高考数学专题24等比数列及其前n项和热点题型和提分秘籍理
- 格式:doc
- 大小:382.50 KB
- 文档页数:21
等比数列及其前n 项和【考纲说明】(1)理解的等比数列的概念,掌握等比数列的性质; (2)探索并掌握等比数列的通项公式和前n 项和公式;(3)体会等比数列与指数函数的关系,并能够运用指数函数的性质解决数列问题;【知识梳理】考点一:等比数列的相关概念 二、等比数列的概念如果一个数列从第2项起,每一项与它的前一项的比值等于同一个常数,则这个数列称为 等比数列,这个常数称为等比数列的公比.通常用字母q 表示。
2、等比中项(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A = 注意:同号的两个数才有等比中项,并且它们的等比中项有两个(它们互为相反数) (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅3、等比数列的通项公式若等比数列{}n a 的首项是1a ,公差是q ,则()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,推广:n mn m n n n m m a a a qq q a --=⇔=⇔= 4、等比数列的前n 项和公式等比数列的前n 项和的公式: (1)当1q =时,1nS na = (2)当1q ≠时,()11111n n n a q a a qS qq--==--11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的通项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++ ).考点二:等比数列的性质 1、通项之间的性质(1)对任何*,m n N ∈,在等比数列{}n a 中,有n mn m a a q-=特别的,当1m =时,便得到等比数列的通项公式。
一、若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。
【高频考点解读】1.理解等比数列的概念,掌握等比数列的通项公式及前n 项和公式;2.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题;3.了解等比数列与指数函数的关系. 【热点题型】题型一 等比数列中基本量的求解【例1】 (1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( ) A.152 B.314 C.334 D.172(2)在等比数列{a n }中,a 4=2,a 7=16,则a n =________.(3)在等比数列{a n }中,a 2+a 5=18,a 3+a 6=9,a n =1,则n =________. 【答案】 (1)B (2)2n -3 (3)6【提分秘籍】等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.【举一反三】在等比数列{a n }中,a 2-a 1=2,且2a 2为3a 1和a 3的等差中项,求数列{a n }的首项、公比及前n 项和.题型二 等比数列的性质及应用【例2】 (1)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5 C .6 D .7(2)等比数列{a n }的首项a 1=-1,前n 项和为S n ,若S 10S 5=3132,则公比q =________.【答案】 (1)B (2)-12【提分秘籍】(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.【举一反三】(1)已知x ,y ,z ∈R ,若-1,x ,y ,z ,-3成等比数列,则xyz 的值为( ) A .-3 B .±3 C .-3 3 D .±3 3(2)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6等于( )A .5 2B .7C .6D .4 2 【答案】 (1)C (2)A 【解析】题型三 等比数列的判定与证明【例3】 已知数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),且a n +S n =n . (1)设c n =a n -1,求证:{c n }是等比数列; (2)求数列{b n }的通项公式. (1)证明 ∵a n +S n =n ,① ∴a n +1+S n +1=n +1.② ②-①得a n +1-a n +a n +1=1, ∴2a n +1=a n +1, ∴2(a n +1-1)=a n -1, ∴a n +1-1a n -1=12,∴{a n -1}是等比数列.又a 1+a 1=1,∴a 1=12, ∵首项c 1=a 1-1,∴c 1=-12, 公比q =12.又c n =a n -1,∴{c n }是以-12为首项,以12为公比的等比数列.(2)解 由(1)可知c n =⎝⎛⎭⎫-12·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n ,∴a n =c n +1=1-⎝⎛⎭⎫12n. ∴当n ≥2时,b n =a n -a n -1=1-⎝⎛⎭⎫12n -⎣⎢⎡⎦⎥⎤1-⎝⎛⎭⎫12n -1=⎝⎛⎭⎫12n -1-⎝⎛⎭⎫12n =⎝⎛⎭⎫12n . 又b 1=a 1=12代入上式也符合,∴b n =⎝⎛⎭⎫12n .【提分秘籍】证明数列{a n }是等比数列常用的方法:一是定义法,证明a na n -1=q (n ≥2,q 为常数);二是等比中项法,证明a 2n =a n -1·a n +1.若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法.【举一反三】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.【高考风向标】【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D. 140,0a d dS <> 【答案】B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴d a d a d a d a 35)7)(2()3(11121-=⇒++=+, ∴d d a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .【答案】21n -1(1)1221112n nn n a q S q --===---.【高考押题】1.在等比数列{a n }中,a n >0,且a 1·a 10=27,log 3a 2+log 3a 9=( )A .9B .6C .3D .2【答案】 C【解析】 因为a 2a 9=a 1a 10=27,所以log 3a 2+log 3a 9=log 3a 2a 9=log 327=3. 2.记等比数列{a n }的前n 项积为Ⅱn ,若a 4·a 5=2,则Ⅱ8= ( )A .256B .81C .16D .1【答案】 C【解析】 依题意得Ⅱ8=(a 1a 8)(a 2a 7)(a 3a 6)(a 4a 5)=(a 4a 5)4=24=16.3.在正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7= ( )A.56B.65C.23D.32【答案】 D【解析】 设公比为q ,则由题意知0<q <1,由⎩⎪⎨⎪⎧a 2·a 8=a 4·a 6=6,a 4+a 6=5,得a 4=3,a 6=2, 所以a 5a 7=a 4a 6=32.4.已知等比数列{a n }的前n 项和为S n ,a 4-a 1=78,S 3=39,设b n =log 3a n ,那么数列{b n }的前10项和为( )A .log 371 B.692C .50D .55【答案】 D 【解析】5.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *),且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是 ( )A .-15B .-5C .5D.15【答案】 B【解析】 由log 3a n +1=log 3a n +1(n ∈N *),得log 3a n +1-log 3a n =1且a n >0,即log 3a n +1a n =1,解得a n +1a n=3,所以数列{a n }是公比为3的等比数列. 因为a 5+a 7+a 9=(a 2+a 4+a 6)q 3, 所以a 5+a 7+a 9=9×33=35.所以log 13(a 5+a 7+a 9)=log 1335=-log 335=-5.6.数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________. 【答案】 1【解析】 设{a n }公差为d ,则a 3=a 1+2d ,a 5=a 1+4d , 所以(a 1+2d +3)2=(a 1+1)(a 1+4d +5), 解得d =-1,所以q =a 3+3a 1+1=a 1+2d +3a 1+1=a 1+1a 1+1=1.7.设数列{a n }是各项均为正数的等比数列,若a 1·a 2n -1=4n ,则数列{a n }的通项公式是______. 【答案】 a n =2n【解析】 设数列{a n }的公比为q ,则由题意知a 1>0,q >0.由a 1·a 2n -1=4n 得a 1·a 1q 2n -2=4n ,即(a 1q n-1)2=(2n )2,所以a 1q n -1=2n ,所以数列{a n }的通项公式为a n =2n .8.已知各项均为正数的等比数列{a n }的前n 项和为S n ,若S 4=3S 2,a 3=2,则a 7=________.【答案】 8 【解析】9.已知{a n }是等差数列,满足a 1=3,a 4=12,数列{b n }满足b 1=4,b 4=20,且{b n -a n }为等比数列.(1)求数列{a n }和{b n }的通项公式; (2)求数列{b n }的前n 项和.【解析】 (1)设等差数列{a n }的公差为d ,由题意得 d =a 4-a 13=12-33=3.所以a n =a 1+(n -1)d =3n (n ∈N *). 设等比数列{b n -a n }的公比为q ,由题意得 q 3=b 4-a 4b 1-a 1=20-124-3=8,解得q =2.所以b n -a n =(b 1-a 1)q n -1=2n -1.从而b n =3n +2n -1(n ∈N *).(2)由(1)知b n =3n +2n -1(n ∈N *).数列{3n }的前n 项和为32n (n +1),数列{2n -1}的前n 项和为1×1-2n 1-2=2n -1.所以数列{b n }的前n 项和为32n (n +1)+2n -1.10.已知在正项数列{a n }中,a 1=2,点A n (a n ,a n +1)在双曲线y 2-x 2=1上,数列{b n }中,点(b n ,T n )在直线y =-12x +1上,其中T n 是数列{b n }的前n 项和.(1)求数列{a n }的通项公式; (2)求证:数列{b n }是等比数列.:。
