第四章 差异量数
- 格式:ppt
- 大小:436.00 KB
- 文档页数:30
第4章差异量数1.度量离中趋势的差异量数有哪些?为什么要度量离中趋势?答:(1)度量离中趋势的差异量数有全距、四分位差、百分位差、平均差、标准差与方差。
差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称离散量数(measures of dispersion)。
(2)度量离中趋势的必要性在心理和教育研究中,要全面描述一组数据的特征,不但要了解数据的典型情况,而且还要了解特殊情况。
这些特殊性常表现为数据的变异性。
因此,只用集中量数不可能真实地反映出它们的分布情形。
为了全面反映数据的总体情况,除了必须求出集中量数外,这时还需要使用差异量数。
2.各种差异量数各有什么特点?答:(1)标准差计算最严密,它根据全部数据求得,考虑到了每一个样本数据,测量具有代表性,适合代数法处理,受抽样变动的影响较小,反应灵敏。
缺点是较难理解,运算较繁琐,易受极端值的影响。
(2)方差的描述作用不大,但是由于它具有可加性,是对一组数据中造成各种变异的总和的测量,通常采用方差的可加性分解并确定属于不同来源的变异性,并进一步说明各种变异对总结果的影响。
因此,方差是推论统计中最常用的统计量数。
(3)全距计算简便,容易理解,适用于所有类型的数据,但它易受极值影响,测量也太粗糙,只能反映分布两极端值的差值,不能显示全部数据的差异情况,仅作为辅助量数使用。
(4)平均差容易理解,容易计算,能说明分布中全部数值的差异情况,缺点是会受两极数值的影响,但当数据较多时,这种影响较小,因有绝对值也不适合代数方法处理。
(5)百分位差易理解,易计算,不易受极值影响,但不能反映出分布的中间数值的差异情况,也仅用作补助量数。
(6)四分位差意义明确,计算方便容易,对极端值不敏感,较不受极端值影响。
当组距不确定,其他差异量数都无法计算时,可以计算四分位差。
但是,四分位差无法反映分布中所有数据的离散状况,不适合使用代数方法处理,受抽样变动影响较标准差大。
【课程讲义】第四章差异量数【教学目标】明确差异量数是描述数据离中趋势的一种量数,它与集中量数一起描述数据的全貌;明确标准差是所有差异量数中代表性最好的;掌握各种差异量数的概念、性质、计算方法、适用条件。
【学习方法】了解、理解、计算与应用。
【重点难点】差异量数的概念及适用条件;各种差异量数的计算方法;标准分数及百分等级的概念、适用条件及计算方法。
【讲义内容】前一章讨论的集中量数反映的是一组数据的集中趋势,代表一组数据的一般水平。
但是客观事物总是千差万别的,一组数据中不是所有的数值都与一般水平相等,而是有的高些,有的低些,彼此参差不齐。
描述一组数据波动情况的量数成为差异量数。
差异量数常用来衡量集中量数的代表性程度。
差异量数越大,则集中量数的代表性越小;差异量数越小,则集中量数的代表性越大。
差异量数分为:绝对差异量数和相对差异量数绝对差异量数:标准差,方差,四分差;相对差异量数:差异系数另外,本章还讲到相对地位量数:标准分数,百分等级。
第一节标准差一、标准差的概念及适用条件(一)概念标准差是一组数据中每个数据与其算术平均数之差的平方和,除以总的数据个数,再求算术平方根。
标准差的计算公式为:n XS2)(X-∑=(4.1)X为算术平均数,n为数据的个数。
(二)适用条件1.与算术平均数配合使用,与算术平均数的适用条件相同。
即一组数据的一般水平适合用算术平均数描述时,其离散程度宜用标准差描述;2.计算其他统计量时,如差异系数,标准分数,相关系数等,需要用到标准差;3.在推论统计中,尤其是进行方差分析时,常用方差表示数据的离散程度。
二.标准差的计算方法(一)未分组资料标准差的计算方法1.基本公式法用标准差的定义n XS2)(X-∑=,计算标准差。
例1 某校四年级举行数学竞赛,一班、二班分别派九名选手参加,成绩如下表。
试比较两个班的成绩。
4-1 四年级一班九名学生竞赛成绩统计表4-2 四年级二班九名学生竞赛成绩统计表解:先求年级一班的平均数和标准差。