数学建模实验答案离散模型
- 格式:doc
- 大小:5.77 MB
- 文档页数:58
离散模型§ 1 离散回归模型一、离散变量如果我们用0,1,2,3,4,⋯说明企业每年的专利申请数,申请数是一个离散的变量,但是它是间隔尺度变量,该变量类型不在本章的讨论的被解释变量中。
但离散变量0和1可以用来说明企业每年是否申请专利的事项,类似表示状态的变量才在本章的讨论中。
在专利申请数的问题中,离散变量0,1,2,3 和4 等数字具有具体的经济含义,不能随意更改;而在是否申请专利的两个选择对象的选择问题中,数字0和1只是用于区别两种不同的选择,是表示一种状态。
本专题讨论有序尺度变量和名义尺度变量的被解释变量。
、离散因变量在讨论家庭是否购房的问题中,可将家庭购买住房的决策用数字1 表示,而将家庭不购买住房的决策用数字0 表示。
1 yesx0 no如果x 作为说明某种具体经济问题的自变量,则应用以前介绍虚拟变量知识就足够了。
如果现在考虑某个家庭在一定的条件下是否购买住房问题时,则表示状态的虚拟变量就不再是自变量,而是作为一个被说明对象的因变量出现在经济模型中。
因此,需要对以前讨论虚拟变量的分析方法进行扩展,以便使其能够适应分析类似家庭是否购房的问题。
因为在家庭是否购房问题中,虚拟因变量的具体取值仅是为了区别不同的状态,所以将通过虚拟因变量讨论备择对象选择的回归模型称为离散选择模型。
三、线性概率模型现在约定备择对象的0 和1 两项选择模型中,下标i 表示各不同的经济主体,取值0或l的因变量 y i表示经济主体的具体选择结果,而影响经济主体进行选择的自变量 x i 。
如果选择响应YES 的概率为 p(y i 1/ x i ) ,则经济主体选择响应NO 的概率为 1 p(y i 1/ x i),则E(y i /x i) 1 p(y i 1/x i) 0 p(y i 0/x i)= p(y i 1/x i)。
根据经典线性回归,我们知道其总体回归方程是条件期望建立的,这使我们想象可以构造线性概率模型p(y i 1/ x i) E(y i / x i) x iβ0 1 x i1 L k x ik u i描述两个响应水平的线性概率回归模型可推知,根据统计数据得到的回归结果并不一定能够保证回归模型的因变量拟合值界于[0,1]。
集美大学计算机工程学院实验报告课程名称:数学建模指导教师:付永钢 实验成绩: 实验项目编号:实验六实验项目名称:离散模型 班级:计算12姓名: 学号: 上机实践日期:2014.12上机实践时间: 2 学时一、实验目的了解离散模型的建模,掌握对离散数据的插值、迭代等处理原理和方法。
二、实验内容1、对教材第8章(P270图1)中所给出的比赛得出的竞赛图给出对应的邻接矩阵,然后计算该矩阵的最大特征值,并计算该特征值对应的特征向量,将该特征向量进行归一化处理;同时,对该邻接矩阵,利用式T e Ae s )1....,1,1,1(,)1(== )1()(-=k k As s , k=1,2,….进行迭代,对该迭代向量进行归一化处理,计算迭代200次以后的结果,与前面计算出的归一化特征向量值进行比较,得出你的结论。
2、对第7章中给出的差分方程)1(1k k k x bx x -=+,对不同的参数b=1.7, b=2.7, b=3.31, b=3.46, b=3.56分别计算迭代100次的结果,观察其中的单周期收敛,倍周期收敛,4倍周期收敛,混沌等现象。
3、阅读水流量估计的模型求解过程,跟随该模型求解过程中所给出的代码进行逐一尝试,了解对离散数据进行通常建模处理的一般过程和思路。
三、实验使用环境WindowsXP 、Lindo.6.1四、实验步骤1、循环比赛的名次模型求解(1)分析图1,得到邻接矩阵:(2)记定点的得分向量为s=(s1,s2,……sn )T,其中si 是顶点i 的得分(3)归一化特征值向量值:图1通过MATLAB得到结果:结果分析:通过分析MATLAB得到的记过可知该矩阵的最大特征值为2.2324,对应的特征向量为:-0.5561,-0.3841,-0.5400,-0.2653,-0.3503,-0.2419。
归一化后的结果为:0.2379,0.1643,0.2310,0.1135,0.1489,0.1035,所以得到排出的名次为{1,3,2,5,4,6}结果分析:由于以上结果可知,任一列的特征向量排序均为{1,3,2,5,4,6},与利用计算出的归一化特征值排序的结果一致,但迭代200次后的特征向量与前面的特征向量结果不一致。
