第6讲分形几何学
- 格式:doc
- 大小:2.94 MB
- 文档页数:13
分形几何学的基本概念与应用分形几何学是一门研究复杂、自相似结构的几何学科。
它的研究对象包括自然界中的许多现象和图形,如云朵、山脉、植物的分枝结构等。
分形几何学的出现和发展,为我们认识自然界的复杂性提供了新的视角。
本文将介绍分形几何学的基本概念,并重点探讨其在科学研究和实际应用中的价值。
一、分形几何学的基本概念分形几何学最核心的概念是“分形”。
分形是指具有自相似性质或统计尺度不变性的几何图形或物体。
它具备以下特点:1. 自相似性:分形的一部分与整体的形状非常相似,即具有自我重复的特性。
无论从整体还是局部的角度观察,其形状和结构都保持不变。
2. 统计尺度不变性:无论在什么尺度上观察分形,都能发现相似的图形和结构。
分形具有无标度的特性,不受空间尺度的限制。
3. 复杂性和碎形维度:分形体现了自然界中复杂系统的普遍性和多样性。
通过碎形维度的衡量,我们可以描述分形的几何形态。
二、分形几何学的应用领域分形几何学的研究成果,对科学研究和实际应用有着广泛的影响和应用价值。
1. 自然科学领域在物理学、化学、天文学等自然科学领域,分形几何学的应用已经取得了许多重要的突破。
例如,在物质表面的研究中,分形维度可以帮助我们更好地理解物质的分布和表面形态;在流体力学领域,分形几何学可以用来描述复杂流体的运动和传输现象。
2. 生命科学领域分形几何学在生物学、医学和生态学等领域的应用也日益增多。
在生物进化研究中,利用分形模型可以揭示物种的分支进化和形态演化;在生物医学图像处理领域,分形分析可以用于肿瘤和病变的诊断。
3. 技术工程领域在工程学、计算机科学和通信领域,分形几何学为我们提供了一些创新的解决方案。
例如,在图像压缩和数据传输中,可以利用分形编码来提高传输效率和图像质量;在通信网络设计中,采用分形结构可以提高网络的可靠性和稳定性。
4. 艺术与设计领域分形几何学的美学价值也不可忽视。
许多艺术家和设计师利用分形几何学的原理和方法创作出具有独特美感的艺术作品和设计。
分形几何及其应用简介课程号:06191280课程名称:分形几何及其应用英文名称:Fractal Geometry and its Applications周学时:3-0 学分:3预修要求:实变函数,概率论内容简介:分形几何学是由法国数学家B.B.Mandelbrot在20世纪70 年代创立的。
“分形(fractal)”一词,也是由他提出,它来源于拉丁语“fractus”,含有“不规则”或“破碎”之意。
与描述规则形状的欧几里德几何不同,分形几何研究一类非规则的几何对象,并为研究这些对象提供了思想、方法、技巧等。
作为应用,它可以构造从植物到星系的物理结构的精确模型,而这是传统几何无法做到的。
可以说,分形几何是一种“新”的几何语言。
选用教材或参考书:教材:《分形几何---数学基础与应用》,谢和平等编(重庆大学出版社)参考书:K.J.Falconer, The Geometry of fractal sets, Cambridge Univ. Press, (1985)《分形与图象压缩》,陈守吉等编(上海科技教育出版社)《分形几何及其应用》教学大纲一、课程的教学目的和基本要求《分形几何及其应用》课程主要是面向数学系学生开设的一门选修课,总学时数为48,一个学期完成,学分3分。
通过本课程的教学,使学生掌握分形几何中的基本概念、基本方法并熟识基本理论;会应用基本理论考察自然现象的分形本质,计算分形维数,在图象压缩方面有初步的应用。
二、相关教学环节安排1,每周布置作业,作业量2---3小时。
2,每章结束安排习题课,讲解习题。
三、课程主要内容及学时分配每周3学时,上课时间共16周。
主要内容:(一)预备知识(3学时)1,基本集合和测度理论2,概率论知识3,质量分布(二)Hausdorff 测度与维数(6学时)1,Hausdorff 测度2,Hausdorff 维数3,Hausdorff 维数计算的例子4,Hausdorff 维数的等价定义5,习题课(三)维数的其他定义(6学时)1,盒计数维数2,盒计数维数的性质和问题3,修正盒计数维数4,另外一些维数定义5,习题课(四)维数计算方法(9学时)1,基本方法2,有限测度子集3,位势理论方法4,Fourier变换方法5,习题课(五)分形集的局部结构(6学时)1,密度2,1-集的结构3,s-集的切线4,习题课(六)分形集的投影和分形集的积(9学时)1,任意集的投影2,整数维集的投影3,乘积公式4,习题课(七)自相似和自仿射集变换确定的分形(9学时)1,迭代函数系统2,自相似和自仿射集3,对编码成象的应用4,习题课四、教材及主要参考用书教材:《分形几何---数学基础与应用》,谢和平等编(重庆大学出版社)参考书:K.J.Falconer, The Geometry of fractal sets, Cambridge Univ. Press, (1985) 《分形与图象压缩》,陈守吉等编(上海科技教育出版社)。
