计算方法第八章矩阵特征值计算
- 格式:ppt
- 大小:699.50 KB
- 文档页数:49
第八章 矩阵地特征值与特征向量地数值解法某些工程计算涉及到矩阵地特征值与特征向量地求解 .如果从原始矩阵出发,先求 出特征多项式,再求特征多项式地根,在理论上是无可非议地•但一般不用这种方 法,因为了这种算法往往不稳定•常用地方法是迭代法或变换法•本章介绍求解特 征值与特征向量地一些方法•§ 1乘幂法乘幕法是通过求矩阵地特征向量来求特征值地一种 迭代法,它适用于求矩阵 地按模最大地特征值 及对应地特征向量.b5E2RGbCAP 定理8 • 1设矩阵Ai x n 有n 个线性无关地特征向量 X<i=1,2,…,n ),其对应地特征 值入 i (i =1,2,…,n> 满足 plEanqFDPw|入1|>|入2|三…三|入n |则对任何n 维非零初始向量 乙,构造Z k = AZ k-1(k=1,2.其中(Z k >j 表示向量Z<地第j 个分量. 证明:只就入i 是实数地情况证明如下 因为A 有n 个线性无关地特征向量X,<i = 1,2,用X<i = 1,2, …,n )线性表示,即Z 0=a 1X 1 + 用A 构造向量序列{Z k }其中由矩阵特征值定义知 AXm i X(i=1,2,…,n>,故Z k 二A k Z^ :1A k X^ : 2A k X 2nA kX n 「T ;X1 *〉2';X2- :'n'n Xn同理有li m (ZQ j_______________ <22?=■ 1<8 • 1) Z 1 二 AZ 0,乙二 AZ= A^Z。
,川,Zk-AZ kj-A Zo(8・2>- k' nkTX ii zz2-nJ 2-7k -AZk」=人X ii =2<A1」<8.3)<8.4 ),设a 1工0,并且注意到…,n )所以任何非零向量Z o 都可 a 2茨 + …+a nX <a 1 工 0) DXDiTa9E3d将<8.3 )与<8.4 )所得乙及Z k-1地第j个分量相除| 入i|<| 入…,n> 得RTCrpUDGiT1|(i=1,2,定理8 • 1地证明过程实际上是给出了矩阵地按模最大特征值地计算方法:1) 先任取一非零向量Z 0, 一般可取Z o =(1,1,1> T; 2) 按<8.2 )式计算 乙=AZ -i (k=1,2,…>;3)当K足够大时,即可求出詔;=6为了减少"1对于所选地第j个分量地依赖性,还可用各个分量比地平均值来代替,即关于对应于入1地特征向量地计算:由<8.1 )知,当k 充分大时,Z k =入1Z k-1,又由迭代式 Z k = AZ k-1,可知AZ k-1 =入1Z k-1故 由特征值定义知 Z k-1即为入1对应地特征向量,或Z k =入1Z k-1为入1对应地特征向 量.5PCzVD7HxA这种求矩阵地按模最大特征值及其对应特征向量地方法称为 乘幕法. 应用乘幕法计算A 地按模最大特征值入1和对应特征向量时,由<8.3)易知Z k = *-n厲入+送码J y1X ii 2当|入1|>1或|入1|<1时,Z k 中不为零地分量将会随 K 地增大而无限增大,或随K 地 「 ------------ 增大而趋于零,用计算机计算就会出现“上溢”或“下溢” .为了克服这个缺点,一」无 穷 常将迭代向量 乙先规范化,然后再计算,具体做法是:jLBHrnAILg 一,一用max (Z>S 示向量Z k 地绝对值最大地分量,任取一初始向量Z o =a 1X 1+ a 汎+…+ a n X^V a 1工0)构造与<8.2 )对应地向量序列.xHAQX74J0XAZ o由<8.3)可知Yk = maZk A kZ o max A kZ o max n:X 亠1 1 j ii =2X inM • r ii -2X i丿丿(k tmax X i<8.7J 二 AYA 2Z omax AZ0J 'max 乙max AZ oA 2Z 。