选择题在离散时间马尔可夫模型中,如果状态转移概率矩阵P的某一行所有元素之和不为1,这意味着什么?A. 该模型是稳态的B. 存在吸收状态C. 存在状态转移概率的误差(正确答案)D. 模型是周期性的设有一个三状态(S1, S2, S3)的离散时间马尔可夫模型,若从S1到S2的转移概率为0.4,从S1到S3的转移概率为0.5,则从S1到自身的转移概率是多少?A. 0.9B. 0.1(正确答案)C. 0.4D. 0.5在一个离散时间马尔可夫链中,如果一个状态是常返的,那么它满足什么条件?A. 平均返回时间为无穷大B. 在有限步内一定会返回到该状态(正确答案)C. 转移概率矩阵的对应行全为0D. 该状态是吸收状态假设一个离散时间马尔可夫模型有两个状态(A和B),从A到B的转移概率是0.7,从B 到A的转移概率是0.4,那么状态A是哪种类型的状态?A. 吸收状态B. 瞬时状态C. 常返状态(正确答案)D. 周期状态在离散时间马尔可夫链中,如果一个状态是瞬时的,那么它满足什么条件?A. 从该状态出发,最终会回到该状态B. 从该状态出发,永远不会回到该状态(正确答案)C. 该状态是链的起始状态D. 该状态是链的终止状态设有一个四状态(S1, S2, S3, S4)的离散时间马尔可夫模型,如果S1是吸收状态,那么从S1到其他状态的转移概率应该是多少?A. 大于0B. 小于1C. 等于0(正确答案)D. 无法确定在一个离散时间马尔可夫链中,如果状态转移概率矩阵P的某一列所有元素之和为1,这意味着什么?A. 存在一个吸收状态(正确答案)B. 模型是稳态的C. 存在状态转移概率的误差D. 模型是周期性的假设一个离散时间马尔可夫模型有三个状态(X, Y, Z),从X到Y的转移概率是0.3,从X到Z的转移概率是0.4,从X到自身的转移概率是0.2,那么从X状态出发,下一步不可能发生的情况是?A. 转移到Y状态B. 转移到Z状态C. 转移到一个新的未知状态(正确答案)D. 保持在X状态在离散时间马尔可夫模型中,如果一个状态是周期性的,且周期为2,那么这意味着什么?A. 该状态每隔一步就会返回到自身B. 该状态在两步之后才能返回到自身(正确答案)C. 该状态是吸收状态D. 该状态是瞬时状态。
萧澜 1 . 循环赛模型一、 问题:下图是5位网球选手循环赛的结果。
作为竞赛图,它是双向连通的吗?找出几条完全路径,用适当的方法排出5位选手的名次。
二、模型分析与建立:这是一个关于竞赛图排列名次的问题,我们可以利用双向连通竞赛的名次排序方法来处理这一问题。
根据图形建立竞赛图的邻接矩阵A=(ij a )n n ⨯如下:⎩⎨⎧=,否则的有向边到存在从顶点0,1j i a ij由此得到邻接矩阵A=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0111100100000010110001010三、模型求解: 各级分量为S=S(1)=(2,2,1,2,3),S(2)=(4,3,2,4,5),S(3)=(7,6,4,7,9),S(4)=(13,11,7,13,17).由此可以知道名次为:5,1(4),2,3(选手1和4名次相同)。
另外此结果也可以根据Perron-Frobenius 定理,由s A kk k =→λ1lim我们只需算出矩阵A 的最大特征根λ和对应特征向量S 得到大小排处名次。
我们可以用Matlab 求解,程序如下: A=[0,1,0,1,0 0,0,1,1,0 1,0,0,0,0 1,1,1,0,0]; eig(A)[X,D]=eig(A)从结果中可以看到A 的最大特征根8393.1=λ,所对应的特征向量为:)2769.0,2137.0,1162.0,11793.0,2137.0(=s由此得到排名顺序也是:5,1(4),2,3(选手1和4名次相同)。
2.投票权重 理事会有五个常任理事和十个非常任的理事,提案仅当全部的常任理事和至少非四个常任理事赞成时方可通过,求每位常任理事和每位非常任理事在投票中的权重? 模型分析:由题意可知题中涉及到了利益的分配问题,那么此题可以应用Shapley 值法进行求解Shapley 值法所需要的知识:设集合I={1,2,…,n},如果对于I 的任意一个子集s 都对应着一个实值函数v(s),满足v()=0;v( s s 21)≥v(s 1)+v(s 2), s 1 s 2= 称[I,v]为n 人合作对策,v 为对策的特征函数 Shapley 值由特征函数v 来确定记为)).()...,(),(()(21v v v v nϕϕϕ=Φ对于任意的子集s,记x(s)=∑∈si ix,即s 中成员的权重,对于一切s I ⊂满足x(s)≥v(s)的x 组成的集合称[I,v]的核心,当核心存在时,即所有s 的分配都不小于s 的效益,可以将Shapley 值作为一种特定的分配,即x iiv =)(ϕ;Shapley 值)).