信号与系统§2.4 零输入响应和零状态响应
- 格式:ppt
- 大小:332.50 KB
- 文档页数:10
信号与系统第8讲零输入响应和零状态响应零输入响应和零状态响应的定义 ⏹从引起系统响应的根源出发,将系统全响应分为零输入响应和零状态响应,即 ⏹零输入响应是指没有外加激励信号(零输入),仅由系统内部初始储能(电容储有电场能、电感储有磁场能)引起的响应; ⏹零状态响应是指系统内部储能为零(零状态),仅由系统的外部的激励引起的响应。
)()()(t y t y t y zs zi +=零输入响应的求解设n 个特征根为 ()(1)(2)1210()()()'()()0n n n n n y t a y t a y t a y t a y t ----+++++=L 00111=++++--a a a n n n λλλΛ其特征方程为 12.nλλλL 零输入下,系统的微分方程为 系统的零输入响应与微分方程的齐次解相同 以下分三种情况讨论零输入响应的求解(2)若存在共轭复根,如 1,2j λαβ=±3123()(cos sin ),0n t t t zi n y t c t c t e c e c e t λλαββ=++++≥L (3) 若这些特征根中含有重根,设 r 12r λλλ===L 111121()[()],0n r t t t r zi r r n y t c c t c t e c e c e t λλλ+-+=++++++≥L L 1212(),0n t t t zi n y t c e c e c e t λλλ=+++≥L (1)若这些特征根都是单根,则由起始状态值确定待定系数【解】 特征方程为 其特征根为 λ1 = -1, λ 2= -3零输入响应为: (0)1,(0)2y y --'==得到:最后得到: 根据起始条件: 例1 已知系统微分方程应的齐次方程为: (0)1,(0)2y y --'==,求系统零输入响应。
)(3)('4)(''=++t y t y t y 0342=++λλ312()t tzi y t c e c e --=+312'()3t tzi y t c e c e --=--121=+c c 2321=--c c 251=c 232-=c 353()(),022t t zi y t e e t --=-≥例2 已知系统微分方程相应的齐次方程为:(0)1,(0)2y y --'==,求系统零输入响应。
说明系统零状态响应、冲激响应、阶跃响应的定义及三者之间的联系-回复系统零状态响应、冲激响应和阶跃响应是信号处理中常用的概念。
它们描述了在不同输入信号下系统的响应情况,并且它们之间存在密切的联系。
首先,我们来分别定义这三个概念。
系统零状态响应(Zero-State Response)是指系统对于输入信号在系统起始时刻之前没有作用的响应。
零状态响应只取决于输入信号本身,与系统的初始状态无关。
在数学上,系统零状态响应可以通过卷积积分来表示。
冲激响应(Impulse Response)是指系统对于单位冲激信号(也称为脉冲信号或Dirac脉冲)的响应。
单位冲激信号是一个瞬时幅值为1的信号,在时间上的宽度可以非常短,但总面积为1。
冲激响应描述了系统对于瞬时激励的反应情况。
在数学上,系统冲激响应可以通过系统的传递函数来确定。
阶跃响应(Step Response)是指系统对于单位阶跃信号的响应。
单位阶跃信号是一个在系统起始时刻之前为0,在起始时刻之后为1的信号。
阶跃响应描述了系统对于突然变化的趋势信号做出的响应。
在数学上,系统阶跃响应可以通过取系统的冲激响应与单位阶跃信号的卷积来得到。
这三种响应之间有着密切的联系。
首先,阶跃响应可以通过冲激响应的积分得到。
假设冲激响应为h(t),那么阶跃响应为s(t)=∫h(t)dt。
这是因为单位阶跃信号是一个从0到1的连续的信号,在系统的作用下,相当于不断将冲激响应叠加起来,从而得到了阶跃响应。
而零状态响应则可以通过零输入响应和零状态响应的相加得到。
零输入响应是指在没有输入信号的情况下,系统存在初始状态时的响应。
当输入信号为0时,系统的响应只取决于初始状态,在数学上可以表示为h₀(t)。
