热重分析TG
- 格式:ppt
- 大小:370.00 KB
- 文档页数:27
热重分析仪(TG)基本原理热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程。
广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
利用热重分析法,可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析(包括利用TG测试结果进一步作表观反应动力学研究),可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。
热重分析仪的基本原理示意如下:炉体(Furnace)为加热体,在由微机控制的一定的温度程序下运作,炉内可通以不同的动态气氛(如N2、Ar、He等保护性气氛,O2、air等氧化性气氛及其他特殊气氛等),或在真空或静态气氛下进行测试。
在测试进程中样品支架下部连接的高精度天平随时感知到样品当前的重量,并将数据传送到计算机,由计算机画出样品重量对温度/时间的曲线(TG曲线)。
当样品发生重量变化(其原因包括分解、氧化、还原、吸附与解吸附等)时,会在TG曲线上体现为失重(或增重)台阶,由此可以得知该失/增重过程所发生的温度区域,并定量计算失/增重比例。
若对TG曲线进行一次微分计算,得到热重微分曲线(DTG曲线),可以进一步得到重量变化速率等更多信息。
典型的热重曲线如下图所示:100200300400500600700800900/ 温度 /℃406080100120140TG /%2015105D TG /(%/m in)7样品称重:7.95mg 20K/min 升温速率:20K/min N2气氛:N2 Al2O3, 坩埚:Al2O3, 敞开式TG TG 典型图谱(图中所示为一水合草酸钙的分解过程)DTG DTG 曲线TG TG 曲线: 12.3%: 19.2%: 30.1% : 38残余质量: 38.4% 质量变化 质量变化: 186峰值: 186.2 .2 ℃: 518峰值: 518.3 .3 ℃: 770峰值: 770.6 .6 ℃ : 489起始点: 489.2 .2 ℃ : 155起始点: 155.8 .8 ℃: 710起始点: 710.8 .8 ℃ 质量变化图谱可在温度与时间两种坐标下进行转换。
热重分析原理热重分析(Thermogravimetric Analysis,TGA)是一种通过测量样品在升温过程中的质量变化来研究材料性质的分析技术。
它是一种广泛应用于材料科学、化学、生物学等领域的重要实验手段。
热重分析原理主要是利用样品在不同温度下的质量变化来分析样品的成分、热稳定性、热分解动力学等信息。
在进行热重分析时,首先需要将样品放入热重仪的样品盘中,并在恒定的升温速率下进行加热。
在加热的过程中,热重仪会实时监测样品的质量变化,并将数据记录下来。
通过对样品质量变化曲线的分析,可以得到样品在升温过程中的质量损失情况,进而推断样品的热分解温度、热分解产物、热分解动力学参数等信息。
热重分析原理的核心在于样品在升温过程中的质量变化。
当样品受热时,其内部的化学键可能会发生断裂,导致挥发分的释放、热分解产物的生成等过程,从而引起样品质量的变化。
通过监测样品的质量变化,可以得到样品在不同温度下的热稳定性情况,进而推断样品的热分解特性。
热重分析原理不仅可以用于研究样品的热稳定性,还可以用于分析样品的成分。
在进行热重分析时,可以结合其他分析技术,如气相色谱-质谱联用技术(GC-MS)、傅里叶变换红外光谱(FTIR)等,对样品在不同温度下释放的挥发分进行在线分析,从而推断样品的成分信息。
此外,热重分析原理还可以用于研究样品的热分解动力学。
通过对样品在不同升温速率下的热重曲线进行分析,可以得到样品的热分解动力学参数,如活化能、反应级数等信息,从而揭示样品的热分解反应机理。
总之,热重分析原理是一种重要的材料分析技术,通过研究样品在升温过程中的质量变化,可以得到样品的成分、热稳定性、热分解动力学等信息,为材料科学、化学、生物学等领域的研究提供了重要的实验手段。
