yb 多体动力学第一章
- 格式:ppt
- 大小:699.00 KB
- 文档页数:27
多体系统动力学基本理论第2章多体系统动力学基本理论本章主要介绍多体系统动力学的基本理论,包括多刚体系统动力学建模、多柔体系统动力学建模、多体系统动力学方程求解及多体系统动力学中的刚性(Stiff)问题。
通过本章的学习可以对多体系统动力学的基本理论有较深入的了解,为具体软件的学习打下良好的理论基础。
2.1 多体系统动力学研究状况多体系统动力学的核心问题是建模和求解问题,其系统研究开始于20世纪60年代。
从60年代到80年代,侧重于多刚体系统的研究,主要是研究多刚体系统的自动建模和数值求解;到了80年代中期,多刚体系统动力学的研究已经取得一系列成果,尤其是建模理论趋于成熟,但更稳定、更有效的数值求解方法仍然是研究的热点;80年代之后,多体系统动力学的研究更偏重于多柔体系统动力学,这个领域也正式被称为计算多体系统动力学,它至今仍然是力学研究中最有活力的分支之一,但已经远远地超过一般力学的涵义。
本节将叙述多体系统动力学发展的历史和目前国内外研究的现状。
2.1.1 多体系统动力学研究的发展机械系统动力学分析与仿真是随着计算机技术的发展而不断成熟的,多体系统动力学是其理论基础。
计算机技术自其诞生以来,渗透到了科学计算和工程应用的几乎每一个领域。
数值分析技术与传统力学的结合曾在结构力学领域取得了辉煌的成就,出现了以ANSYS、NASTRAN等为代表的应用极为广泛的结构有限元分析软件。
计算机技术在机构的静力学分析、运动学分析、动力学分析以及控制系统分析上的应用,则在二十世纪八十年代形成了计算多体系统动力学,并产生了以ADAMS和DADS为代表的动力学分析软件。
两者共同构成计算机辅助工程(CAE)技术的重要内容。
多体系统是指由多个物体通过运动副连接的复杂机械系统。
多体系统动力学的根本目的是应用计算机技术进行复杂机械系统的动力学分析与仿真。
它是在经典力学基础上产生的新学科分支,在经典刚体系统动力学上的基础上,经历了多刚体系统动力学和计算多体系统动力学两个发展阶段,目前已趋于成熟。
计算机辅助工程与分析课程读书报告课程名称:计算机辅助工程与分析报告题目:多体系统动力学及ADAMS软件学院:机电工程学院专业:2014机械工程姓名:学号:任课老师:王立华提交日期:2015年6月29 日目录1.多体动力学理论 ............................................... - 3 -1.1多体动力学研究对象....................................... - 3 -1.2多体动力学研究现状....................................... - 3 -1.3多刚体系统动力学建模..................................... - 3 -1.3.1多体系统动力学基本概念............................. - 4 -1.3.2计算多体系统动力学建模与求解一般过程............... - 4 -1.3.3多刚体系统运动学[3].................................. - 4 -1.3.4多刚体系统动力学................................... - 5 -1.4 多柔体系统动力学建模[4]................................... - 5 -1.4.1多柔体系统坐标系................................... - 5 -1.4.2多柔体系统动力学方程的建立......................... - 5 -1.4.3多柔体动力学方程................................... - 6 -1.5多体系统动力学方程的求解................................. - 6 -1.6多体系统动力学中的刚性(Stiff)问题...................... - 7 -1.6.1微分方程刚性(Stiff)问题.......................... - 7 -1.6.2多体系统动力学中Stiff问题......................... - 7 -1.7多体系统仿真模型......................................... - 7 -2.ADAMS软件简述................................................ - 8 -2.1 ADAMS软件............................................... - 8 -2.2 主要内容................................................ - 8 -3. 总结 ........................................................ - 8 -4.四自由度机械手的总体方案 ..................................... - 8 -4.1机械手自由度的选择....................................... - 8 -4.2 三维造型............................................. - 9 -4.2.1三维设计软件proe简介.............................. - 9 -4.2.2机械手关键零部件设计............................... - 9 -4.2.3机械手其它零部件设计.............................. - 10 -4.3 Adams 仿真模型......................................... - 11 -5.学习心得 .................................................... - 13 -6.学习笔记 .................................................... - 13 -6.1 pro/e与adams之间的转化................................ - 13 -6.2 力与驱动的关系......................................... - 14 -3.Marker点与Pointer点区别................................. - 14 - 7.课程反馈意见 ................................................ - 14 - 参考文献 ...................................................... - 14 -多体系统动力学及ADMS软件摘要:本文通过对机械多体动力学基本理论的综合和总结,简述ADAMS软件,并结合实际工程问题:四自由度机械手总体设计,运用adms软件对其进行系统动力学分析,然后谈谈自己学习本课程的学习心得,并列举3个困扰自己的三个问题,最后对本课程提出意见。
多体动力学摘要多刚体系统的位置、姿态、运动及受力分析。
目录引言 (3)1 矢量 (4)1.1 矢量的定义及符号 (4)1.2 矢量的基本运算 (5)1.3 单位矢量的定义和符号 (6)1.4 零矢量的定义和符号 (6)1.5 平移规定 (6)习题一 (6)2 坐标系 (7)习题二 (8)3 矢量的坐标阵和坐标方阵 (8)习题三 (10)4 方向余弦矩阵 (10)4.1 方向余弦矩阵的定义 (10)4.2 方向余弦矩阵的用途 (11)4.3 方向余弦矩阵的性质 (14)习题四 (16)5 欧拉角 (16)5.1 欧拉角的定义 (16)5.2 欧拉角与方向余弦矩阵的关系 (17)5.3 欧拉角的奇点 (19)5.4 确定欧拉角的几何法 (19)习题五 (20)6 矢量在某参照物内对时间的导数 (21)习题六 (23)7 角速度 (24)习题七 (25)8 刚体上固定矢量在某参照物内对时间的导数 (25)习题八 (28)9 矢量在两参照物内对时间导数的关系 (28)习题九 (29)10 角速度叠加原理 (30)习题十 (31)11 角加速度 (31)习题十一 (31)12 角速度与欧拉角对时间导数的关系 (32)习题十二 (34)13 点的速度和加速度 (34)习题十三 (36)14 刚体上固定点及动点的速度与加速度 (36)14.1 刚体上固定点的速度与加速度 (36)14.2 刚体上动点的速度与加速度 (39)习题十四 (40)15 刚体的动力学方程 (40)15.1 并矢 (40)15.2 刚体惯性力向质心简化的主矢和主矩 (43)15.3 达朗贝尔原理和动力学方程 (45)习题十五 (46)16 约束方程 (46)习题十六 (48)参考文献 (48)引言多体动力学的研究对象是由多个物体通过约束及力元件连接起来的空间机构。
将机构中的物体抽象为柔体,则得到多柔体系统,抽象为刚体则得到多刚体系统。
这里只涉及多刚体系统。
机械设计中的多体系统动力学建模与仿真机械设计是一门涉及物体结构和运动的学科,而多体系统动力学建模与仿真则是机械设计中重要的一部分。
本文将介绍多体系统动力学建模与仿真的基本概念和方法,并探讨其在机械设计中的应用。
