线路保护培训材料
- 格式:doc
- 大小:3.82 MB
- 文档页数:40
断路器保护概述断路器保护主要包括:断路器失灵保护、自动重合闸、充电保护、死区保护、三相不一致保护和瞬时跟跳。
本文主要讨论3/2接线方式下的断路器保护。
(一)断路器保护装置的配置一般在双母线、单母线接线方式中,输电线路保护要发跳闸命令时只跳线路本端的一个断路器,重合闸自然也只重合这一个断路器,所以重合闸按保护配置是合理的。
在3/2接线方式中把失灵保护、自动重合闸、三相不一致保护、死区保护和充电保护做在一个装置内,这个装置即称为断路器保护。
(二)断路器失灵保护断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。
一般在220kV及以上断路器上配置断路器失灵保护功能,部分重要的110kV断路器也会配置失灵功能。
以下详细分析:3/2接线方式下的断路器失灵保护。
如图1所示,在3/2接线方式下,如果在线路2发生短路,线路保护跳开5021和5022断路器。
假如5021断路器失灵,为了短路点的熄弧,5021断路器的失灵保护应将500kV Ⅰ母上所有的断路器(图中5011、5031断路器)都跳开。
图1 500kV变电站3/2接线方式简图如果在500kVⅠ母上发生短路,母线保护动作跳母线上所有断路器。
假如5021断路器失灵,5021断路器的失灵保护应将5022断路器跳开,并发远方跳闸命令跳线路2对侧的断路器。
(如连接元件是变压器,则跳开变压器各侧断路器)所以边断路器的失灵保护动作后应该跳开边断路器所在母线上的所有断路器和中断路器并启动远方跳闸功能跳与边断路器相连的线路对侧断路器(或跳变压器各侧断路器)。
如果在线路2上发生短路,线路保护跳5011和5021两个断路器。
假如5022断路器失灵,5022断路器的失灵保护应将5023断路器跳开,并发远方跳闸命令跳2号主变各侧断路器,这样短路点才能熄弧。
电力系统线路保护基础知识培训电力系统线路保护基础知识培训随着电力系统的发展和电气设备的更新换代,电力系统的安全运行和设备的可靠性更加需要得到保证。
而电力系统的线路保护系统是电力系统的安全保护系统之一,它是指在电力系统中,对发生故障时的保护,而线路保护的作用是在线路发生故障时及时切除故障部分,以保护设备和系统不受损坏,同时避免对用户和周围地区造成不良影响。
因此,对于电力系统线路保护的基础知识的培训显得尤为重要。
一、线路保护系统的作用线路保护是电力系统的一项重要的保护工作,其作用主要有以下几个方面:1、故障分段线路保护能对电力系统中的故障进行分段处理,从而准确判断故障位置,并对故障部分进行隔离和停电保护,以防止故障扩大。
2、保护设备线路保护能够及时切除故障部分,避免通过故障部分流过的大电流对线路和设备造成损坏。
3、保护系统稳定工作线路保护系统对电网的运行稳定性具有重要的保障作用,能够避免电网的不稳定和故障导致的电力停供。
4、确保用电安全线路保护能够及时切除电源的故障部分,保护用电设备和用户的安全,避免发生火灾和人身伤害等情况。
二、线路保护系统的组成线路保护系统的组成主要包括保护主要、接线、CT、PT 等装置。
1、保护主要保护主要是线路保护系统中的核心部分,主要由保护元件和信号处理电路、自动转换电路、报警灯等组成。
不同类型的保护主要有不同的保护功能,例如过流保护、地故保护、短路保护等。
2、接线接线主要负责把外部信号导入到保护主要中,它是连接保护主要和外部线路的关键部分。
一般来说,接线具备耐高压、耐热、抗干扰、可靠性高等特点,以确保整个线路保护系统的安全可靠运行。