1.理解等比数列的概念2.掌握等比数列的通项公式与前n 项和公式3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题 4.了解等比数列与指数函数的关系热点题型一 等比数列的基本运算例1、已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18。
(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由。
故数列{a n }的通项公式为a n =3(-2)n -1。
(2)由(1)有S n =3·[1- -2 n ]1- -2 =1-(-2)n 。
若存在n ,使得S n ≥2 013,则1-(-2)n ≥2 013,即(-2)n ≤-2 012。
当n 为偶数时,(-2)n >0.上式不成立;当n 为奇数时,(-2)n =-2n ≤-2 012, 即2n ≥2 012,则n ≥11。
综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}。
【提分秘籍】1.对于等比数列的有关计算问题,可类比等差数列问题进行,在解方程组的过程中要注意“相除”消元的方法,同时要注意整体代入(换元)思想方法的应用。
2.在涉及等比数列前n 项和公式时要注意对公比q 是否等于1进行判断和讨论。
【举一反三】设{a n }是由正数组成的等比数列,S n 为其前n 项和。
已知a 2a 4=1,S 3=7,则S 5=__________。
【答案】314热点题型二 等比数列的判定与证明例2、已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n (a n -3n +21),其中λ为实数,n 为正整数。
(1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论。
四、等比数列1.等比数列的定义如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列就叫作等比数列,这个常数叫作等比数列的公比,通常用字母q 表示(0q ≠).递推式表示为1n na q a +=或1(2)nn a q n a -=≥. 例如:数列{}n a 满足12n n a a +=,则数列{}n a 是公比为2的等比数列.特别注意:等比数列中任何一项都不为0,公比0q ≠,若一个数列是常数列,则此数列一定是等差数列,除了0,0,0,L 这样的常数列之外,其余的也都是等比数列. 注:10a >,1q >时,{}n a 是递增的等比数列;10a >,01q <<时,{}n a 是递减的等比数列; 10a <,01q <<时,{}n a 是递增的等比数列; 10a <,1q >时,{}n a 是递减的等比数列; 1q =时,{}n a 是非零常数列; 0q <时,{}n a 是摆动数列.2.等比中项若三个数a ,G ,b 成等比数列,则G 叫作a 与b 的等比中项. 此时2G ab =例如:2和8的等比中项为4±. 注:①一个等比数列,从第2项起,每一项都是它的前后两项的等比中项,即212n n n a a a ++=,每一项都是前后距离相同两项的等比中项,即2n n m n m a a a -+=.②当三个数成等比数列时,当四个数成等比数列时,常设这3.等比数列的通项公式等比数列{}n a 的首项为1a ,公比为q ,则11n n a a q -=.4.等比数列的性质(1)等比数列{}n a 的第m 项为m a ,则n mn m a a q -=.★例如:7652812310a a q a q a q a q -=====L .(2)若m n p q +=+,则m n p q a a a a =,若2m n p +=,则2m n p a a a =.★例如:2192837465a a a a a a a a a ====,12132n n n a a a a a a --===L .(3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,L 组成公比为mq 的等比数列.例如:135721,,,,,,n a a a a a -L L 组成公比为2q 的等比数列;51015205,,,,,,n a a a a a L L 组成公比为5q 的等比数列.(4){}n a 是公比为q 的等比数列,则{}n ka 也是等比数列,公比为q . (5){}n a ,{}n b 都是等比数列,则{}n ka ,{||}n a ,2{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列.5.判断一个数列是等比数列的方法 (1)定义法:1n na q a +=(常数).★ (2)等比中项法:212+=n n n a a a +或211-+=n n n a a a .★ (3)通项公式法:11=n n a a q-(公比为q ).(4)前n 项和公式法:(0,0)nn S Aq A A q =-≠≠.练习题:答案解析:五、等比数列的前n项和1.等比数列前n项和公式注意:应用求和公式时,要先看q是否等于1,必要时需讨论.2.和的有关性质等比数列{}n a ,公比为q ,前n 项和为n S ,那么:(1)数列232,,,k k k k k S S S S S --L 是等比数列,公比为kq .★ (2)m nm n m n n m S S q S S q S +=+=+.(3)S 奇表示奇数项的和,S 偶表示偶数项的和,则有:①当项数为偶数2n 时,S q S =偶奇;②当项数为奇数21n +时,1S a q S -=奇偶.练习题:答案解析:31263585659SSS S∴==.答案:D数学浪子整理制作,侵权必究。
1.等比数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,通常用字母q 表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1.3.等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 4.等比数列的常用性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n 仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n , 当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n . 【知识拓展】 等比数列{a n }的单调性(1)满足⎩⎪⎨⎪⎧ a 1>0,q >1或⎩⎪⎨⎪⎧a 1<0,0<q <1时,{a n }是递增数列.(2)满足⎩⎪⎨⎪⎧ a 1>0,0<q <1或⎩⎪⎨⎪⎧a 1<0,q >1时,{a n }是递减数列.(3)当⎩⎪⎨⎪⎧a 1≠0,q =1时,{a n }为常数列.(4)当q <0时,{a n }为摆动数列. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.( × ) (2)G 为a ,b 的等比中项⇔G 2=ab .( × )(3)如果数列{a n }为等比数列,b n =a 2n -1+a 2n ,则数列{b n }也是等比数列.( × ) (4)如果数列{a n }为等比数列,则数列{ln a n }是等差数列.( × )1.(教材改编)已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12答案 D解析 由题意知q 3=a 5a 2=18,∴q =12.2.(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7等于( ) A .21 B .42 C .63 D .84 答案 B解析 设等比数列{a n }的公比为q ,则由a 1=3,a 1+a 3+a 5=21,得3(1+q 2+q 4)=21,解得q 2=-3(舍去)或q 2=2,于是a 3+a 5+a 7=q 2(a 1+a 3+a 5)=2×21=42,故选B. 3.设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6等于( ) A .31 B .32 C .63 D .64 答案 C解析 根据题意知,等比数列{a n }的公比不是-1.由等比数列的性质,得(S 4-S 2)2=S 2·(S 6-S 4),即122=3×(S 6-15),解得S 6=63.故选C.4.(教材改编)在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________. 答案 27,81解析 设该数列的公比为q ,由题意知,243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81.5.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=________.答案 -11解析 设等比数列{a n }的公比为q , ∵8a 2+a 5=0,∴8a 1q +a 1q 4=0. ∴q 3+8=0,∴q =-2,∴S 5S 2=a 1(1-q 5)1-q ·1-q a 1(1-q 2)=1-q 51-q 2=1-(-2)51-4=-11.题型一 等比数列基本量的运算例1 (1)(2015·课标全国Ⅱ)已知等比数列{a n }满足a 1=14,a 3a 5=4(a 4-1),则a 2等于( )A .2B .1 C.12 D.18(2)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S na n =________.答案 (1)C (2)2n -1解析 (1)由{a n }为等比数列,得a 3a 5=a 24,又a 3a 5=4(a 4-1),所以a 24=4(a 4-1), 解得a 4=2.设等比数列{a n }的公比为q , 则由a 4=a 1q 3,得2=14q 3,解得q =2,所以a 2=a 1q =12.故选C.(2)∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧a 1+a 1q 2=52, ①a 1q +a 1q 3=54, ②由①除以②可得1+q 2q +q 3=2,解得q =12,代入①得a 1=2,∴a n =2×(12)n -1=42n ,∴S n =2×[1-(12)n ]1-12=4(1-12n ),∴S na n =4(1-12n )42n=2n -1. 思维升华 等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)可迎刃而解.