;5)SCR氨逃逸低于设计低值;6)SCR入口温度大于设计低值(三选二);7)SCR入口温度低于设计高值(三选二);8)无锅炉MFT;9)锅炉负荷大于50%;连锁关(or):1)两台稀释风机停运;2)稀释风量低于设计低值;3)供氨流量大于设计高值;4)SCR氨泄漏高于设计高值;5)SCR氨逃逸高于设计高值;航天环境6)锅炉MFT;7)锅炉负荷小于50%;8)SCR入口温度低于设计低值(三选二);9)SCR入口温度高于设计高值(三选二);10)氨气比大于8%;允许关:无逻辑连锁开:无逻辑二、调节阀见逻辑图逻辑图阀门指令。
sncr脱硝反应方程式脱硝反应是指将燃烧过程中产生的氮氧化物(NOx)转化为无害物质的化学反应。
脱硝技术是保护环境、减少大气污染的重要手段之一。
在工业生产和能源利用过程中,燃料的燃烧会产生大量的氮氧化物,主要包括一氧化氮(NO)和二氧化氮(NO2)。
这些氮氧化物是大气中的主要污染物之一,对人体健康和环境造成危害。
因此,脱硝反应的目的就是将这些有害物质转化为无害物质。
脱硝反应的主要方法有选择性催化还原法(SCR)、非选择性催化还原法(SNCR)和氨水脱硝法(AS)等。
本文将重点介绍SNCR脱硝反应,并探讨其反应方程式和反应机理。
SNCR脱硝反应是一种通过在高温条件下将氨气(NH3)与NOx 反应生成氮气(N2)和水蒸气(H2O)的方法。
具体的反应方程式如下:4NO + 4NH3 + O2 → 4N2 + 6H2O在这个反应式中,一氧化氮(NO)与氨气(NH3)在适当的温度和氧气(O2)存在下反应生成氮气(N2)和水蒸气(H2O)。
这个反应是一个放热反应,需要提供适当的温度和氧气浓度来促使反应的进行。
SNCR脱硝反应的反应机理主要涉及两个步骤:还原步骤和氧化步骤。
在还原步骤中,氨气(NH3)与一氧化氮(NO)发生反应生成氮气(N2)和水蒸气(H2O)。
这个步骤是一个催化反应,需要催化剂的存在来降低反应的活化能。
常用的催化剂包括氨基酸盐和亚硝酸盐等。
在氧化步骤中,一氧化氮(NO)与氧气(O2)反应生成二氧化氮(NO2)。
这个步骤是一个放热反应,可以提供反应所需的能量。
生成的二氧化氮(NO2)会进一步与氨气(NH3)反应生成氮气(N2)和水蒸气(H2O)。
SNCR脱硝反应的适用条件包括适当的温度、氨气与一氧化氮的比例(即氨气的添加量)和氧气浓度。
温度的选择应根据反应的速率和催化剂的活性来确定,通常在900-1300摄氏度范围内进行。
氨气的添加量应根据一氧化氮的浓度和废气的特性来确定,一般在1-3倍的摩尔比范围内。
烟气脱硝计算公式烟气脱硝是一种减少燃烧过程产生的氮氧化物(NOx)排放的技术。
常用的烟气脱硝方法包括选择性催化还原(SCR)和非选择性催化还原(SNCR)等。
下面将介绍烟气脱硝的计算公式。
1.氮氧化物(NOx)的浓度计算公式:NOx(mg/m³)= V × C/3600其中,V代表燃料的消耗速率(m³/h),C代表NOx的排放浓度(mg/m³),3600代表将时间单位由小时换算为秒。
2.氮氧化物(NOx)的排放量计算公式:E(kg/h)= V × C × MW × 10^(-6)/22.4其中,E代表NOx的排放量(kg/h),V代表燃料的消耗速率(m³/h),C代表NOx的排放浓度(mg/m³),MW代表NOx的分子量(g/mol),10^(-6)代表单位转换,22.4代表将m³转换为标准状况下的体积(L/mol)。
3.脱硝效率(DeNOx Efficiency)的计算公式:DeNOx Efficiency(%)= [NOx进口浓度 - NOx出口浓度]/NOx进口浓度× 100%其中,NOx进口浓度代表脱硝之前烟气中NOx的浓度,NOx出口浓度代表脱硝之后烟气中NOx的浓度。
4.还原剂(如氨水或尿素溶液)的投入量计算公式:M(kg/h)= E × 1/43其中,M代表还原剂的投入量(kg/h),E代表NOx的排放量(kg/h),1/43为化学计算中的系数。
5.反应剂的摩尔量计算公式:N(mol/h)= M × 1000/MW其中,N代表反应剂的摩尔量(mol/h),M代表反应剂的投入量(kg/h),1000为单位转换,MW代表反应剂的分子量(g/mol)。
这些计算公式可以用于烟气脱硝系统的设计和优化,并可以帮助工程师评估和控制烟气脱硝系统的效率。
然而,实际的工程设计和运行中,可能还需要考虑其他因素,如催化剂的选择、反应温度和氧化还原条件等。
脱硝计算公式一、NO X含量计算二、氨气质量流量三、氨气体积流量四、烟气流量计算五、流量计计算厂家计算书。
W a= (V q ×C N O ×1 7 / ( 3 0 ×1 0 6) +V q×C NO2×17×2/(46×106)) ×m ⑻m =ηNOx/100+γa/22.4/(C NO/30+C NO2×2/46) ⑼式中:ηNOx为脱硝效率,%;γa为氨的逃逸率,ppmv(顾问公司导则公式)。
典型逻辑:一、供氨关断阀:允许开(AND):1)一台稀释风机运行;2)稀释风流量大于设计低值;3)供氨管道压力大于设计低值;4)SCR区氨泄漏值低于设计高值;5)SCR氨逃逸低于设计低值;6)SCR入口温度大于设计低值(三选二);7)SCR入口温度低于设计高值(三选二);8)无锅炉MFT;9)锅炉负荷大于50%;连锁关(or):1)两台稀释风机停运;2)稀释风量低于设计低值;3)供氨流量大于设计高值;4)SCR氨泄漏高于设计高值;5)SCR氨逃逸高于设计高值;航天环6)锅炉MFT;7)锅炉负荷小于50%;8)SCR入口温度低于设计低值(三选二);9)SCR入口温度高于设计高值(三选二);10)氨气比大于8%;允许关:无逻辑连锁开:无逻辑二、调节阀见逻辑图逻辑图PID手 自烟气流出口氧量2115∑×÷×入口NO X21出口NO X出口氧量出口NO X 设定--∑出口偏置NH 3流量阀门开度阀门指令∑NH 3逃逸切换条件入口氧量-21- ÷÷ 15 ×15 ×。