3、CT、PTCT和PT是线路保护系统中的核心部件,它们主要负责保护主要对电流和电压信号进行采集和处理,然后将其传递给保护主要进行进一步的信号处理和判断。
CT和PT也是其余通信、控制等保护元件的信号来源。
三、常见故障及处理方法在电力系统的运行中,常常会发生各种故障和异常情况,如过流故障、短路故障、地故障等。
继电保护专业实现对继电保护系统的运行维护,是保障电力系统安全稳定运行的主要防线之一,继电保护系统的任务是通过电流互感器、电压互感器及相应的状态量采集装置(开关量输入等),对一次系统的运行状态(正常运行、系统故障、设备异常、系统振荡等)进行正确的分析与反应,并根据实现制定的控制策略(定值、元件特性)进行相应的处理(信号、调节、跳闸等)。
要了解继电保护系统运行特性,重点就要完成上述内容中各环节的分析与理解,并且正确把握运行维护方法。
今天的主要内容是线路保护的讲座,主要内容有两个部分,一是线路保护的基本工作原理,主要针对RCS-931AM、CSC-103B、RCS-901A、CSL-101B装置相关的原理进行简要的阐述,在原理讲解过程中完成设备的缺陷处理及事故分析等内容;二是系统故障分析与故障录波图的分析,丰富大家通过故障录波分析保护动作行为的能力,希望大家在课后认真自学,提高大家判断故障的能力,对录波图正确阅读的基础是大家对向量分析方法的熟悉,这是继电保护专业人员有效开展工作的重要工具。
在此之前,对必要的知识储备进行简单的回顾。
一、向量分析方法不同电器元件电流与电压的相位关系,正是由于这一特性在电力系统的分析中的综合电流、电压向量分析才变得异常复杂。
(1)向量的超前与滞后本讲座中,提及A向量超前B向量,指以B向量为参考,A向量逆时针旋转相应的角度;A向量滞后B向量,指以B向量为参考,A向量顺时针旋转相应的角度;(2)电阻性元件电阻元件的电流与其两端电压同相位,从波形上来讲电流与电压具有相同的变化方向,仅在幅值上有所差异。
在向量图中分析,电流向量与电压向量方向相同,仅有幅值的差异。
(3)电感性元件电感元件的电流滞后其两端电压90°,从波形上来讲以电压从负到正的过零点为参考向后看,电流从负到正的过零点滞后电压90°(π/2)。
在向量图中分析,以电压向量为参考,电流向量顺时针旋转90°。
(4)电容性元件电容元件的电流超前其两端电压90°,从波形上来讲以电压从负到正的过零点为参考向后看,电流从负到正的过零点滞后电压270°(3π/2)。
在向量图中分析,以电压向量为参考,电流向量逆时针旋转90°(顺时针旋转270°)。
(5)电阻电感性元件以电压为参考向量,电流滞后电压的角度在0°--90°之间;夹角大小取决于电阻分量与电感分量的比值;(6)电阻电容性元件以电压为参考向量,电流超前电压的角度在0—90°之间;夹角大小取决与电阻分量与电容分量的比值;(7)电容与电感串联根据容性分量与感性分量的大小不同,综合电抗呈现容性或感性;在这种配合中,系统中最为典型的应用是串联谐振和并联谐振(串联谐振的特征、并联谐振的特征)比如专用闭锁式通道中的阻波器是并联谐振的应用、耦合电容器与结合滤波器是串联谐振的典型应用,另外在抗干扰技术中谐振的应用也非常广泛,用于短路或阻断需要消除的信号。
另外需要指出的是,在系统中谐振的发生也是有很大危害的,如小接地电流系统中有消弧线圈接地补偿电容电流时,发生全补偿就是并联谐振,会产生很高的谐振过电压;还有铁磁谐振过电压易造成电压互感器的爆炸。
二、故障分析继电保护的任务就是反应系统的不正常工作状态并进行相应的处理,所以在分析继电保护动作状况时必须要正确分析系统中故障发生时产生的电气特性。
所以在了解向量的基础上需要进行故障分析的简单回顾。