(1)设{a n }是由正数组成的等比数列,S n 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5等于( )A.152B.314C.334D.172(2)(2015·湖南)设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 (1)B (2)3n -1解析 (1)显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1,a 1(1-q 3)1-q =7,解得⎩⎪⎨⎪⎧ a 1=4,q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 1(1-q 5)1-q=4(1-125)1-12=314.(2)由3S 1,2S 2,S 3成等差数列知,4S 2=3S 1+S 3, 可得a 3=3a 2,所以公比q =3, 故等比数列通项a n =a 1q n -1=3n -1.题型二 等比数列的判定与证明例2 设数列{a n }的前n 项和为S n ,已知a 1=1,S n +1=4a n +2. (1)设b n =a n +1-2a n ,证明:数列{b n }是等比数列; (2)求数列{a n }的通项公式. (1)证明 由a 1=1及S n +1=4a n +2, 得a 1+a 2=S 2=4a 1+2. ∴a 2=5,∴b 1=a 2-2a 1=3.又⎩⎪⎨⎪⎧S n +1=4a n +2, ①S n =4a n -1+2(n ≥2), ② 由①-②,得a n +1=4a n -4a n -1(n ≥2), ∴a n +1-2a n =2(a n -2a n -1)(n ≥2). ∵b n =a n +1-2a n ,∴b n =2b n -1(n ≥2), 故{b n }是首项b 1=3,公比为2的等比数列. (2)解 由(1)知b n =a n +1-2a n =3·2n -1,∴a n +12n +1-a n 2n =34, 故{a n 2n }是首项为12,公差为34的等差数列. ∴a n 2n =12+(n -1)·34=3n -14, 故a n =(3n -1)·2n -2.引申探究若将本例中“S n +1=4a n +2”改为“S n +1=2S n +(n +1)”,其他不变,求数列{a n }的通项公式. 解 由已知得n ≥2时,S n =2S n -1+n . ∴S n +1-S n =2S n -2S n -1+1, ∴a n +1=2a n +1,∴a n +1+1=2(a n +1),n ≥2,(*)又a 1=1,S 2=a 1+a 2=2a 1+2,即a 2+1=2(a 1+1), ∴当n =1时(*)式也成立,故{a n +1}是以2为首项,以2为公比的等比数列, ∴a n +1=2·2n -1=2n ,∴a n =2n -1.思维升华 (1)证明一个数列为等比数列常用定义法与等比中项法,其他方法只用于选择题、填空题中的判定;若证明某数列不是等比数列,则只要证明存在连续三项不成等比数列即可.(2)利用递推关系时要注意对n =1时的情况进行验证.已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明:{a n +12}是等比数列,并求{a n }的通项公式;(2)证明:1a 1+1a 2+…+1a n <32.证明 (1)由a n +1=3a n +1,得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32(1-13n )<32, 所以1a 1+1a 2+…+1a n <32.题型三 等比数列性质的应用例3 (1)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.(2)设等比数列{a n }的前n 项和为S n ,若S 6S 3=12,则S 9S 3=________.答案 (1)50 (2)34解析 (1)因为a 10a 11+a 9a 12=2a 10a 11=2e 5, 所以a 10a 11=e 5.所以ln a 1+ln a 2+…+ln a 20 =ln(a 1a 2…a 20)=ln[(a 1a 20)·(a 2a 19)·…·(a 10a 11)] =ln(a 10a 11)10=10ln(a 10a 11) =10ln e 5=50ln e =50.(2)方法一 ∵S 6∶S 3=1∶2,∴{a n }的公比q ≠1. 由a 1(1-q 6)1-q ÷a 1(1-q 3)1-q=12,得q 3=-12,∴S 9S 3=1-q 91-q 3=34. 方法二 ∵{a n }是等比数列,且S 6S 3=12,∴公比q ≠-1,∴S 3,S 6-S 3,S 9-S 6也成等比数列,即(S 6-S 3)2=S 3·(S 9-S 6), 将S 6=12S 3代入得S 9S 3=34.思维升华 等比数列常见性质的应用等比数列性质的应用可以分为三类:(1)通项公式的变形;(2)等比中项的变形;(3)前n 项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.(1)已知在等比数列{a n }中,a 1a 4=10,则数列{lg a n }的前4项和等于( )A .4B .3C .2D .1(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558答案 (1)C (2)A解析 (1)前4项和S 4=lg a 1+lg a 2+lg a 3+lg a 4=lg(a 1a 2a 3a 4),又∵等比数列{a n }中,a 2a 3=a 1a 4=10, ∴S 4=lg 100=2.(2)因为a 7+a 8+a 9=S 9-S 6,且公比不等于-1,在等比数列中,S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以有8(S 9-S 6)=(-1)2,S 9-S 6=18,即a 7+a 8+a 9=18.13.分类讨论思想在等比数列中的应用典例 (12分)已知首项为32的等比数列{a n }的前n 项和为S n (n ∈N *),且-2S 2,S 3,4S 4成等差数列.(1)求数列{a n }的通项公式; (2)证明:S n +1S n ≤136(n ∈N *).思想方法指导 (1)利用等差数列的性质求出等比数列的公比,写出通项公式; (2)求出前n 项和,根据函数的单调性证明. 规范解答(1)解 设等比数列{a n }的公比为q , 因为-2S 2,S 3,4S 4成等差数列,所以S 3+2S 2=4S 4-S 3,即S 4-S 3=S 2-S 4, 可得2a 4=-a 3,于是q =a 4a 3=-12.[2分]又a 1=32,所以等比数列{a n }的通项公式为a n =32×⎝⎛⎭⎫-12n -1=(-1)n -1·32n .[3分] (2)证明 由(1)知,S n =1-⎝⎛⎭⎫-12n , S n +1S n=1-⎝⎛⎭⎫-12n +11-⎝⎛⎭⎫-12n=⎩⎨⎧2+12n (2n +1),n 为奇数,2+12n(2n-1),n 为偶数.[6分]当n 为奇数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 1+1S 1=136.[8分]当n 为偶数时,S n +1S n 随n 的增大而减小,所以S n +1S n ≤S 2+1S 2=2512.[10分]故对于n ∈N *,有S n +1S n ≤136.[12分]1.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7等于( ) A .4 B .6 C .8 D .8-4 2答案 C解析 在等比数列中,a 3a 7=a 25,a 2a 6=a 3a 5,所以a 23+2a 2a 6+a 3a 7=a 23+2a 3a 5+a 25=(a 3+a 5)2=(2-1+2+1)2=(22)2=8.2.(2016·珠海模拟)在等比数列{a n }中,若a 1<0,a 2=18,a 4=8,则公比q 等于( ) A.32 B.23 C .-23D.23或-23答案 C解析 由⎩⎪⎨⎪⎧a 1q =18,a 1q 3=8解得⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23. 又a 1<0,因此q =-23.3.在正项等比数列{a n }中,已知a 1a 2a 3=4,a 4a 5a 6=12,a n -1a n a n +1=324,则n 等于( ) A .12 B .13 C .14 D .15答案 C解析 设数列{a n }的公比为q ,由a 1a 2a 3=4=a 31q 3与a 4a 5a 6=12=a 31q 12, 可得q 9=3,a n -1a n a n +1=a 31q3n -3=324, 因此q 3n -6=81=34=q 36,所以n =14,故选C.*4.(2015·福建)若a ,b 是函数f (x )=x 2-px +q (p >0,q >0)的两个不同的零点,且a ,b ,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p +q 的值等于( ) A .6 B .7 C .8 D .9 答案 D解析 由题意知:a +b =p ,ab =q ,∵p >0,q >0,∴a >0,b >0.在a ,b ,-2这三个数的6种排序中,成等差数列的情况有a ,b ,-2;b ,a ,-2;-2,a ,b ;-2,b ,a ;成等比数列的情况有a ,-2,b ;b ,-2,a .∴⎩⎪⎨⎪⎧ ab =4,2b =a -2或⎩⎪⎨⎪⎧ ab =4,2a =b -2,解得⎩⎪⎨⎪⎧ a =4,b =1或⎩⎪⎨⎪⎧a =1,b =4.∴p =5,q =4,∴p +q =9,故选D.5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第二天走了( )A .192里B .96里C .48里D .24里 答案 B解析 设等比数列{a n }的首项为a 1,公比为q =12,依题意有a 1(1-126)1-12=378,解得a 1=192,则a 2=192×12=96,即第二天走了96里,故选B.6.(2016·铜仁质检)在由正数组成的等比数列{a n }中,若a 3a 4a 5=3π,则sin(log 3a 1+log 3a 2+…+log 3a 7)的值为( ) A.12 B.32C .1D .-32答案 B解析 因为a 3a 4a 5=3π=a 34,所以a 4=π33. log 3a 1+log 3a 2+…+log 3a 7=log 3(a 1a 2…a 7)=log 3a 74=7log 3π33=7π3, 所以sin(log 3a 1+log 3a 2+…+log 3a 7)=32. 7.设S n 为等比数列{a n }的前n 项和,已知3S 3=a 4-2,3S 2=a 3-2,则公比q =________. 答案 4解析 因为⎩⎪⎨⎪⎧3S 3=a 4-2, ①3S 2=a 3-2, ②由①-②,得3a 3=a 4-a 3,即4a 3=a 4, 则q =a 4a 3=4.8.