而零状态响应则是指在初始状态下,输入信号对系统的响应。
当初始状态为0时,系统的响应只取决于输入信号,在数学上可以表示为h(t),则零状态响应可以表示为h(t)-h₀(t)。
这种联系可以通过信号处理中的卷积性质来进一步理解。
零输入响应与零状态响应一、零输入响应1定义在没有外加激励时,仅有t = 0时刻的非零初始状态引起的响应。
取决于初始状态和电路特性,这种响应随时间按指数规律衰减。
2简介系统的零输入响应完全由系统本身的特性所决定,与系统的激励无关。
当系统是线性的,它的特性可以用线性微分方程表示时,零输入响应的形式是若干个指数函数之和。
指数函数的个数等于微分方程的阶数,也就是系统内部所含"独立"储能元件的个数。
假定系统的内部不含有电源,那么这种系统就被称为"无源系统"。
实际存在的无源系统的零输入响应随着时间的推移而逐渐地衰减为零。
零输入响应是系统微分方程齐次解的一部分。
3起始状态所谓的起始状态,是反映一个系统在初始观察时刻的储能状态。
以电系统为例,我们做如下约定:在研究t=0以后的响应时,把t=0(-)时的值uc(0-)和il(0-)等称为起始状态,而把t=0+时的值uc(0+)和il(0+)以及它们的各阶导数称为初始值或初始条件。
二、零状态响应1定义在动态电路中,动态元件的初始储能为零(即零初始状态)下,仅有电路的输入(激励)所引起的响应。
三、两种响应的区别零状态响应:0时刻以前响应为0(即初始状态为0),系统响应取决于从0时刻开始加入的信号f(t);零输入响应:从0时刻开始就没有信号输入(或说输入信号为0),响应取决于0时刻以前的初始储能。
四、两种响应的判断方法如果有电源激励就是,而元件本身没有电压或电流就是零状态,相反没有电源激励只有元件本身初始值电压电流,就是零输入响应。
五、两种响应的求解方法1零输入响应:就是没有外加激励,由初始储能产生的响应,它是齐次解的一部分;2零状态响应:就是初始状态为零,外加激励产生的响应。
它可以通过卷积积分来求解。
零状态响应等于单位样值相应和激励的卷积。
其中,单位样值相应就是系统函数的反拉式变换或z变换。
六、两种响应之间的联系引起电路响应的因素有两个方面,一是电路的激励,而是动态元件储存的初始能量。
可编辑修改精选全文完整版第一章 信号与系统1-1画出以下各信号的波形【式中)()(t t t r ε=】为斜升函数。
〔2〕∞<<-∞=-t et f t,)( 〔3〕)()sin()(t t t f επ=〔4〕)(sin )(t t f ε= 〔5〕)(sin )(t r t f = 〔7〕)(2)(k t f kε= 〔10〕)(])1(1[)(k k f kε-+=解:各信号波形为 〔2〕∞<<-∞=-t e t f t,)(〔3〕)()sin()(t t t f επ=〔4〕)=tfε)(sin(t 〔5〕)rtf=(t(sin)〔7〕)f kεt=2()(k〔10〕)(])1(1[)(k k f k ε-+=1-2 画出以下各信号的波形[式中)()(t t t r ε=为斜升函数]。
〔1〕)2()1(3)1(2)(-+--+=t t t t f εεε 〔2〕)2()1(2)()(-+--=t r t r t r t f 〔5〕)2()2()(t t r t f -=ε 〔8〕)]5()([)(--=k k k k f εε 〔11〕)]7()()[6sin()(--=k k k k f εεπ 〔12〕)]()3([2)(k k k f k---=εε解:各信号波形为〔1〕)2()1(3)1(2)(-+--+=t t t t f εεε〔2〕)2()1(2)()(-+--=t r t r t r t f〔5〕)2()2()(t t r t f -=ε〔8〕)]5()([)(--=k k k k f εε〔11〕)]7()()[6sin()(--=k k k k f εεπ〔12〕)]()3([2)(k k k f k---=εε1-3 写出图1-3所示各波形的表达式。
1-4 写出图1-4所示各序列的闭合形式表达式。
1-5 判别以下各序列是否为周期性的。
如果是,确定其周期。