(1)学习典型故障分析的目的:继电保护按采集量划分,大致分为两类:一类是电量保护,如电流保护、电压保护、距离保护、纵联保护等;另一类是非电量保护,如非全相保护、变压器瓦斯保护等。
对于电量保护直接反映一次电气量的变化,并最终作用于一次设备,以实现对电力系统一次设备的控制与保护。
所以说必须掌握典型故障的分析方法以及各种故障情况下电气量的变化规律;这对我们今后工作中分析故障、分析继电保护动作行为(是正确动作、拒动还是误动)都是非常重要的。
(2)电力系统典型故障的类型:1)单相接地短路故障用K(1)表示2)两相短路故障用K(2)表示3)三相短路故障用K(3)表示4)两相接地短路故障用K(1.1)表示5)单相断线故障(两相运行)用F(1.1)表示6)两相断线故障(单相运行)用F(1)表示其中短路故障称之为横向故障,断线故障称之为纵向故障。
(3)电力系统典型故障分析的一般方法:1)选取特殊相进行分析。
也就是说选取三相中与其他两相特征不一样的相别进行分析。
例如:A相接地短路故障,A相有故障电流,B、C两相没有,则A相为特殊相,所以用A相进行分析;AB两相短路故障及AB两相接地短路故障,A、B两相有故障电流,C相没有,则C相为特殊相,所以用C相进行分析;A相断线故障,A相有没电流,B、C两相有负荷,则A相为特殊相,所以用A相进行分析;AB两相断线故障,A、B两相没有电流,C相有负荷电流,则C相为特殊相,所以用C相进行分析。
其他相别同理。
2)由故障特征确定故障边界条件,其实边界条件就是等式或者为零的量,找边界条件就是根据故障的类型判断相等的电量和为零的电量。
例如:A相接地短路故障,A相有故障电流,A 相电压为零,B、C两相没有故障电流,则边界条件为:IKB=IKC=0;UKA=0。
3)由故障边界条件,通过对称分量法求取特殊相各序分量。
首先介绍一下对称分量法的基本公式:如下图所示:当系统发生不对称故障时,通过对称分量都可以将不对称的故障量转换为三个对称分量的叠加。
这样做的目的是便于我们分析、计算,将不对称量的分析转换成对称系统的分析,这样可以用一相进行分析后通过移向因子进行旋转后得到三相的分量。
其互换公式如下:FA1=1/3(FA+a FB+a2FC)FA2=1/3(FA+a2FB+a FC)FA0=1/3(FA+FB+FC)FA =FA1+FA2+FA0FB =FB1+FB2+FB0=a2FA1+a FA2+FA0)FC =FC1+FC2+FC0=a FA1+a2FA2+FA0)式中 a表示逆时针旋转120o也即向超前方向旋转120o, a2表示逆时针旋转240o也即向超前方向旋转240o这六个公式在我们的短路故障分析中经常用到的,首先需要通过它将全电压、全电流分解成三个对称的相序分量进行分析、计算;然后需要通过它将计算结果还原为全电压、全电流。
因此必须熟练掌握。
下面以A相接地短路故障为例,介绍序分量的求取方法边界条件为:IKB=IKC=0;UKA=0。
则:IKA1=1/3(IKA+aIKB+a2IKC)IKA2=1/3(IKA+a2IKB+aIKC)IKAo=1/3(IKA+IKB+IKC)又因IKB=IKC=0所以IKA1=IKA2=IKAo=1/3IKAUKA= UKA1+UKA2+UKAo=04)由各序分量关系,绘制特殊相序网图。
首先介绍一下序网图的绘制方法:A在序网图中,只有正序网络图包含电源电势,负、零序网络图中没有电源电势。
这是因为系统正常运行时只有正序分量,当发生不对称故障时才产生负、零序电压电流,也就是说负、零序电压电流是由故障点产生的。