热重分析实验报告热重分析法研究材料组成一、实验目的1、了解热重分析仪的原理2、通过实验,学会热重曲线的分析二、实验原理热重分析法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。
热重分析仪主要由炉子、程序控温系统、记录系统等几个部分构成。
通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。
从热重法可以派生出微商热重法,也称导数热重法,它是记录TG 曲线对温度或时间的一阶导数的一种技术。
实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。
DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。
热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。
根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。
三、仪器和试剂热失重分析仪TG209F1 德国NETZSCH公司试样(含有氯化反式1,4-聚异戊二烯(CTPI))四、实验步骤1、打开热重分析仪及电脑;2、取下空坩埚,取2~5mg试样置空坩埚内,轻轻振动,使之均匀平铺于坩埚内。
3、打开电脑中的程序,设置实验温度从30℃升到800℃,升温速度为20K/min,实验气氛为氮气,开始实验。
4、实验完毕,打印TG曲线图,降温,关闭电脑及热重分析仪。
五、数据处理实验所得热重曲线如下图所示整个实验都处于氮气气氛中,在此无氧环境下炭黑组分重量不变,失重原因是小分子的挥发和橡胶的裂解。
从DTG曲线看到,在263℃附近出现第一个失重峰,TG曲线得到失重量为14.06%,由于样品中小分子的熔点较低,所以分析该温度下的失重是由于小分子(比如增塑剂、防老剂等)的挥发造成的;在394℃附近出现第二个失重峰,失重量为77.5%,由于胶料一般在400℃左右裂解,所以判断Project:Identity:Date/Time:Laboratory:Operator:Sample:42012-4-12 12:09:50QUST LIU CTPI-4Material:Correction File:Temp. calib. file:Range:Sample Car./TC:Sample Mass:empty 007.bt3温度校正.tt330/20.0(K/min)/800TG 209F1 standard/P 5.966 mgMode/Type of Meas.:Segments:Crucible:Atmosphere:Corr/M.Range:Pre Mment Cycles:TG/Sample + Correction 1/1Al2O3-- / N2 / N2820/2000 mg 0xVacInstrument:NETZSCH TG 209 F1File:E:\ngbwin\data5\刘晨光\120411\CTPI-4.dt3liujiwen 2012-04-12 15:32 Main100200300400500600700Temperature /°C102030405060708090100TG /%-20-15-10-5DTG /(%/min)Mass Change: -14.06 %Mass Change: -77.50 %Residual Mass: 6.43 % (797.0 °C )Peak: 263.3 °CPeak: 394.2 °C该失重量就是样品中胶的含量。
热重分析热重分析(Thermogravimetric Analysis,TG或TGA),是指在程序控制温度下测量待测样品的质量与温度变化关系的一种热分析技术,用来研究材料的热稳定性和组份。
TGA在研发和质量控制方面都是比较常用的检测手段。
热重分析在实际的材料分析中经常与其他分析方法连用,进行综合热分析,全面准确分析材料。