()...,(),(()(21v v v v nϕϕϕ=Φ为∑∈-=s i s v s v s v is i)]\()(|)[(|)(ωϕ,i=1,2,…,n!)!1|(||)!|(|)(|n s s n s --=ω其中s i 是中包含的所有子集,{s}是子集s 中的元素的数目(人数),)(||s ω是加权因子, s \ i 表示s 去掉i 后的集合.模型建立:集合I={1,2,…,5,6,…,15},其中i=1,2,…,5表示常人理事会员,i=6,…,15为非常任理事会员,将集合s=(),,()(}15...{}7{}6{}{51=i i )中任意的k 个元素的集合,k=4,5,…,10的特征函数定义为1,I 中的其他集合的特征函数的定义为0,因为这样的集合有Ck 10个,且!15)]!5(15[)!15()(+--+=k k s ω(k=4,5,…,10),所以任意一个常任理事的Shapley 值为(即投票时占的比重)为∑==10410*|)(|k kiCs ωϕ代入数据可的ϕi=0.916,(i=1,2,…,5)而任意的非常任理事的权重为ϕi =101(1-5*0.196)=0.002(i=6,…,15).Matlab 语言程序:循环赛模型另解下图是5位网球选手循环赛的结果。
实验09 离散模型(2学时)(第8章离散模型)1. 层次分析模型1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264已知正互反阵261????1/21A?4????1/461/1??注:[263]定理2 n阶正互反阵A的最大特征根≥n。
★(1) 用MATLAB函数求A的最大特征根和特征向量。
调用及运行结果(见[264]):1 3.0092k =1>> w=V(:,k)/sum(V(:,k))w =0.58760.32340.0890[263])(2) 幂法(见n正互反矩阵,算法步骤如下:A为n×(0)w 1);a. 任取n 维非负归一化初始列向量(分量之和为)k?1)((k2,0,1,?Aww,k?;计算b.1)?(k w1)k?(?w1)k?(w归一化,即令c. ;n?1)?(k w i1i?)(1)k(k?1)k?(?)n|?|w,(i?w?1,2,w即,当d. 对于预先给定的精度ε时,iib;为所求的特征向量;否则返回到步骤1)?(kn w1??i?。
e. 计算最大特征根)(k wn1i?i 注:)k(k?1)(((k)k)???wAw??ww?1)(k? w?i n,i?1,2,??)k(w i文件如下:函数式m [lambda w]=p263MI(A,d)function——求正互反阵最大特征根和特征向量%幂法% A 正互反方阵% d 精度 2 % lambda 最大特征根归一化特征列向量% w0.000001,则d取if(nargin==1) %若只输入一个变量(即A)d=1e-6;end的阶数取方阵A n=length(A); %任取归一化初始列向量w0=w0/sum(w0);%w0=rand(n,1);1while ww=A*w0;%归一化w=ww/sum(ww);all(abs(w-w0)<d) if; breakendw0=w;endlambda=sum(ww./w0)/n;的最大特征根和特征向量。
实验09 离散模型(2学时)(第8章 离散模型)1. 层次分析模型1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264已知正互反阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/16/1412/1621A 注:[263]定理2 n 阶正互反阵A 的最大特征根 ≥ n 。
★(1) 用MATLAB 函数求A 的最大特征根和特征向量。
(2) 幂法(见[263]) A 为n ×n 正互反矩阵,算法步骤如下:a. 任取n 维非负归一化初始列向量(分量之和为1)(0)w ;b. 计算(1)(),0,1,2,k k w Aw k +==;c. (1)k w+归一化,即令(1)(1)(1)1k k nk ii w ww+++==∑;d. 对于预先给定的精度ε,当(1)()||(1,2,,)k k ii w w i n ε+-<=时,(1)k w +即为所求的特征向量;否则返回到步骤b ;e. 计算最大特征根(1)()11k n i k i iw n w λ+==∑。
注:()()(1)()(1)()1,2,,k k k k k i k iAw w w w w i nw λλλ++≈⇒≈⇒∴≈=☆(2)用幂法函数求A 的最大特征根和特征向量。