B 在序网图中,正、负序阻抗画到短路点结束,负荷侧阻抗不画;这是因为正、负序的短路通路由短路点到电源构成闭合回路;而零序阻抗要画到变压器接地点结束,这是因为零序的短路通路由短路接地点到变压器接地点构成闭合回路;变压器三角侧以后零序阻抗不画,因为三角形接线方式将零序分量滤去了使它不能往下级传变,FA-FB=(FA1+FA2+FA0)-(FB1+FB2+FB0)= (FA1+FA2)-(FB1+FB2);变压器星型侧中性点不接地,其以后零序阻抗不画,因为星型侧中性点不接地对零序来说相当于无群大阻抗。
(如下图示)以A相接地短路故障为例,介绍序分量的求取方法由第三步各序分量关系可看出,A相各序电流相等,各序电压相加为零;由于各序分量由故障量中分解所得,所以网络最终要合成一个闭和回路,通过上述条件可得只有各序网络头尾串联可实现。
如下图示:5)由序网图计算短路点各序分量向量值及保护安装处各序分量向量值。
例如A相接地短路故障,短路点各序分量计算:IKA1= IKA2=IKAo=E/(X∑1+ X∑2+X∑0)UKA1= IKA1*(X∑2+X∑0)UKA2=—IKA2* X∑2=—IKA1* X∑2UKA0=—IKA0* X∑0=—IKA1* X∑2保护安装处各序分量计算:对于单端电源网络保护安装处各序分量电流与故障点各序分量电流相等IKA1M= IKA1IKA2M= IKA2IKAoM= IKA0对于双端电源网络保护安装处各序分量电流等于故障点各序分量电流乘以M、N 两侧的阻抗分配系数IKA1M = IKA1* X1N/(X1M+X1N)IKA2M = IKA2* X2N/(X2M+X2N)IKAoM = IKA0* X0N/(X0M+X0N)IKA1N = IKA1-IKA1MIKA2N = IKA2-IKA2MIKAoN = IKA0-IKA0M保护安装处各序分量电压等于故障点各序分量电压加上各序保护安装处至故障点的电压降(请注意,保护安装处各序电压等于故障点各序电压加上各序电流在相应序阻抗上的压降这是成立的,但保护安装处的电压并不等于故障点的电压加上电流在线路上的压降,见后续分析)。
UKA1M = UKA1+ IKA1M*XLM1UKA2M = UKA2+IKA1M*XLM2UKA0M = UKA0+IKA0M*XLMUKA1N = UKA1+ IKA1N*XLN1UKA2N = UKA2+IKA1N*XLN2UKA0N = UKA2+IKA0N*XLN6)由各序分量,通过对称分量法计算各相故障点故障电流、故障电压及保护安装处故障电流、故障电压。
采用对称分量法分析可以可出结论:短路点正序电压最低,越往电源端走正序电压越高,电源点正序电压最高等于电源电势。
短路点负序电压最高,越往电源端走负序电压越低,电源点负序电压最低等于零。
短路点零序电压最高,越往主变接地点走零序电压越低,主变接地点零序电压最低等于零。
具体的分析方法是:在通过序网图分析可以看出,负序分量电流与零序分量电流与正序电流的方向是相反的,从宏观的角度来讲,电流的流向总是从高电位点流向低电位点的,故而直观的判断必然是故障点的零序电压、负序电压最高。
从复合序网图也可以看出,负序和零序分量仅在故障点存在。
7)通过计算结果绘制向量图以供分析。
单相接地短路K(1)故障分析单相接地短路故障在上面介绍分析方法时已详细介绍,在此不在重复,现在着重介绍一下单相接地短路故障的特点:1、出现负、零序分量;2、序网构成中正、负、零序分量串联,也即在正序的基础上串入了X∑2+X∑0阻抗;3、接地故障必然产生零序分量;4、不对称故障必然产生负序分量;5、短路点非故障相电流为零,对于单电源网络保护安装处非故障相电流也为零,对于双电源网络当各序分量阻抗分配系数X1N /(X1M+X1N)=X2N/(X2M+X2N)=X0N/(X0M+X0N)时保护安装处非故障相电流为零;不等时不为零。