分形几何学的基本概念与应用分形几何学是指一种可以描述自然界中各种复杂结构的数学理论。
它的出现不仅丰富了数学领域,而且在各个学科领域都有广泛的应用。
本文将介绍分形几何学的基本概念,并探讨其在科学、艺术和工程等领域中的应用。
第一部分:分形几何学的基本概念分形几何学是由波兰数学家Mandelbrot于1975年首次提出的。
它主要研究的是那些具有自相似性质的图形和空间结构。
分形的特点是无论放大多少倍,都能看到相似的图案。
为了更好地理解分形的概念,我们来看一个最经典的例子——科赫雪花曲线。
科赫雪花曲线是一条以等边三角形为起始形状,通过无限次迭代生成的曲线。
每次迭代过程中,在当前形状的每条边上绘制1/3长度的等边三角形,然后将中间一段边替换为相同长度的曲线,如此重复进行下去。
无论迭代多少次,科赫雪花曲线始终保持不变的自相似性质。
除了科赫雪花曲线,分形几何学还包括其他一些经典的分形图形,如曼德勃罗集合、朱利亚集合等。
这些分形图形都具有自相似和无穷细节的特点,可以通过数学公式和计算机算法进行生成和描述。
第二部分:分形几何学的应用2.1 科学领域分形几何学在科学领域有着广泛的应用,特别是在物理学、天文学和生物学等领域。
例如,在物理学中,分形几何学被用来研究复杂结构的性质和特征。
分形维度可以描述物质的空间分布和表面形态,帮助科学家理解和解释一些复杂现象,如分形状的树叶、云朵和山脉等。
2.2 艺术领域分形几何学为艺术家提供了一种新的创作思路和工具。
艺术家可以通过分形生成算法来创作出具有分形特征的图像和艺术品。
这些分形艺术作品通常具有丰富的细节、自相似的结构和迷人的美学效果。
分形艺术的应用不仅仅局限于绘画,还包括音乐、建筑和设计等领域。
2.3 工程领域分形几何学在工程领域有着重要的应用价值。
例如,在通信领域,通过分形天线的设计,可以提高天线的频带宽度和增益性能。
此外,分形几何学还可以应用于图像压缩和信号处理等领域,提高数据的传输效率和质量。
实用标准文案第6讲分形几何学主要内容:一、概述二、分维的测定方法(重点内容)三、分维应用实例(重点内容)四、问题讨论一、概述分形几何的概念是美籍法国数学家曼德尔布罗特(B.B.Mandelbrot)1975年首先提出的,被誉为大自然的几何学,它是现代数学的一个新分支,但其本质却是一种新的世界观和方法论。
分形理论与动力系统的混沌理论交叉结合,相辅相成。
分形理论是用来研究自然界中没有特征长度但又具有自相似性的图形和现象。
自然界的许多事物和现象均表现出极为复杂的形态,并非是一种严格的数学分形,而是具有统计意义上的自相似性。
分形几何学是应用数学的一个重要组成部分,在数学、物理、化学、生物、医学、地质、材料、工程技术等学科中得到广泛的应用。
近年来,对分形几何的研究发展很快,在—些前沿课题上取得了较大的进展。
1、基本概念(1)整数维与分数维“维”(dimension)是几何学及空间理论的基本概念,是能有效度量几何物体的标准体所需要的独立坐标的数目,是表示几何体形状与分布特征的重要参数。
在拓朴学和欧几里得几何学中,维数只能是整数。
如直线是一维的,平面是二维的,普通空间是三维的。
如果在三维空间中引入直角坐标,就可用三个实数(x,y,Z)代表空间的一点:n维空间的一点一般可用n个实数(x1,x2,…,xn)来表示。
在相对论中,所讨论的时空是四维空间,时空的点,可用坐标(x,y,z,t)来表示,其中t表示时间。
可见时空空间的维数也是整数。
然而,欧氏空间只是对现实空间的一个最简单的近似描述。
正如B.B.Mandelbrot在其1982年出版的《自然分形几何学》一书中所说:“山峰并不是圆锥形,海岸线不是圆弧形,闪电的传播也不是直线的”。