(3) 和法(见[264]) A 为n ×n 正互反矩阵,算法步骤如下:a. 将A 的每一列向量归一化得∑==ni ijijij a a w 1~; b. 对ijw ~按行求和得∑==nj ij i w w 1~~; c. 将i w ~归一化T n ni ii i w w w w w w w ),,,(,~~211==∑=即为近似特征向量;d. 计算∑==n i iiw Aw n 1)(1λ,作为最大特征根的近似值。
☆(3) 用和法函数求A 的最大特征根和特征向量。
(4) 根法(见[264]) A 为n ×n 正互反矩阵,算法步骤如下:a. 将A 的每一列向量归一化得∑==ni ijijij a a w 1~; b. 对ijw ~按行求积并开n 次方得∏==nj nij i w w 11)~(~; c. 将i w ~归一化T n n i ii i w w w w w w w ),,,(,~~211==∑=即为近似特征向量;d. 计算∑==ni ii w Aw n 1)(1λ,作为最大特征根的近似值。
实验09离散模型(2学时)(第8章离散模型)1. 层次分析模型(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264已知正互反阵注:[263]定理2 n阶正互反阵A的最大特征根≥n。
★(1) 用MATLAB函数求A的最大特征根和特征向量。
A为n×n正互反矩阵,算法步骤如下:a. 任取n 维非负归一化初始列向量(分量之和为1)(0)w ;b. 计算(1)(),0,1,2,k k wAw k +==%L ; c. (1)k w +%归一化,即令(1)(1)(1)1k k n k ii ww w+++==∑%%; d. 对于预先给定的精度ε,当(1)()||(1,2,,)k k i i w w i n ε+-<=L 时,(1)k w +即为所求的特征向量;否则返回到步骤b ;e. 计算最大特征根(1)()11k n i k i i w n w λ+==∑%。
注:☆(2) 用幂法函数求A 的最大特征根和特征向量。
A 为n×n 正互反矩阵,算法步骤如下:a. 将A 的每一列向量归一化得∑==n i ijij ij a a w 1~;b. 对ijw ~按行求和得∑==nj ij i w w 1~~; c. 将i w ~归一化T n n i i i i w w w w ww w ),,,(,~~211Λ==∑=即为近似特征向量;d. 计算∑==n i ii w Aw n 1)(1λ,作为最大特征根的近似值。
☆(3) 用和法函数求A 的最大特征根和特征向量。
根法(见[264])A 为n×n 正互反矩阵,算法步骤如下:a. 将A 的每一列向量归一化得∑==n i ijij ij a a w 1~; b. 对ijw ~按行求积并开n 次方得∏==n j nij i w w 11)~(~; c. 将i w ~归一化T n n i ii i w w w w w w w ),,,(,~~211Λ==∑=即为近似特征向量;d. 计算∑==n i ii w Aw n 1)(1λ,作为最大特征根的近似值。
实验09 离散模型(2学时)(第8章 离散模型)1. 层次分析模型1.1(验证,编程)正互反阵最大特征根和特征向量的实用算法p263~264已知正互反阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=14/16/1412/1621A 注:[263]定理2 n 阶正互反阵A 的最大特征根 ≥ n 。
★(1) 用MATLAB 函数求A 的最大特征根和特征向量。
(2) 幂法(见[263])A 为n×n 正互反矩阵,算法步骤如下:a. 任取n 维非负归一化初始列向量(分量之和为1)(0)w ;b. 计算(1)(),0,1,2,k k wAw k +==%L ; c. (1)k w +%归一化,即令(1)(1)(1)1k k n k i i ww w+++==∑%%; d. 对于预先给定的精度ε,当(1)()||(1,2,,)k k ii w w i n ε+-<=L 时,(1)k w +即为所求的特征向量;否则返回到步骤b ; e. 计算最大特征根(1)()11k n i k i iw n w λ+==∑%。
注:()()(1)()(1)()1,2,,k k k k k i k i Aw w w w w i n w λλλ++≈⇒≈⇒∴≈=%%L函数式m 文件如下:n=length(A);%取方阵A 的阶数w0=rand(n,1); w0=w0/sum(w0);%任取归一化初始列向量while 1ww=A*w0;w=ww/sum(ww); %归一化if all(abs(w-w0)<d)break ;endw0=w;endlambda=sum(ww./w0)/n;☆(2) 用幂法函数求A 的最大特征根和特征向量。