第八章矩阵特征值8.1特征值的定义在线性代数中,一个n阶方阵A的特征值(Eigenvalue)是指一个标量λ,使得下面的等式成立:Ax=λx其中x是一个非零的n维向量,被称为对应于特征值λ的特征向量(Eigenvector)。
特别地,一些情况下,我们有:AX=λX。
这是一个常见的特殊情况,被称为多重特征值(Multiple Eigenvalues)。
8.2特征值与特征向量的求解我们可以通过以下方式求解矩阵的特征值与特征向量。
1.设A是一个n阶方阵,特征值为λ,特征向量为X,我们有AX=λX。
2.将等式重写为AX–λX=0,再移项得到(A–λI)x=0。
3.构造(A–λI)矩阵,其中I是单位矩阵。
4.解方程组(A–λI)X=0,求解零空间的基础解系(基础特征向量)。
5.基础特征向量的线性组合即为所有特征向量。
8.3特征值的性质矩阵的特征值具有一些性质,包括:1.特征值的个数等于矩阵的阶数。
一个n阶矩阵A最多有n个不同的特征值。
2.特征值的乘积等于矩阵的行列式。
即特征值λ1,λ2,…,λn与矩阵A的特征多项式p(λ)=,A-λI,的系数关系为λ^n+a_{n-1}λ^(n-1)+…+a_1λ+a_0。
3.特征值的和等于矩阵的迹。
即矩阵A的特征值λ1,λ2,…,λn 满足λ1+λ2+…+λn=Tr(A),其中Tr(A)为矩阵A的迹(对角线上元素之和)。
4.特征值与行列式的关系。
矩阵A的特征值λ1,λ2,…,λn都满足,A-λI,=0,即他们是矩阵A的特征方程的根。
8.4矩阵的对角化对角化是指将一个矩阵通过相似变换,将其转化为对角矩阵的过程。
对角化的主要目的是将矩阵的运算简化为对角矩阵的运算,从而更易于求解。
一个n阶方阵可以对角化的条件是它有n个线性无关的特征向量,即A的特征向量数量等于A的阶数。
通过对角化,可以将矩阵A表示为:A=P^(-1)DP其中D是对角矩阵,P是可逆矩阵,P的列向量是A的特征向量。
矩阵特征值的求法
矩阵特征值是矩阵在特定方向上的伸缩比率,或者说是矩阵在某
些方向上的重要程度,因此它在数学中有很多的应用。
在这篇文章中,我们将介绍矩阵特征值的求法。
一、定义
矩阵特征值是矩阵 A 的特征多项式P(λ) 的根,即
P(λ)=det(A-λI)=0,其中 I 是单位矩阵,det 表示行列式。
该多项
式的阶数等于矩阵 A 的阶数。
二、求法
1. 直接计算
对于小阶的矩阵,可以直接求解特征多项式的根,得到特征值。
2. 特征值分解
对于大阶的矩阵,可以通过特征值分解的方式求得矩阵的特征值。
特征值分解是一种将矩阵分解为特征向量和特征值的方法,即矩阵
A=QΛQ^-1,其中 Q 是正交矩阵,Λ 是对角矩阵,其对角线上的元素
就是特征值。
3. 幂迭代法
幂迭代法是一种通过连续迭代计算矩阵 A 的最大特征值和对应
特征向量的方法。
该方法的基本思想是利用矩阵特征值的性质,通过
不断迭代对特征向量进行单调放缩,最终得到矩阵的最大特征值和对
应特征向量。
4. QR 分解法
QR 分解法是一种通过 QR 分解求解矩阵特征值和特征向量的方法。
该方法的基本思想是将矩阵 A 分解为一个正交矩阵 Q 和一个上
三角矩阵 R,即 A=QR,然后对 R 迭代求解特征值和特征向量。
三、总结
矩阵特征值的求法有多种方法,其中直接计算适用于小阶矩阵,
而特征值分解、幂迭代法和 QR 分解法则适用于大阶矩阵。
在实际应
用中,需要根据具体情况选择合适的方法,以便快速、准确地求解矩阵的特征值和特征向量。