为了更确切地描述自然界的无规则现象,法国数学家Benoit B.Mandelbrot于1977年首次提出了不是整数的维数——分数维(fractal dimension)的新概念。
例如,英国海岸线的维数D为1.25,宇宙中物质分布的D为1.2。
研究表明,凡是可用分数维描述的几何对象,都具有自相似性。
(2)自相似性与无标度区所谓自相似性(self-similarity),是指事物或现象中局部与整体在形态、功能和信息等方面具有统计意义上的相似性。
自然界中的许多客体,如云朵、山脉、海岸线、树、肺脏,甚至描述经济现象的图形,都具有“自相似性”,即局部与整体的形状相似,局部的局部也与整体相似。
例如,一段用放大的比例尺画出来的海岸线与整条海岸线形状是相似的;一棵树干分为二支,每支又分为二支——这棵树的局部与整体的形状相似。
事实上,地质体大多具有自相似性,一条断层可能以不同比例尺存在,而其外表却十分相像。
因此,地质学家长期以来凭直觉认识到了这一基本事实,从而形成了一个不言而喻却是不可改变的原则,即任何地质体的照片必须附上一个比例尺参照物,在野外拍摄的地质照片中通常附上已知尺寸的某种普通物品,例如铅笔、地质锤或人体。
自然界事物自相似性只在一定尺度范围内才能出现,这个具有自相似性的范围叫做无标度区。
在无标度区内,放大或缩小几何对象的尺寸,整个结构并不改变,即其形状与标度无关。
在无标度区外,自相似现象不存在。
(3)分形与分形几何学分形是指具有自相似性或自相似结构的几何对象。
例如,弯弯曲曲的海岸线、起伏不平的山脉、粗糙不平的断面、变化无常的浮云、九曲回肠的河流、纵横交错的血管,令人眼花燎乱的满天繁星……,它们的共同特点是极不规则或极不光滑,然而放大或缩小若干倍后其结构与功能又具相似性,因此,这些现象都是分形。
同样,地质现象中的自相似现象也十分普遍。
例如地壳的变形是一自相似过程,变形过程中构造事件的空间分布以及变形后构造带中不均匀体的分布常常是分形的;岩石的破坏也是一自相似过程,破坏过程中的微破裂事件的空间分布以及破坏后断裂带中不均匀体的分布也常常是分形。
因为分形都具有极不规则的复杂形状,因而用整数维的概念很难对它们进行定量描述。
然而,根据分形的观点,却可以从中找到自相似结构,并用分维对其形状进行描述。
1982年由B.B.Mandelbret创立的分形几何学就是研究无规则现象或分形的数学方法。
它既是数学的最新研究领域之一,又是国内外地学研究的前沿课题。
2、分维的定义和分类对于D维规则图形,把图形的每一个界面分成b份,则图形被分成N=b D份,自相似维数为:以上定义只适用于具有严格自相似性的图形。
为了能够适用于包括随机图形在内的任意图形,人们给分维引入了多种定义。
在地学研究中,一般用下列3种定义:(1)容量维(Dk)若N(d)是能够覆盖住一个点集的直径为d的小球的最小数目,则该点集的容量维定义为:(2)信息维(Di)在容量维的定义中,只考虑了直径为d的小球数目与d之间的关系,而未考虑研究对象。
因此,对于非确定性的研究对象,这种定义仍不实用。
于是,引入了信息维的定义:其中,pi (d)为研究对象落在第i个球中的概率。
若概率分布均匀,则pi(d)=1/N,Di=Dk。
一般情况下,Di ≤Dk,可见信息维是容量维的一种推广。
(3)相似维(Ds)相似维是应用最多的一种分维。
对于某一具有自相似性的研究对象,若其可以被分为N 个单元(N随相似比r变化),且每一单元按相似比r与整体相似,则定义:分维的上述定义在数学上都是很严密的。
但在实际问题及实验测定中。
长度是有界限的。
通常,如果N(r)随r的变化存在以下关系:则D就是该图形的分维。
3、分维在地质学上的应用作为表征研究对象几何复杂程度和几何分布关系的参数。
分维在地学,尤其是工程地质、环境地质领域得到广泛应用,在处理过去难以解释或难以解决的复杂问题方面显示了具大威力,得到了一系列准确的解释和定量结果。
(1)地质体结构的分形研究①岩石结构面几何特征岩石结构面是指存在于岩体内的面、缝、层、带状地质界面。
结构面不仅破坏了岩体的完整性,直接影响岩体的力学性质和应力分布状态,而且很大程度上影响着岩体的渗流途径和破坏方式。
因此在岩石力学、水文地质与工程地质学领域都非常重视岩石结构面研究。
岩石结构面的几何特征包括结构面的方位、形态、规模、间距或密度、隙宽、粗糙度、璧面强度和充填性等。
由于结构面空间形态的不规则性、组成结构面网络的复杂性,阻碍了人们对它的深入认识。