设各项都是正数的等比数列{a n },S n 为前n 项和且S 10=10,S 30=70,那么S 40=________. 答案 150解析 依题意,知数列{a n }的公比q ≠-1,数列S 10,S 20-S 10,S 30-S 20,S 40-S 30成等比数列,因此有(S 20-S 10)2=S 10(S 30-S 20),即(S 20-10)2=10(70-S 20),故S 20=-20或S 20=30;又S 20>0,因此S 20=30,S 20-S 10=20,S 30-S 20=40,故S 40-S 30=80,S 40=150. 9.已知数列{a n }的前n 项和为S n ,且满足a n +S n =1(n ∈N *),则通项a n =________. 答案12n解析 ∵a n +S n =1,①∴a 1=12,a n -1+S n -1=1(n ≥2),②由①-②,得a n -a n -1+a n =0,即a n a n -1=12(n ≥2),∴数列{a n }是首项为12,公比为12的等比数列,则a n =12×(12)n -1=12n .10.已知数列{a n }的首项为1,数列{b n }为等比数列且b n =a n +1a n,若b 10·b 11=2,则a 21=________. 答案 1 024解析 ∵b 1=a 2a 1=a 2,b 2=a 3a 2,∴a 3=b 2a 2=b 1b 2,∵b 3=a 4a 3,∴a 4=b 1b 2b 3,…,a n =b 1b 2b 3·…·b n -1, ∴a 21=b 1b 2b 3·…·b 20=(b 10b 11)10=210=1 024.11.已知{a n }是首项为1,公差为2的等差数列,S n 表示{a n }的前n 项和. (1)求a n 及S n ;(2)设{b n }是首项为2的等比数列,公比q 满足q 2-(a 4+1)q +S 4=0,求{b n }的通项公式及其前n 项和T n .解 (1)因为{a n }是首项a 1=1,公差d =2的等差数列,所以a n =a 1+(n -1)d =2n -1. 故S n =1+3+…+(2n -1) =n (a 1+a n )2=n (1+2n -1)2=n 2. (2)由(1)得a 4=7,S 4=16.因为q 2-(a 4+1)q +S 4=0,即q 2-8q +16=0, 所以(q -4)2=0,从而q =4.又因为b 1=2,{b n }是公比q =4的等比数列, 所以b n =b 1q n -1=2·4n -1=22n -1.从而{b n }的前n 项和T n =b 1(1-q n )1-q=23(4n -1).12.(2016·全国丙卷)已知各项都为正数的数列{a n }满足a 1=1,a 2n -(2a n +1-1)a n -2a n +1=0. (1)求a 2,a 3; (2)求{a n }的通项公式.解 (1)由题意,得a 2=12,a 3=14.(2)由a 2n -(2a n +1-1)a n -2a n +1=0,得 2a n +1(a n +1)=a n (a n +1).因为{a n }的各项都为正数,所以a n +1a n =12.故{a n }是首项为1,公比为12的等比数列,因此a n =12n -1.13.已知数列{a n }中,a 1=1,a n ·a n +1=⎝⎛⎭⎫12n ,记T 2n 为{a n }的前2n 项的和,b n =a 2n +a 2n-1,n ∈N *. (1)判断数列{b n }是否为等比数列,并求出b n ; (2)求T 2n .解 (1)∵a n ·a n +1=⎝⎛⎭⎫12n, ∴a n +1·a n +2=⎝⎛⎭⎫12n +1, ∴a n +2a n =12,即a n +2=12a n . ∵b n =a 2n +a 2n -1,∴b n +1b n =a 2n +2+a 2n +1a 2n +a 2n -1=12a 2n +12a 2n -1a 2n +a 2n -1=12, ∵a 1=1,a 1·a 2=12,∴a 2=12⇒b 1=a 1+a 2=32.∴{b n }是首项为32,公比为12的等比数列.∴b n =32×⎝⎛⎭⎫12n -1=32n .(2)由(1)可知,a n +2=12a n ,∴a 1,a 3,a 5,…是以a 1=1为首项,以12为公比的等比数列;a 2,a 4,a 6,…是以a 2=12为首项,以12为公比的等比数列,∴T 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =1-⎝⎛⎭⎫12n 1-12+12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=3-32n .1.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系. d <r ⇔相交;d =r ⇔相切;d >r ⇔相离. (2)代数法:――→判别式Δ=b 2-4ac⎩⎪⎨⎪⎧>0⇔相交;=0⇔相切;<0⇔相离.2.圆与圆的位置关系设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0), 圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).【知识拓展】1.圆的切线方程常用结论(1)过圆x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程为x 0x +y 0y =r 2.(2)过圆(x -a )2+(y -b )2=r 2上一点P (x 0,y 0)的圆的切线方程为(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(3)过圆x 2+y 2=r 2外一点M (x 0,y 0)作圆的两条切线,则两切点所在直线方程为x 0x +y 0y =r 2. 2.圆与圆的位置关系的常用结论(1)两圆的位置关系与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)当两圆相交时,两圆方程(x 2,y 2项系数相同)相减便可得公共弦所在直线的方程. 【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.( × ) (2)如果两圆的圆心距小于两圆的半径之和,则两圆相交.( × )(3)从两圆的方程中消掉二次项后得到的二元一次方程是两圆的公共弦所在的直线方程.( × )(4)过圆O :x 2+y 2=r 2上一点P (x 0,y 0)的圆的切线方程是x 0x +y 0y =r 2.( √ )(5)过圆O :x 2+y 2=r 2外一点P (x 0,y 0)作圆的两条切线,切点分别为A ,B ,则O ,P ,A ,B 四点共圆且直线AB 的方程是x 0x +y 0y =r 2.( √ )1.(教材改编)圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是( ) A .相切 B .相交但直线不过圆心 C .相交过圆心 D .相离答案 B解析 由题意知圆心(1,-2)到直线2x +y -5=0的距离d =|2×1-2-5|22+1=5<6且2×1+(-2)-5≠0,所以直线与圆相交但不过圆心.2.(2016·全国甲卷)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a 等于( )A .-43B .-34 C. 3 D .2答案 A解析 由圆的方程x 2+y 2-2x -8y +13=0,得圆心坐标为(1,4),由点到直线的距离公式得d =|1×a +4-1|1+a 2=1,解之得a =-43.3.(2016·西安模拟)若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案 C解析 由题意可得,圆的圆心为(a,0),半径为2, ∴|a -0+1|12+(-1)2≤2,即|a +1|≤2,解得-3≤a ≤1.4.(2016·黑龙江大庆实验中学检测)已知圆C 1:(x -2)2+(y -3)2=1,圆C 2:(x -3)2+(y -4)2=9,M ,N 分别是圆C 1,C 2上的动点,P 为x 轴上的动点,则|PM |+|PN |的最小值为( ) A .6-2 2 B .52-4 C.17-1 D.17答案 B解析 圆C 1关于x 轴对称的圆C 1′的圆心为C 1′(2,-3),半径不变,圆C 2的圆心为(3,4),半径r =3,|PM |+|PN |的最小值为圆C 1′和圆C 2的圆心距减去两圆的半径,所以|PM |+|PN |的最小值为(3-2)2+(4+3)2-1-3=52-4.5.已知圆C 1:(x -a )2+(y +2)2=4与圆C 2:(x +b )2+(y +2)2=1外切,则ab 的最大值为________. 答案 94解析 由两圆外切可得圆心(a ,-2),(-b ,-2)之间的距离等于两圆半径之和, 即(a +b )2=(2+1)2,即9=a 2+b 2+2ab ≥4ab , 所以ab ≤94,当且仅当a =b 时取等号,即ab 的最大值是94.题型一 直线与圆的位置关系的判断例1 (1)已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是( ) A .相切 B .相交 C .相离D .不确定(2)(2016·江西吉安月考)圆x 2+y 2-2x +4y =0与直线2tx -y -2-2t =0(t ∈R )的位置关系为( ) A .相离 B .相切C .相交D .以上都有可能答案 (1)B (2)C解析 (1)因为M (a ,b )在圆O :x 2+y 2=1外,所以a 2+b 2>1,而圆心O 到直线ax +by =1的距离d =|a ·0+b ·0-1|a 2+b 2=1a 2+b 2<1.所以直线与圆相交.(2)直线2tx-y-2-2t=0恒过点(1,-2),∵12+(-2)2-2×1+4×(-2)=-5<0,∴点(1,-2)在圆x2+y2-2x+4y=0内.直线2tx-y-2-2t=0与圆x2+y2-2x+4y=0相交,故选C.思维升华判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.上述方法中最常用的是几何法,点与圆的位置关系法适用于动直线问题.已知方程x2+xtan θ-1sin θ=0有两个不等实根a和b,那么过点A(a,a2),B(b,b2)的直线与圆x2+y2=1的位置关系是________.答案相切解析由题意可知过A,B两点的直线方程为(a+b)x-y-ab=0,圆心到直线AB的距离d=|-ab| (a+b)2+1,而a+b=-1tan θ,ab=-1sin θ,因此d=⎪⎪⎪⎪1sin θ⎝⎛⎭⎫-1tan θ2+1,化简后得d=1,故直线与圆相切.题型二圆与圆的位置关系例2(1)(2016·山东)已知圆M:x2+y2-2ay=0(a>0)截直线x+y=0所得线段的长度是22,则圆M与圆N:(x-1)2+(y-1)2=1的位置关系是()A.