一、多体系统动力学建模的基本概念在机械设计中,多体系统动力学建模是研究物体在运动过程中相互作用力和运动方程的一种方法。
多体系统由多个连接在一起的刚体组成,通过关节、滑动副等连接方式相互联系。
多体系统动力学建模的主要目的是通过建立物体的运动方程,预测和分析系统的运动行为。
多体系统动力学建模要考虑的主要因素包括:1. 物体的质量分布、惯性参数和几何形状;2. 物体之间的约束关系和连接方式;3. 外部施加在物体上的力和力矩。
二、多体系统动力学建模的方法1. 拉格朗日方法拉格朗日方法是一种基于能量原理的多体系统动力学建模方法。
通过定义广义坐标和拉格朗日函数,可以得到系统的运动方程。
拉格朗日方法适用于系统的运动学约束不易确定的情况,可以简化运动方程的推导过程。
2. 牛顿-欧拉方法牛顿-欧拉方法是一种基于牛顿定律和欧拉角动力学的多体系统动力学建模方法。
通过施加牛顿定律和角动力学公式,可以得到系统的运动方程。
牛顿-欧拉方法适用于系统的运动学约束已知的情况,可以较为准确地描述系统的运动行为。
3. 约束方程法约束方程法是一种通过约束方程描述系统的运动约束和连接关系的多体系统动力学建模方法。
通过约束方程对系统中的连接关系进行数学建模,可以得到系统的运动方程。
约束方程法适用于复杂的多体系统,在实际工程应用中广泛使用。
三、多体系统动力学仿真的应用多体系统动力学仿真在机械设计中具有重要的应用价值。
以下列举几个典型的应用场景:1. 机器人运动学分析与路径规划通过对机器人相关零部件进行多体系统动力学建模和仿真,可以分析机器人的运动学性能,并进行路径规划和轨迹优化,提高机器人的工作效率和稳定性。
2. 车辆悬挂系统设计多体系统动力学仿真可以帮助优化车辆悬挂系统的设计,预测系统的动态性能和悬挂刚度,提高车辆的行驶舒适性和操控稳定性。
机械设计中的多体系统动力学分析与优化随着科技的进步和工程的发展,机械设计的复杂性也日益提高。
在许多机械系统中,多个刚体或刚体组件的相对运动对系统性能、寿命和稳定性产生重要影响。
因此,对多体系统的动力学行为进行分析和优化变得至关重要。
本文将探讨机械设计中的多体系统动力学分析与优化的关键问题,并提出一些解决方案。
一、多体系统的动力学分析多体系统是由相互关联的刚体或刚体组件构成的机械系统。
在进行动力学分析时,我们需要考虑以下几个方面:1. 刚体模型建立:基于机械系统的几何形状和运动特性,我们可以建立相应的刚体模型。
刚体模型可以是简单的几何形体,也可以是更为复杂的三维模型。
2. 运动学分析:通过解析几何和运动学方程,我们可以获得每个刚体的位置、速度和加速度等参数。
这些参数对于后续的动力学分析至关重要。
3. 动力学分析:根据牛顿定律和欧拉动力学方程,我们可以建立多体系统的动力学方程。
通过求解这些方程,我们可以得到刚体受力和受力矩的值,从而了解系统的受力情况。
4. 约束分析:在多体系统中,可能存在一些约束条件,如接触约束、几何约束和运动学约束等。
通过分析约束,我们可以确定系统自由度,并简化动力学模型。
5. 仿真与分析:利用计算机仿真技术,我们可以对多体系统进行动力学分析。
通过分析仿真结果,我们可以得出系统的运动规律、振动频率和应力分布等信息。
二、多体系统的优化在进行机械设计时,我们经常需要优化多体系统的性能和功能。
多体系统的优化可以包括以下几个方面:1. 尺寸优化:通过改变刚体的尺寸和形状,我们可以改善多体系统的性能。
如增加结构的刚度、降低质量、减小空间占用等。
2. 材料优化:选择合适的材料可以显著改善多体系统的性能。
通过选择耐磨材料、高强度材料或轻质材料等,我们可以提高系统的寿命、强度和效率。
3. 运动学优化:通过调整多体系统的运动规律,我们可以优化系统的性能。
如调整连杆机构的运动曲线、改变驱动方式等。
4. 控制策略优化:合理的控制策略可以改善多体系统的动力学性能。
多体系统动力学华中科技大学CAD中心张云清2010-1-6机械系统动力学计算机辅助分析多体系统动力学机械束一.机械铰链与约束方程二.运动学分析基础三.平面多体系统运动学四空间多体系统运动学四.空间多体系统运动学五.动力学分析方程两种形式六.平面多体系统动力学多体系动学七.