目录多少物质(如CuSO4·5H2O中的结晶水)。
从热重曲线上我们就可以知道CuS O4·5H2O中的5个结晶水是分三步脱去的。
TGA 可以得到样品的热变化所产生的热物性方面的信息。
种类热重分析通常可分为两类:动态法和静态法。
1、静态法:包括等压质量变化测定和等温质量变化测定。
等压质量变化测定是指在程序控制温度下,测量物质在恒定挥发物分压下平衡质量与温度关系的一种方法。
等温质量变化测定是指在恒温条件下测量物质质量与温度关系的一种方法。
这种方法准确度高,费时。
热重分析仪结构2、动态法:就是我们常说的热重分析和微商热重分析。
微商热重分析又称导数热重分析(Derivative Thermogravimetry,简称DTG),它是TG曲线对温度(或时间)的一阶导数。
以物质的质量变化速率(dm/dt)对温度T(或时间t)作图,即得DTG曲线。
仪器构造进行热重分析的基本仪器为热天平,它包括天平、炉子、程序控温系统、记录系统等几个部分。
除热天平外,还有弹簧秤。
热重分析仪数据分析热重分析仪结构:1、试样支持器;2、炉子;3、测温热电偶;4、传感器;5、平衡锤;6、阻尼和天平复位器;7、天平;8、阻尼信号影响因素影响热重法测定结果的因素,大致有下列几个方面:仪器因素,实验条件和参数的选择,试样的影响因素等等。
1、浮力及对流的影响。
浮力和对流引起热重曲线的基线漂移。
热天平内外温差造成的对流会影响称量的精确度。
解决方案:空白曲线、热屏板、冷却水等。
2、挥发物冷凝的影响。
解决方案:热屏板。
热重分析TG(TGA)和DTG原理解析与应用
1、名词:热重分析(Thermogravimetric Analysis,TGA),又叫热重法(Thermogravimetry,TG),热重仪(热重分析仪):Thermogravimetric Analyzer 。
2、定义:在程序控制温度下,测量物质的质量与温度关系(w=f(T))的一种热分析技术。
由热重分析法得到的曲线称为TG曲线或TGA曲线,横坐标为温度,纵坐标为质量分数。
3、DTG曲线:叫微商热重分析(DTG)曲线,TG曲线对温度(或时间)的一阶导数得到的曲线(纵坐标为dW/dt,横坐标为温度或时间),物理意义表示失重速率与温度(或时间)的关系。
DTG曲线峰顶点与Tg曲线拐点相对应,为失重速率最大值点,DTG曲线峰数目与TG曲线台阶数相等。
DTG曲线面积与失重量成正比。
当失重很小TG曲线上无法分辨出来时,可以借助DTG分辨。
4、热重分析分类:等温热重法(恒温),非等温热重法(程序升温)
5、影响热重分析TGA测定结果的因素:仪器本身(浮力、坩埚选择、灵敏度)、升温速率、试样量、样品粒度、样品形状、气氛等。
6、热重分析应用介绍:物质热稳定性比较,物质的成分分析,物质的分解过程和热解机理,研究反应动力学,高分子的热氧化降解等,材料中挥发性物质的测定。
第三节 热重分析(TG )一、基本原理热重法是在程序控温下,测量物质的质量随温度(或时间)的变化关系的一种技术,简称TG 。
如熔融、结晶和玻璃化转变之类的热行为,试样确无质量变化,而分解、升华、还原、解吸附、吸附、蒸发等伴有质量改变的热变化可用TG 来测。
如果在程序升温的条件下不断记录试样的重量的变化,即可得到TG 曲线。
如图1所示。
一般可以观察到二到三个台阶,第一个失重台阶W 0—W 2多数发生在100℃以下,这多半是由于试样的吸附水或试样内残留的溶剂挥发所致。
第二个台阶往往是试样内添加的小分子助剂,如高聚物增塑剂、抗老剂和其他助剂的挥发(如纯物质试样则无此部分)。
第三个台阶发生在高温是属于试样本体的分解。
为了清楚地观察到每阶段失重最快的温度。
经常用微分热重曲线DTG (如图1b )。
这种/dW dt 曲线可以利用电子微分电路在绘制TG 曲线的同时绘出。
对于分解不完全的物质常常留下残留物W R 。
在某种特殊的情况下还会发生增重现象,这可能是物质与环境气体(如空气中的氧)进行了反应所致。
另外目前又出现了一种等温TG 曲线。