内切B.相交C.外切D.相离(2)(2017·重庆调研)如果圆C:x2+y2-2ax-2ay+2a2-4=0与圆O:x2+y2=4总相交,那么实数a的取值范围是______________________.答案(1)B(2)(-22,0)∪(0,22)解析(1)∵圆M:x2+(y-a)2=a2(a>0),∴圆心坐标为M(0,a),半径r1为a,圆心M到直线x+y=0的距离d=|a|2,由几何知识得⎝⎛⎭⎫|a|22+(2)2=a2,解得a=2.∴M(0,2),r1=2.又圆N的圆心坐标N(1,1),半径r2=1,∴|MN|=(1-0)2+(1-2)2=2,r1+r2=3,r1-r2=1. ∴r1-r2<|MN|<r1+r2,∴两圆相交,故选B.(2)圆C 的标准方程为(x -a )2+(y -a )2=4,圆心坐标为(a ,a ),半径为2. 依题意得0<a 2+a 2<2+2,∴0<|a |<2 2. ∴a ∈(-22,0)∪(0,22).思维升华 判断圆与圆的位置关系时,一般用几何法,其步骤是 (1)确定两圆的圆心坐标和半径长;(2)利用平面内两点间的距离公式求出圆心距d ,求r 1+r 2,|r 1-r 2|; (3)比较d ,r 1+r 2,|r 1-r 2|的大小,写出结论.已知两圆x 2+y 2-2x -6y -1=0和x 2+y 2-10x -12y +m =0.(1)m 取何值时两圆外切; (2)m 取何值时两圆内切;(3)求m =45时两圆的公共弦所在直线的方程和公共弦的长.解 两圆的标准方程分别为(x -1)2+(y -3)2=11,(x -5)2+(y -6)2=61-m , 圆心分别为M (1,3),N (5,6),半径分别为11和61-m . (1)当两圆外切时,(5-1)2+(6-3)2=11+61-m , 解得m =25+1011.(2)当两圆内切时,因为定圆的半径11小于两圆圆心间距离5, 故只有61-m -11=5,解得m =25-1011. (3)两圆的公共弦所在直线方程为(x 2+y 2-2x -6y -1)-(x 2+y 2-10x -12y +45)=0, 即4x +3y -23=0,所以公共弦长为 2(11)2-(|4×1+3×3-23|42+32)2=27.题型三 直线与圆的综合问题 命题点1 求弦长问题例3 (2016·全国丙卷)已知直线l :mx +y +3m -3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别做l 的垂线与x 轴交于C ,D 两点,若|AB |=23,则|CD |=________. 答案 4解析 设AB 的中点为M ,由题意知,圆的半径R =23,|AB |=23,所以|OM |=3,解得m =-33,由⎩⎨⎧x -3y +6=0,x 2+y 2=12解得A (-3,3),B (0,23),则AC 的直线方程为y -3=-3(x +3), BD 的直线方程为y -23=-3x ,令y =0,解得C (-2,0),D (2,0),所以|CD |=4. 命题点2 直线与圆相交求参数范围例4 (2015·课标全国Ⅰ)已知过点A (0,1)且斜率为k 的直线l 与圆C :(x -2)2+(y -3)2=1交于M ,N 两点. (1)求k 的取值范围;(2)若OM →·ON →=12,其中O 为坐标原点,求|MN |. 解 (1)由题设,可知直线l 的方程为y =kx +1, 因为l 与C 交于两点,所以|2k -3+1|1+k 2<1. 解得4-73<k <4+73.所以k 的取值范围为⎝⎛⎪⎫4-73,4+73. (2)设M (x 1,y 1),N (x 2,y 2).将y =kx +1代入方程(x -2)2+(y -3)2=1,整理得 (1+k 2)x 2-4(1+k )x +7=0. 所以x 1+x 2=4(1+k )1+k 2,x 1x 2=71+k 2. OM →·ON →=x 1x 2+y 1y 2 =(1+k 2)x 1x 2+k (x 1+x 2)+1 =4k (1+k )1+k 2+8. 由题设可得4k (1+k )1+k 2+8=12,解得k =1,所以l 的方程为y =x +1. 故圆心C 在l 上,所以|MN |=2. 命题点3 直线与圆相切的问题例5 已知圆C :(x -1)2+(y +2)2=10,求满足下列条件的圆的切线方程. (1)与直线l 1:x +y -4=0平行; (2)与直线l 2:x -2y +4=0垂直; (3)过切点A (4,-1).解 (1)设切线方程为x +y +b =0,则|1-2+b |2=10,∴b =1±25, ∴切线方程为x +y +1±25=0. (2)设切线方程为2x +y +m =0, 则|2-2+m |5=10,∴m =±52, ∴切线方程为2x +y ±52=0. (3)∵k AC =-2+11-4=13,∴过切点A (4,-1)的切线斜率为-3,∴过切点A (4,-1)的切线方程为y +1=-3(x -4), 即3x +y -11=0.思维升华 直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形. (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.(1)(2015·课标全国Ⅱ)过三点A (1,3),B (4,2),C (1,-7)的圆交y 轴于M 、N 两点,则|MN |等于( )A .2 6B .8C .4 6D .10(2)若直线x cos θ+y sin θ-1=0与圆(x -1)2+(y -sin θ)2=116相切,且θ为锐角,则该直线的斜率是( ) A .-33 B .- 3 C.33D. 3 答案 (1)C (2)A解析 (1)由已知,得AB →=(3,-1),BC →=(-3,-9), 则AB →·BC →=3×(-3)+(-1)×(-9)=0, 所以AB →⊥BC →,即AB ⊥BC ,故过三点A 、B 、C 的圆以AC 为直径, 得其方程为(x -1)2+(y +2)2=25, 令x =0,得(y +2)2=24,解得y 1=-2-26,y 2=-2+26, 所以|MN |=|y 1-y 2|=46,选C.(2)依题意得,圆心到直线的距离等于半径, 即|cos θ+sin 2θ-1|=14,|cos θ-cos 2θ|=14,所以cos θ-cos 2θ=14或cos θ-cos 2θ=-14(不符合题意,舍去).由cos θ-cos 2θ=14,得cos θ=12,又θ为锐角,所以sin θ=32, 故该直线的斜率是-cos θsin θ=-33,故选A.7.高考中与圆交汇问题的求解考点分析 与圆有关的最值问题及直线与圆相结合的题目是近年来高考高频小考点.与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化;直线与圆的综合问题主要包括弦长问题,切线问题及组成图形面积问题,解决方法主要依据圆的几何性质.一、与圆有关的最值问题典例1 (1)(2015·湖南)已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( ) A .6 B .7 C .8 D .9(2)过点(2,0)引直线l 与曲线y =1-x 2相交于A 、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线l 的斜率等于( ) A.33 B .-33 C .±33D .- 3 解析 (1)∵A ,B ,C 在圆x 2+y 2=1上,且AB ⊥BC ,∴AC 为圆的直径,故P A →+PC →=2PO →=(-4,0),设B (x ,y ),则x 2+y 2=1且x ∈[-1,1],PB →=(x -2,y ),∴P A →+PB →+PC →=(x -6,y ).故|P A →+PB →+PC →|=-12x +37, ∴当x =-1时有最大值49=7,故选B. (2)∵S △AOB =12|OA ||OB |sin ∠AOB=12sin ∠AOB ≤12. 当∠AOB =π2时,△AOB 面积最大.此时O 到AB 的距离d =22.设AB 方程为y =k (x -2)(k <0),即kx -y -2k =0.由d =|2k |k 2+1=22得k =-33. (也可k =-tan ∠OPH =-33). 答案 (1)B (2)B二、直线与圆的综合问题典例2 (1)(2015·重庆)已知直线l :x +ay -1=0(a ∈R )是圆C :x 2+y 2-4x -2y +1=0的对称轴,过点A (-4,a )作圆C 的一条切线,切点为B ,则|AB |等于( )A .2B .4 2C .6D .210(2)在平面直角坐标系中,A ,B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线2x +y -4=0相切,则圆C 面积的最小值为( )A.45πB.34π C .(6-25)π D.54π 解析 (1)由于直线x +ay -1=0是圆C :x 2+y 2-4x -2y +1=0的对称轴,∴圆心C (2,1)在直线x +ay -1=0上,∴2+a -1=0,∴a =-1,∴A (-4,-1).∴|AC |2=36+4=40.又r =2,∴|AB |2=40-4=36.∴|AB |=6.(2)∵∠AOB =90°,∴点O 在圆C 上.设直线2x +y -4=0与圆C 相切于点D ,则点C 与点O 间的距离等于它到直线2x +y -4=0的距离,∴点C 在以O 为焦点,以直线2x +y -4=0为准线的抛物线上,∴当且仅当O ,C ,D 共线时,圆的直径最小为|OD |.又|OD |=|2×0+0-4|5=45, ∴圆C 的最小半径为25,∴圆C 面积的最小值为π(25)2=45π. 答案 (1)C (2)A1.(2017·广州调研)若点A (1,0)和点B (4,0)到直线l 的距离依次为1和2,则这样的直线有( )A .1条B .2条C .3条D .4条答案 C解析 如图,分别以A ,B 为圆心,1,2为半径作圆.依题意得,直线l 是圆A 的切线,A 到l 的距离为1,直线l 也是圆B 的切线,B 到l 的距离为2,所以直线l 是两圆的公切线,共3条(2条外公切线,1条内公切线).2.若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m 等于( )A .21B .19C .9D .-11答案 C解析 圆C 2的标准方程为(x -3)2+(y -4)2=25-m .又圆C 1:x 2+y 2=1,∴|C 1C 2|=5.又∵两圆外切,∴5=1+25-m ,解得m =9.3.(2016·南昌二模)若圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,则ab 的最大值为( )A. 2 B .2 C .4 D .2 2答案 B解析 圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R ).化为(x -a )2+y 2=9,圆心坐标为(a,0),半径为3.圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R ),化为x 2+(y +b )2=1,圆心坐标为(0,-b ),半径为1, ∵圆C 1:x 2+y 2-2ax +a 2-9=0(a ∈R )与圆C 2:x 2+y 2+2by +b 2-1=0(b ∈R )内切,∴a 2+b 2=3-1,即a 2+b 2=4,ab ≤12(a 2+b 2)=2. ∴ab 的最大值为2.4.(2016·泰安模拟)过点P (3,1)作圆C :(x -1)2+y 2=1的两条切线,切点分别为A ,B ,则直线AB 的方程为( )A .2x +y -3=0B .2x -y -3=0C .4x -y -3=0D .4x +y -3=0答案 A 解析 如图所示:由题意知:AB ⊥PC ,k PC =12,∴k AB =-2,∴直线AB 的方程为y -1=-2(x -1),即2x +y -3=0.5.若直线l :y =kx +1(k <0)与圆C :x 2+4x +y 2-2y +3=0相切,则直线l 与圆D :(x -2)2+y 2=3的位置关系是( )A .相交B .相切C .相离D .不确定答案 A解析 因为圆C 的标准方程为(x +2)2+(y -1)2=2,所以其圆心坐标为(-2,1),半径为2,因为直线l 与圆C 相切.所以|-2k -1+1|k 2+1=2,解得k =±1,因为k <0,所以k =-1,所以直线l 的方程为x +y -1=0.圆心D (2,0)到直线l 的距离d =|2+0-1|2=22<3,所以直线l 与圆D 相交.6.已知A (-2,0),B (0,2),实数k 是常数,M ,N 是圆x 2+y 2+kx =0上两个不同点,P 是圆x 2+y 2+kx =0上的动点,如果M ,N 关于直线x -y -1=0对称,那么△P AB 面积的最大值是( )A .3- 2B .4C .3+ 2D .6 答案 C解析 依题意得圆x 2+y 2+kx =0的圆心(-k 2,0)位于直线x -y -1=0上, 于是有-k 2-1=0,即k =-2,因此圆心坐标是(1,0),半径是1. 由题意可得|AB |=22,直线AB 的方程是x -2+y 2=1, 即x -y +2=0,圆心(1,0)到直线AB 的距离等于|1-0+2|2=322, 点P 到直线AB 的距离的最大值是322+1,∴△P AB 面积的最大值为12×22×32+22=3+2,故选C. 7.(2016·全国乙卷)设直线y =x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若|AB |=23,则圆C 的面积为________.答案 4π解析 圆C :x 2+y 2-2ay -2=0,即C :x 2+(y -a )2=a 2+2,圆心为C (0,a ),C 到直线y =x +2a 的距离d =|0-a +2a |2=|a |2.又由|AB |=23,得⎝⎛⎭⎫2322+⎝⎛⎭⎫|a |22=a 2+2,解得a 2=2,所以圆的面积为π(a 2+2)=4π.8.(2016·天津四校联考)过点(1,2)的直线l 将圆(x -2)2+y 2=4分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率k =________.答案 22 解析 ∵(1-2)2+(2)2=3<4,∴点(1,2)在圆(x -2)2+y 2=4的内部.当劣弧所对的圆心角最小时,圆心(2,0)与点(1,2)的连线垂直于直线l . ∵2-01-2=-2,∴所求直线l 的斜率k =22. 9.(2015·山东)过点P (1,3)作圆x 2+y 2=1的两条切线,切点分别为A ,B ,则P A →·PB →=________.答案 32解析 由题意,圆心为O (0,0),半径为1.如图所示,∵P (1,3),∴PB ⊥x 轴,|P A |=|PB |= 3.∴△POA 为直角三角形,其中|OA |=1,|AP |=3,则|OP |=2,∴∠OP A =30°,∴∠APB =60°.∴P A →·PB →=|P A →||PB →|·cos ∠APB =3×3×cos 60°=32. 10.在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是________.答案 43解析 圆C 的标准方程为(x -4)2+y 2=1,圆心为(4,0).由题意知(4,0)到kx -y -2=0的距离应不大于2, 即|4k -2|k 2+1≤2.整理,得3k 2-4k ≤0.解得0≤k ≤43. 故k 的最大值是43. 11.已知圆C :x 2+y 2+2x -4y +1=0,O 为坐标原点,动点P 在圆C 外,过P 作圆C 的切线,设切点为M .(1)若点P 运动到(1,3)处,求此时切线l 的方程;(2)求满足条件|PM |=|PO |的点P 的轨迹方程.解 把圆C 的方程化为标准方程为(x +1)2+(y -2)2=4,∴圆心为C (-1,2),半径r =2.(1)当l 的斜率不存在时,此时l 的方程为x =1,C 到l 的距离d =2=r ,满足条件.当l 的斜率存在时,设斜率为k ,得l 的方程为y -3=k (x -1),即kx -y +3-k =0, 则|-k -2+3-k |1+k 2=2,解得k =-34. ∴l 的方程为y -3=-34(x -1), 即3x +4y -15=0.综上,满足条件的切线l 的方程为x =1或3x +4y -15=0.(2)设P (x ,y ),则|PM |2=|PC |2-|MC |2=(x +1)2+(y -2)2-4,|PO |2=x 2+y 2,∵|PM |=|PO |,∴(x +1)2+(y -2)2-4=x 2+y 2,整理,得2x -4y +1=0,∴点P 的轨迹方程为2x -4y +1=0.12.设M ={(x ,y )|y =2a 2-x 2,a >0},N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},且M ∩N ≠∅,求a 的最大值和最小值.解 M ={(x ,y )|y =2a 2-x 2,a >0},即{(x ,y )|x 2+y 2=2a 2,y ≥0},表示以原点O 为圆心,半径等于2a 的半圆(位于横轴或横轴以上的部分).N ={(x ,y )|(x -1)2+(y -3)2=a 2,a >0},表示以O ′(1,3)为圆心,半径等于a 的一个圆.再由M ∩N ≠∅,可得半圆和圆有交点,故半圆和圆相交或相切.当半圆和圆相外切时,由|OO ′|=2=2a +a ,求得a =22-2;当半圆和圆相内切时,由|OO ′|=2=2a -a ,求得a =22+2,故a 的取值范围是[22-2,22+2],a 的最大值为22+2,最小值为22-2.*13.(2016·湖南六校联考)已知直线l :4x +3y +10=0,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)过点M (1,0)的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分∠ANB ?若存在,请求出点N 的坐标;若不存在,请说明理由.解 (1)设圆心C (a,0)(a >-52), 则|4a +10|5=2⇒a =0或a =-5(舍). 所以圆C 的方程为x 2+y 2=4.(2)当直线AB ⊥x 轴时,x 轴平分∠ANB .当直线AB 的斜率存在时,设直线AB 的方程为y =k (x -1),N (t,0),A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧x 2+y 2=4,y =k (x -1),得(k 2+1)x 2-2k 2x +k 2-4=0, 所以x 1+x 2=2k 2k 2+1,x 1x 2=k 2-4k 2+1. 若x 轴平分∠ANB ,则k AN =-k BN ⇒y 1x 1-t +y 2x 2-t=0 ⇒k (x 1-1)x 1-t +k (x 2-1)x 2-t=0 ⇒2x 1x 2-(t +1)(x 1+x 2)+2t =0⇒2(k 2-4)k 2+1-2k 2(t +1)k 2+1+2t =0⇒t =4, 所以当点N 为(4,0)时,能使得∠ANM =∠BNM 总成立.。
考点24 等比数列及其前n 项和一、选择题1.(2012·新课标全国高考理科·T5)已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=( )A. 7B. 5C. -5D. -7 【解题指南】利用等比数列的性质将56a a 替换为47a a ,然后联立方程组求得47a a 、的值,最后将47,a a 及公比q 的值整体代入110a a +求出其值.【解析】选D 。
{}n a 为等比数列,∴5647a a a a =8=-,联立474728a a a a +=⎧⎨=-⎩可解得4742a a =⎧⎨=-⎩或4724a a =-⎧⎨=⎩,312q ∴=-或32q =-,故34110737a a a a q q +=+⋅=-.2.(2012·安徽高考理科·T4)公比为2的等比数列{}n a 的各项都是正数,且31116a a =,则210log a =( )()A 4 ()B 5 ()C 6 ()D 7 【解题指南】由等比数列的性质得到3117167a a a =⇔=,再结合等比数列中任意两项的关系即可解得.【解析】选B .23311771072101616432log 5a a a a a a q a =⇔=⇔=⇒=⨯=⇔=.3.(2012·安徽高考文科·T5)公比为2的等比数列{n a } 的各项都是正数,且 3a 11a =16,则5a =( )(A ) 1 (B )2 (C ) 4 (D )8 【解题指南】由等比数列的性质得到3117167a a a =⇔=,再结合等比数列中任意两项的关系即可解得.【解析】选A .2231177551616421a a a a a a =⇔=⇔==⨯⇔=. 4.(2012·北京高考文科·T6)已知{n a }为等比数列,下面结论中正确的是( )(A )a 1+a 3≥2a 2 (B )2221322a a a +≥ (C )若a 1=a 3,则a 1=a 2 (D )若a 3>a 1,则a 4>a 2 【解题指南】利用等比数列的基本量,均值不等式进行计算. 【解析】选B.5.(2012·湖北高考理科·T7)与(2012·湖北高考理科·T7)相同定义在(-∞,0)∪(0,+∞)上的函数f (x ),如果对于任意给定的等比数列{a n },{f (an )}仍是等比数列,则称f (x )为“保等比数列函数”。
专题24 等比数列及其前n 项和1.理解等比数列的概念2.掌握等比数列的通项公式与前n 项和公式3.能在具体的问题情境中识别数列的等比关系,并能用有关知识解决相应的问题 4.了解等比数列与指数函数的关系热点题型一 等比数列的基本运算例1、已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且a 2+a 3+a 4=-18。