运用分形几何学研究结构面几何特征及其组成的网络系统,可以得到许多非常有意义的结论。
②岩土结构有人对岩石颗粒和土颗粒的粒度分布、岩石空隙和土粒间孔隙的大小分布、颗粒表面形态等进行研究,发现它们均符合分形分布规律。
③矿物晶体结构传统的晶体结构模型是以欧几里德空间为基础建立起来的。
现在有人提出用分形空间建立晶体结构模型,并有人用计算机模拟出一些理想的分形晶体模型。
(2)地震学中的分形研究①地震强度的自相似性地震震级(M)与地震频度(N)有以下关系:lgN=a-bM震级与地震波能量(E)的关系为:LgE=A+1.5M由以上两式可得:②地震的时间分维有人通过研究发现,在适当的定长时间段内有震的时段数与时间间隔符合分形分布关系。
③地震的空间分维地震震中的分布具有某种程度的自相似性。
(3)地貌学中的分形研究地表的起伏形态可用分维描述。
在一个流域内,水道的数目、长度、纵比降、流域面积等均具有自相似性。
(4)岩石断裂与破碎利用分维可以很好地描述岩石断裂面的粗糙不平,综合反映岩石材料的微结构、组构演化、变形和破坏性质,把宏观力学性质与微观结构定量地联系起来。
在研究一个区域的断裂构造分布时,可分别研究断层几何结构的分维和断层空间分布的分维。
在这种情况下,断层分维是断层数量、规模、组合形式、水平延伸长度以及分布不均匀性的综合体现,可以作为研究区断裂构造复杂程度的量化指标。
(5)地学数据的分维处理地学数据在坐标图上表现为几何点或几何曲线,对这些点的分布特征和曲线的几何特征进行分维分析,就可以间接地分析这些数据的时空特征。
二、分维的测定方法分形研究中,已提出许多不同的分维测定方法,可以根据不同的研究对象和不同的研究目的选用不同的测定方法。
下面只介绍四种基本方法。
1、码尺法取长度为r的码尺逐一覆盖曲线(断层迹线、地表面或岩石破裂面等与一垂直切面的交线),以所需码尺总数N(r)乘以码尺长度r得到该曲线的近似长度L(r);随着r的缩小,L(r)将增大,具有:在实际应用码尺法测定分维时,将一组码尺长度ri 及与其对应的一组断层长度L(ri)标在 lnL(r)-lnr双对数坐标图上(i=1,2,…,n),便可用一元线性回归方法拟合出一条直线:lnL(r)=a+bLnr式中,a是常数,b是直线的斜率。
实际上,由式可得:LnL(r)=lnA+(1-D)lnr令:a=LnA,b=1-D,即可得到式lnL(r)=a+bLnr。
该曲线的分维:D=1-b。
在对不同的曲线进行比较研究时,常以拟合直线斜率的绝对值作为曲线的相似维。
2、圆覆盖法一条断裂带往往由方向、长度、几何形态不同的多条断层斜列而成。
对于类似断裂带的研究对象,不能用码尺法,而要用圆覆盖法。
圆覆盖法与码尺法类似。
但用不同半径(ri,i=1,2,…,n,)的圆去覆盖断裂带,断裂带的长度L(ri )与圆的半径(ri)有如下关系:L(ri )=2ri.N(ri)式中,N(ri )为覆盖断裂带所需半径为ri圆的最小数目。
将ri 和L(ri)(i=1,2,…,n)两组数据标在双对数图lnr-lnL(r)上,可得到一条斜率为b的直线,则其分维数为:D=1-b。
3、网络覆盖法网络覆盖法一般用于研究一个区域内某种几何对象(点、线)的分形结构。
将研究区分成若干个边长为r的正方形格子,数出有点或线进入的格子数N(r);按1/2的倍率缩小r,并数出相对应的格子数N(r),并以此类推。
如果研究区内几何对象具自相似结构,则有:式中,Ds为相似维。
这种方法又称为数盒子法。
将“数盒子”所得数据标绘在双对数坐标图LnN(r)-lnr上,可拟合一条直线:LnN(r)=a+Lnr其斜率b即为研究对象的分维。
图a为日本板田地区的断层系(图中所示断层是对“日本活断层图”中I到II级信度活动断层绘制而成)。
将该区域每边近2n(n=1,2,…,n)逐级等分,则可依次数出有断层线进入的盒子数。
为清晰起见,仅在图中的一角画出了逐渐变细的分割。
图b为有断层线进入的盒子数与沿网络一边盒子数的双对数坐标图,其分维为1.60+0.10。
4、康托尘集法康托尘集法是分析某种事件沿测量方向出现非均匀性或概率的情况,可描述该事件分布的不均匀性和各向异性特征。
以断裂分维测定为例,用几条平行的测线覆盖断裂图象,然后将测线分为长度为r的一些测量单元,数出含有断裂交叉点的测量单元的个数n与测量单元总数N的比值p。
改变测量单元的长度r,可获得相应的n、N及p值。