空间多体系统动力学2010-1-6机械系统动力学计算机辅助分析机械铰链与约束方程•坐标系的分类•坐标系的变换•基本约束•平面铰链•空间铰链•自由度2010-1-6机械系统动力学计算机辅助分析•大地坐标系—惯性坐标系地坐标系坐标系•刚体固连坐标系—质心固连坐标系-主轴固连坐标系•铰链坐标系—铰链标架•力元坐标系—力元标架2010-1-6机械系统动力学计算机辅助分析cos sin θθ−⎡⎤=⎢sin cos A θθ⎥⎣⎦2010-1-6机械系统动力学计算机辅助分析基本约束•垂直1型约束•垂直2型约束2010-1-6机械系统动力学计算机辅助分析基本约束•平行1型约束•2平行型约束2010-1-6机械系统动力学计算机辅助分析平面铰链•转动铰链(Revolute Joint)•(Translational(Prismatic)Joint)平移铰链(Translational(Prismatic) Joint)2010-1-6机械系统动力学计算机辅助分析空间铰链•Spherical Joint)球铰(S h i l J i t•圆柱铰链(Cylindrical Joint)•Prismatic Joint平移铰链(Prismatic Joint)•转动铰链(Revolute Joint)2010-1-6机械系统动力学计算机辅助分析空间铰链•万向节(Universal (Hooke)Joint)向节(U i l(H k)J i •螺旋铰链(Screw Joint)2010-1-6机械系统动力学计算机辅助分析自由度•平面机构自由度2010-1-6机械系统动力学计算机辅助分析自由度•空间机构自由度2010-1-6机械系统动力学计算机辅助分析运动学分析基础•位置、速度、加速度方程•铰链的约束方程•驱动约束的方程运动学分析的计算方•运动学分析的计算方法2010-1-6机械系统动力学计算机辅助分析位置、速度、加速度方程•平面问题位置、速度、加速度方程2010-1-6机械系统动力学计算机辅助分析位置速度加速度方程位置、速度、加速度方程•空间问题位置、速度、加速度方程2010-1-6机械系统动力学计算机辅助分析位置、速度、加速度方程位置速度加速度方程•空间问题位置、速度、加速度方程2010-1-6机械系统动力学计算机辅助分析铰链的约束方程•Ground Constraints•Revolute Joint•Prismatic Joint2010-1-6机械系统动力学计算机辅助分析铰链的约束方程•Prismatic Joint2010-1-6机械系统动力学计算机辅助分析驱动约束的方程2010-1-6机械系统动力学计算机辅助分析运动学分析的计算方法2010-1-6机械系统动力学计算机辅助分析运动学分析的计算方法2010-1-6机械系统动力学计算机辅助分析平面运动学分析例子2010-1-6机械系统动力学计算机辅助分析平面运动学分析例子2010-1-6机械系统动力学计算机辅助分析平面运动学分析例子2010-1-6机械系统动力学计算机辅助分析平面运动学分析例子2010-1-6机械系统动力学计算机辅助分析平面运动学分析例子2010-1-6机械系统动力学计算机辅助分析平面运动学分析例子2010-1-6机械系统动力学计算机辅助分析•两自由度平面机械臂运动学分析•平面曲柄滑块机构运动学分析2010-1-6机械系统动力学计算机辅助分析•空间曲柄连杆机构运动学分析•空间四连杆机构运动学分析2010-1-6机械系统动力学计算机辅助分析动力学分析方程两种形式•最大量坐标形式—DAE方程•---ODE最小量坐标形式ODE方程•开闭环问题的动力学方程2010-1-6机械系统动力学计算机辅助分析最大量坐标形式—DAE方程2010-1-6机械系统动力学计算机辅助分析最大量坐标形式—DAE方程DAE2010-1-6机械系统动力学计算机辅助分析最小量坐标形式---ODE 方程2010-1-6机械系统动力学计算机辅助分析ODE 最小量坐标形式---ODE 方程2010-1-6机械系统动力学计算机辅助分析ODE 最小量坐标形式---ODE 方程2010-1-6机械系统动力学计算机辅助分析开闭环问题的动力学方程2010-1-6机械系统动力学计算机辅助分析开闭环问题的动力学方程2010-1-6机械系统动力学计算机辅助分析开闭环问题的动力学方程2010-1-6机械系统动力学计算机辅助分析平面多体系统动力学平面刚体的广义惯性力平面刚体的动力学方程受约束的平面刚体系统动力学方程受束学2010-1-6机械系统动力学计算机辅助分析平面刚体的广义惯性力cos sin sin cos A θθθθ−⎡⎤=⎢⎥⎣⎦sin cos cos sin A θθθθθ−−⎡⎤=⎢⎥−⎣⎦2010-1-6机械系统动力学计算机辅助分析平面刚体的广义惯性力2010-1-6机械系统动力学计算机辅助分析平面刚体的广义惯性力2010-1-6机械系统动力学计算机辅助分析平面刚体的广义惯性力2010-1-6机械系统动力学计算机辅助分析平面刚体的广义惯性力-质心固连坐标系2010-1-6机械系统动力学计算机辅助分析平面刚体的动力学方程2010-1-6机械系统动力学计算机辅助分析受约束的平面刚体系统动力学方程2010-1-6机械系统动力学计算机辅助分析受约束的平面刚体的动力学方程2010-1-6机械系统动力学计算机辅助分析受约束的平面刚体的动力学方程2010-1-6机械系统动力学计算机辅助分析受约束的平面刚体的动力学方程2010-1-6机械系统动力学计算机辅助分析受约束的平面刚体的动力学方程2010-1-6机械系统动力学计算机辅助分析。