(1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得S n ≥2 013?若存在,求出符合条件的所有n 的集合;若不存在,说明理由。
(2)由(1)有S n =3·[1--2n]1--2=1-(-2)n。
若存在n ,使得S n ≥2 013,则1-(-2)n≥2 013,即(-2)n ≤-2 012。
当n 为偶数时,(-2)n>0.上式不成立; 当n 为奇数时,(-2)n=-2n≤-2 012,即2n≥2 012,则n ≥11。
综上,存在符合条件的正整数n ,且所有这样的n 的集合为{n |n =2k +1,k ∈N ,k ≥5}。
【提分秘籍】1.对于等比数列的有关计算问题,可类比等差数列问题进行,在解方程组的过程中要注意“相除”消元的方法,同时要注意整体代入(换元)思想方法的应用。
2.在涉及等比数列前n 项和公式时要注意对公比q 是否等于1进行判断和讨论。
【举一反三】设{a n }是由正数组成的等比数列,S n 为其前n 项和。
已知a 2a 4=1,S 3=7,则S 5=__________。
解析:显然公比q ≠1,由题意得⎩⎪⎨⎪⎧a 1q ·a 1q 3=1a 11-q 31-q =7,解得⎩⎪⎨⎪⎧a 1=4q =12或⎩⎪⎨⎪⎧a 1=9q =-13(舍去),∴S 5=a 11-q 51-q=4⎝ ⎛⎭⎪⎫1-1251-12=314。
答案:314热点题型二 等比数列的判定与证明例2、已知数列{a n }和{b n }满足:a 1=λ,a n +1=23a n +n -4,b n =(-1)n(a n -3n +21),其中λ为实数,n 为正整数。
(1)对任意实数λ,证明:数列{a n }不是等比数列; (2)试判断数列{b n }是否为等比数列,并证明你的结论。
【提分秘籍】证明数列{a n}是等比数列常用的方法:一是定义法,证明a na n-1=q(n≥2,q为常数);二是等比中项法,证明a2n=a n-1·a n+1。
若判断一个数列不是等比数列,则只需举出反例即可,也可以用反证法。
【举一反三】设数列{a n}的前n项和为S n,若对于任意的正整数n都有S n=2a n-3n,设b n=a n+3,求证:数列{b n}是等比数列,并求a n。
热点题型三等比数列的性质及其应用例3.(1)在各项均为正数的等比数列{a n}中,a3=2-1,a5=2+1,则a23+2a2a6+a3a7=( ) A.4 B.6C.8 D.8-4 2(2)各项均为正数的等比数列{a n}的前n项和为S n,若S n=2,S3n=14,则S4n等于( )A.80 B.30C.26 D.16解析:(1)在等比数列中,a3a7=a25,a2a6=a3a5,所以a23+2a2a6+a3a7=a23+2a3a5+a25=(a3+a5)2=(2-1+2+1)2=(22)2=8。
(2)由等比数列性质得,S n,S2n-S n,S3n-S2n,S4n-S3n成等比数列,则(S2n-S n)2=S n·(S3n-S2n),所以(S2n-2)2=2×(14-S2n)。
又S2n>0,得S2n=6,又(S3n-S2n)2=(S2n-S n)(S4n-S3n),所以(14-6)2=(6-2)(S4n-14)。
解得S4n=30。
【提分秘籍】等比数列的性质可以分为三类:①通项公式的变形,②等比中项的变形,③前n项和公式的变形,根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口。
【举一反三】在等比数列中,已知a1a38a15=243,则a39a11的值为( ) A.3 B.9 C.27 D.81解析:设数列{a n}的公比为q,∵a1a38a15=243,a1a15=a28,∴a8=3,∴a39a11=a38q3a8·q3=a28=9。
答案:B1.【2017课标II,理3】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏 B.3盏 C.5盏 D.9盏【答案】B2.【2017课标3,理14】设等比数列{}n a满足a1 + a2 = –1, a1–a3 = –3,则a4 = ___________.【答案】8-【解析】设等比数列的公比为q,很明显1q≠-,结合等比数列的通项公式和题意可得方程组:()()12121311113a a a qa a a q⎧+=+=-⎪⎨-=-=-⎪⎩,①,②,由②①可得:2q=-,代入①可得11a=,由等比数列的通项公式可得:3418a a q==- .1.【2016高考新课标1卷】设等比数列{}n a满足a1+a3=10,a2+a4=5,则a1a2…a n的最大值为.【答案】642.【2016高考江苏卷】(本小题满分16分)记{}1,2,100U=…,.对数列{}()*na n N∈和U的子集T,若T=∅,定义0TS=;若{}12,,kT t t t=…,,定义12+kT t t tS a a a=++….例如:{}=1,3,66T时,1366+TS a a a=+.现设{}()*na n N∈是公比为3的等比数列,且当{}=2,4T时,=30TS.(1)求数列{}n a的通项公式;(2)对任意正整数()1100k k≤≤,若{}1,2,kT⊆…,,求证:1T kS a+<;(3)设,,C DC UD U S S⊆⊆≥,求证:2C CD DS S S+≥.【答案】(1)13nna-=(2)详见解析(3)详见解析【解析】(1)由已知得1*13,n n a a n -=⋅∈N .于是当{2,4}T =时,2411132730r S a a a a a =+=+=. 又30r S =,故13030a =,即11a =. 所以数列{}n a 的通项公式为1*3,n n a n -=∈N . (2)因为{1,2,,}T k ⊆,1*30,n n a n -=>∈N ,所以1121133(31)32k k k r k S a a a -≤+++=+++=-<.因此,1r k S a +<.(3)下面分三种情况证明. ①若D 是C 的子集,则2C C DC D D D D S S S S S S S +=+≥+=. ②若C 是D 的子集,则22C CDC C CD S S S S S S +=+=≥.③若D 不是C 的子集,且C 不是D 的子集.【2015高考浙江,理3】已知{}n a 是等差数列,公差d 不为零,前n 项和是n S ,若3a ,4a ,8a 成等比数列,则( )A.140,0a d dS >>B. 140,0a d dS <<C. 140,0a d dS ><D.140,0a d dS <>【答案】B.【解析】∵等差数列}{n a ,3a ,4a ,8a 成等比数列,∴da d a d a d a 35)7)(2()3(11121-=⇒++=+, ∴dd a a a a S 32)3(2)(211414-=++=+=,∴03521<-=d d a ,03224<-=d dS ,故选B.【2015高考安徽,理14】已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于 .【答案】21n- 【解析】由题意,14231498a a a a a a +=⎧⎨⋅=⋅=⎩,解得141,8a a ==或者148,1a a ==,而数列{}n a 是递增的等比数列,所以141,8a a ==,即3418a q a ==,所以2q =,因而数列{}n a 的前n 项和 1(1)1221112n nn n a q S q --===---.1.(2014·重庆卷)对任意等比数列{a n },下列说法一定正确的是( )A .a 1,a 3,a 9成等比数列B .a 2,a 3,a 6成等比数列C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9,成等比数列【答案】D 【解析】因为在等比数列中a n ,a 2n ,a 3n ,…也成等比数列,所以a 3,a 6,a 9成等比数列. 2.(2014·安徽卷)数列{a n }是等差数列,若a 1+1,a 3+3,a 5+5构成公比为q 的等比数列,则q =________.【答案】1 【解析】 因为数列{a n }是等差数列,所以a 1+1,a 3+3,a 5+5也成等差数列.又 a 1+1,a 3+3,a 5+5构为公比为q 的等比数列,所以a 1+1,a 3+3,a 5+5为常数列,故q =1.3.(2014·广东卷)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20=________.【答案】504.(2014·全国卷) 等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( ) A .6 B .5 C .4 D .3【答案】C 【解析】设数列{a n }的首项为a 1,公比为q ,根据题意可得,⎩⎪⎨⎪⎧a 1q 3=2,a 1q 4=5,解得⎩⎪⎨⎪⎧a 1=16125,q =52,所以a n =a 1qn -1=16125×⎝ ⎛⎭⎪⎫52n -1=2×⎝ ⎛⎭⎪⎫52n -4,所以lg a n =lg 2+(n -4)lg 52,所以前8项的和为8lg 2+(-3-2-1+0+1+2+3+4)lg 52=8lg 2+4lg 52=4lg ⎝ ⎛⎭⎪⎫4×52=4.5.(2014·湖北卷) 已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式.(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.(2)当a n =2时,S n =2n ,显然2n<60n +800,此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n[2+(4n -2)]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n>40或n<-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 6.(2014·新课标全国卷Ⅱ)已知数列{a n }满足a 1=1,a n +1=3a n +1.(1)证明⎩⎨⎧⎭⎬⎫a n +12是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.【解析】(1)由a n +1=3a n +1得a n +1+12=3⎝⎛⎭⎪⎫a n +12.又a 1+12=32,所以⎩⎨⎧⎭⎬⎫a n +12是首项为32,公比为3的等比数列,所以a n +12=3n2,因此数列{a n }的通项公式为a n =3n-12.(2)证明:由(1)知1a n =23n -1.因为当n≥1时,3n-1≥2×3n -1,所以13n -1≤12×3n -1,即1a n =23n-1≤13n -1. 于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝ ⎛⎭⎪⎫1-13n <32.所以1a 1+1a 2+…+1a n <32.7.