这是在某一定温度条件下,观察试样的重量随时间的变化,所以又称“等温热失重法”即:W=f (t )(温度为定值)W 0 W 1 W 2 W 3重量图1 热重分析曲线(a )与微商热重曲线(b )炉子它能提供很多有用的信息,如在某温度下物体的分解速度或某成分的挥发速度等。
二、基本结构热重法的仪器称为热天平,给出的曲线为热重曲线。
热重曲线以时间t 或炉温T 为横坐标,以试样的质量变化(损失)为纵坐标。
热天平的基本单元是微量天平、炉子、温度程序器、气氛控制器以及同时记录这些输出的仪器。
热天平的示意图如图2-1所示。
通常是先由计算机存储一系列质量和温度与时间关系的数据完成测量后,再由时间转换成温度。
三、影响因素虽然由于技术的进步,在设计TG 仪器时进行了周密的考虑,尽量减少各种因素的影响,但是客观上这些因素还不同程度在存在着,为了数据的可靠性,有必要分述如下:1.坩埚的影响坩埚是用来盛装试样的,坩埚具有各种尺寸、形状并由不同材质制成。
EGCG热重分析法热重分析法(Thermogravimetry Analysis,简称TG或TGA)为使样品处于一定的温度程序(升/降/恒温)控制下,观察样品的质量随温度或时间的变化过程,获取失重比例、失重温度(起始点,峰值,终止点...)、以及分解残留量等相关信息。
TG方法广泛应用于塑料、橡胶、涂料、药品、催化剂、无机材料、金属材料与复合材料等各领域的研究开发、工艺优化与质量监控。
可以测定材料在不同气氛下的热稳定性与氧化稳定性,可对分解、吸附、解吸附、氧化、还原等物化过程进行分析,包括利用TG测试结果进一步作表观反应动力学研究。
可对物质进行成分的定量计算,测定水分、挥发成分及各种添加剂与填充剂的含量。
图谱可在温度与时间两种坐标下进行转换。
红色曲线:热重(TG)曲线,表征了样品在程序温度过程中重量随温度/时间变化的情况,其纵坐标为重量百分比,表示样品在当前温度/时间下的重量与初始重量的比值。
绿色曲线:热重微分(DTG)曲线(即dm/dt曲线,TG曲线上各点对时间坐标取一次微分作出的曲线),表征重量变化的速率随温度/时间的变化,其峰值点表征了各失/增重台阶的重量变化速率最快的温度/时间点。
热重曲线怎么分析对于一个失/增重步骤,较常用的可对以下特征点进行分析:切线的相交点,可作为该失/增重过程起始发生的参考温度点,多用于表征材料的热稳定性。
切线的相交点,可作为该失/增重过程结束的参考温度点。
DTG曲线峰值:质量变化速率最大的温度/时间点,对应于TG 曲线上的拐点。
质量变化:分析TG曲线上任意两点间的质量差,用来表示一个失重(或增重)步骤所导致的样品的质量变化。
残余质量:测量结束时样品所残余的质量。
另外,在软件中还可对TG曲线的拐点(与DTG峰温等同)、DTG 曲线外推起始点(更接近于真正意义上的反应起始温度)、DTG 曲线外推终止点(更接近于真正意义上的反应结束温度)等特征参数进行标示。
热重曲线分析
热重(TG)曲线,表征了样品在程序温度过程中重量随温度/时间变化的情况,其纵坐标为重量百分比,表示样品在当前温度/时间下的重量与初始重量的比值。
热重微分(DTG)曲线,表征重量变化的速率随温度/时间的变化,其峰值点表征了各失/增重台阶的重量变化速率最快的温度/时间点。
对于一个失/增重步骤,较常用的可对以下特征点进行分析:
TG曲线外推起始点:TG台阶前水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程起始发生的参考温度点,多用于表征材料的热稳定性。
TG曲线外推终止点:TG台阶后水平处作切线与曲线拐点处作切线的相交点,可作为该失/增重过程结束的参考温度点。
DTG曲线峰值:质量变化速率最大的温度/时间点,对应于TG曲线上的拐点。
质量变化:分析TG曲线上任意两点间的质量差,用来表示一个失重(或增重)步骤所导致的样品的质量变化。
残余质量:测量结束时样品所残余的质量。
另外,在软件中还可对TG曲线的拐点(与DTG峰温等同)、DTG 曲线外推起始点(更接近于真正意义上的反应起始温度)、DTG曲线外推终止点(更接近于真正意义上的反应结束温度)等特征参数进行标示。