(2014·山东卷) 已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列. (1)求数列{a n }的通项公式; (2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .当n 为偶数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…+⎝⎛12n -3+⎭⎪⎫12n -1-⎝ ⎛⎭⎪⎫12n -1+12n +1 =1-12n +1=2n2n +1. 当n 为奇数时,T n =⎝ ⎛⎭⎪⎫1+13-⎝ ⎛⎭⎪⎫13+15+…-⎝ ⎛⎭⎪⎫12n -3+12n -1+⎝ ⎛⎭⎪⎫12n -1+12n +1=1+12n +1=2n +22n +1. 所以T n=⎩⎪⎨⎪⎧2n +22n +1,n 为奇数,2n2n +1,n 为偶数.⎝ ⎛⎭⎪⎫或T n=2n +1+(-1)n -12n +18.(2014·陕西卷)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c. (1)若a ,b ,c 成等差数列,证明:sin A +sin C =2sin(A +C); (2)若a ,b ,c 成等比数列,求cos B 的最小值.9.(2014·天津卷)设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和.若S 1,S 2,S 4成等比数列,则a 1的值为________.【答案】-12 【解析】∵S 2=2a 1-1,S 4=4a 1+4×32×(-1)=4a 1-6,S 1,S 2,S 4成等比数列,∴(2a 1-1)2=a 1(4a 1-6),解得a 1=-12.10.(2014·天津卷)已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1}, 集合A ={x|x =x 1+x 2q +…+x n qn -1,x i ∈M,i =1,2,…,n}.(1)当q =2,n =3时,用列举法表示集合A. (2)设s ,t∈A,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M,i =1,2,…,n.证明:若a n <b n ,则s<t.【解析】(1)当q =2,n =3时,M ={0,1},A ={x|x =x 1+x 2·2+x 3·22,x i ∈M,i =1,2,3},可得A ={0,1,2,3,4,5,6,7}.(2)证明:由s ,t∈A,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,a i ,b i ∈M,i =1,2,…,n及a n <b n ,可得s -t =(a 1-b 1)+(a 2-b 2)q +…+(a n -1-b n -1)q n -2+(a n -b n )qn -1≤(q-1)+(q -1)q +…+(q -1)qn -2-qn -1=(q -1)(1-q n -1)1-q -q n -1=-1<0, 所以s<t.11.(2013·新课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.【答案】(-2)n -1【解析】因为S n =23a n +13①,所以S n -1=23a n -1+13②,①-②得a n =23a n -23a n -1,即a n =-2a n -1,又因为S 1=a 1=23a 1+13a 1=1,所以数列{a n }是以1为首项,-2为公比的等比数列,所以a n=(-2)n -1.12.(2013·北京卷)已知{a n }是由非负整数组成的无穷数列,该数列前n 项的最大值记为A n ,第n 项之后各项a n +1,a n +2,…的最小值记为B n ,d n =A n -B n .(1)若{a n }为2,1,4,3,2,1,4,3,…,是一个周期为4的数列(即对任意n∈N *,a n +4=a n ),写出d 1,d 2,d 3,d 4的值;(2)设d 是非负整数,证明:d n =-d(n =1,2,3,…)的充分必要条件为{a n }是公差为d 的等差数列; (3)证明:若a 1=2,d n =1(n =1,2,3,…),则{a n }的项只能是1或者2,且有无穷多项为1.(3)因为a 1=2,d 1=1,所以A 1=a 1=2,B 1=A 1-d 1=1. 故对任意n≥1,a n ≥B 1=1. 假设{a n }(n≥2)中存在大于2的项.设m 为满足a m >2的最小正整数, 则m≥2,并且对任意1≤k<m,a k ≤2. 又因为a 1=2,所以A m -1=2,且A m =a m >2, 于是,B m =A m -d m >2-1=1,B m -1=min{a m ,B m }>1. 故d m -1=A m -1-B m -1<2-1=1,与d m -1=1矛盾.所以对于任意n≥1,有a n ≤2,即非负整数列{a n }的各项只能为1或2. 因为对任意n≥1,a n ≤2=a 1, 所以A n =2.故B n =A n -d n =2-1=1.因此对于任意正整数n ,存在m 满足m>n ,且a m =1,即数列{a n }有无穷多项为113.(2013·北京卷)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n=________.【答案】2 2n +1-2 【解析】 ∵a 3+a 5=q(a 2+a 4),∴40=20q ,q =2, 又∵a 2+a 4=a 1q +a 1q 3=20, ∴a 1=2,∴a n =2n,∴S n =2n +1-2.14.(2013·江西卷)等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .2415.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3. 则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.【答案】12 【解析】设{a n }的公比为q.由a 5=12及a 5(q +q 2)=3得q =2,所以a 1=132,所以a 6=1,a 1a 2…a 11=a 116=1,此时a 1+a 2+…+a 11>1.又a 1+a 2+…+a 12=27-132,a 1a 2…a 12=26<27-132,所以a 1a 2…a 12>a 1a 2…a 12,但a 1+a 2+…+a 13=28-132,a 1a 2…a 13=26·27=25·28>28-132,所以a 1+a 2+…+a 13<a 1a 2…a 13,故最大正整数n 的值为12.16.(2013·湖南卷) 设S n 为数列{a n }的前n 项和,S n =(-1)n a n -12n ,n∈N *,则(1)a 3=________;(2)S 1+S 2+…+S 100=________.【解析】(1)-116 (2)13⎝ ⎛⎭⎪⎫12100-1 [解析] (1)因S n =(-1)na n -12n ,则S 3=-a 3-18,S 4=a 4-116,解得a 3=-116.17.(2013·辽宁卷) 已知等比数列{}a n 是递增数列,S n 是{}a n 的前n 项和,若a 1,a 3是方程x 2-5x+4=0的两个根,则S 6=________.【答案】63 【解析】 由题意可知a 1+a 3=5,a 1·a 3=4.又因为{a n }为递增的等比数列,所以a 1=1,a 3=4,则公比q =2,所以S 6=1×(1-26)1-2=63.18.(2013·全国卷)已知双曲线C :x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,离心率为3,直线y =2与C 的两个交点间的距离为 6.(1)求a ,b ;(2)设过F 2的直线l 与C 的左、右两支分别交于A ,B 两点,且|AF 1|=|BF 1|,证明:|AF 2|,|AB|,|BF 2|成等比数列.【解析】(1)由题设知c a =3,即a 2+b 2a 2=9,故b 2=8a 2.所以C 的方程为8x 2-y 2=8a 2.将y =2代入上式,求得x =±a 2+12.由题设知,2a 2+12=6,解得a 2=1.所以a =1,b =2 2.(2)证明:由(1)知,F 1(-3,0),F 2(3,0),C 的方程为8x 2-y 2=8.① 由题意可设l 的方程为y =k(x -3),|k|<2 2,代入①并化简得 (k 2-8)x 2-6k 2x +9k 2+8=0. 设A(x 1,y 1),B(x 2,y 2),则 x 1≤-1,x 2≥1,x 1+x 2=6k 2k 2-8,x 1x 2=9k 2+8k 2-8.于是|AF 1|=(x 1+3)2+y 21=(x 1+3)2+8x 21-8=-(3x 1+1), |BF 1|=(x 2+3)2+y 22=(x 2+3)2+8x 22-8=3x 2+1. 由|AF 1|=|BF 1|得-(3x 1+1)=3x 2+1,即x 1+x 2=-23.故6k 2k 2-8=-23,解得k 2=45,从而x 1x 2=-199. 由于|AF 2|=(x 1-3)2+y 21=(x 1-3)2+8x 21-8=1-3x 1, |BF 2|=(x 2-3)2+y 22=(x 2-3)2+8x 22-8=3x 2-1, 故|AB|=|AF 2|-|BF 2|=2-3(x 1+x 2)=4, |AF 2|·|BF 2|=3(x 1+x 2)-9x 1x 2-1=16. 因而|AF 2|·|BF 2|=|AB|2,所以|AF 2|,|AB|,|BF 2|成等比数列.19.(2013·全国卷)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10) B.19(1-310)C .3(1-3-10) D .3(1+3-10)20.(2013·陕西卷)设{a n }是公比为q 的等比数列.(1)推导{a n }的前n 项和公式;(2)设q≠1,证明数列{a n +1}不是等比数列. 【解析】(1)设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 2+…+a n =na 1; 当q≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,①qS n =a 1q +a 1q 2+…+a 1q n,② ①-②得,(1-q)S n =a 1-a 1q n,∴S n =a 1(1-q n)1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q≠1.1.已知等比数列{a n }的前n 项和为S n ,且S 1,S 2+a 2,S 3成等差数列,则数列{a n }的公比为( ) A .1 B .2 C.12D .3 解析:因为S 1,S 2+a 2,S 3成等差数列,所以2(S 2+a 2)=S 1+S 3,2(a 1+a 2+a 2)=a 1+a 1+a 2+a 3,a 3=3a 2,q =3。