(3) 和法(见[264])A 为n×n 正互反矩阵,算法步骤如下:a. 将A 的每一列向量归一化得∑==n i ijij ij a a w 1~; b. 对ijw ~按行求和得∑==nj ij i w w 1~~;c. 将i w ~归一化T n n i i ii w w w w ww w ),,,(,~~211Λ==∑=即为近似特征向量;d. 计算∑==n i ii w Aw n 1)(1λ,作为最大特征根的近似值。
函数式m 文件如下:function [lambda w]=p264HE (A)%和法——求正互反阵最大特征根和特征向量% A 正互反方阵% lambda 最大特征根% w 归一化特征列向量AA=A/diag(sum(A)); %a. 将A 的每一列向量归一化ww=sum(AA,2); %b. 对AA 按行求和,ww 为列向量w=ww./sum(ww); %c. 归一化,得w 为近似特征列向量lambda=sum(A*w./w)/ length(A); %d. 计算最大特征根的近似值λ☆(3) 用和法函数求A 的最大特征根和特征向量。
调用及运行结果(见[264])(4) 根法(见[264])A 为n×n 正互反矩阵,算法步骤如下:a. 将A 的每一列向量归一化得∑==n i ijij ij a a w 1~; b. 对ij w ~按行求积并开n 次方得∏==n j n iji w w 11)~(~;c. 将i w ~归一化T n n i ii i w w w w w w w ),,,(,~~211Λ==∑=即为近似特征向量; d. 计算∑==n i ii w Aw n 1)(1λ,作为最大特征根的近似值。
★(4) 编写根法函数,用该函数求A 的最大特征根和特征向量。
[提示:sum, prod, diag]对矩阵A 按行求和的调用为sum(A, 2)。
对矩阵A 按行求积的调用为prod(A, 2)。
diag(V),用向量V 构造对角矩阵。
nargin ,存放函数输入自变量的数目。
1.2(验证,编程)旅游决策问题p250~256在下面程序中,脚本式m文件p250.m调用函数式m文件p250fun.m(求A的最大特征根及归一化特征列向量、一致性指标值CI、一致性比率值CR),p250fun.m中调用另一个函数式m文件p264HE.m(求A的最大特征根及归一化特征列向量)。
(1) 脚本式m文件如下:%旅游决策问题%文件名:p250.mclear; clc; format compact;%层次分析法的基本步骤:%1.建立层次结构模型% 见p250 图1 选择旅游地的层次结构%2.构造成对比较阵%第2层为准则层:景色、费用、居住、饮食和旅途5个准则A=[1 1/2 4 3 3 ;...2 1 7 5 5 ;...1/4 1/7 1 1/2 1/3;...1/3 1/5 2 1 1;1/3 1/5 3 1 1];%第3层为方案层:P1、P2和P3等3个供选择地点要求:请仔细阅读以上程序,完成以下实验:在脚本式m文件后面添加命令,使★①显示第2层的数据。
包括:最大特征根λ;特征向量(权向量)w;一致性指标CI;一致性比率CR。
添加的命令和运行结果(见[254]):lambda2,w2,CI2,CR2★②显示第3层的数据。
包括:特征向量(权向量)w;最大特征根λ;一致性指标CI。
w3k,lambda3,CI3k★③显示最下层(第3层)对目标(第1层)的组合权向量。
添加的命令和运行结果(见[255]):w3★④显示第2层和第3层的组合一致性比率,以及最下层对第1层的组合一致性比率。
添加的命令和运行结果(见[256]):CR2,CR3,CR2. 循环比赛的名次2.1(编程,验证)双向连通竞赛图(4顶点)的名次排序p270, 271~2724个顶点的竞赛图(教材p270中图3(4))如下:4个队得分(获胜场数)为(2,2,1,1)由得分排名为{(1,2),(3,4)},该竞赛图是双向连通图,属于第2种类型,可通过以下方法给出名次排序。
该图的邻接矩阵为:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0001100011000110A★(1) 编写一个程序,求出1~8级得分向量,并依据8级得分向量给出排名。
给出程序和运行结果(比较[272]):clear; clc; format compact ; format short g ; A=[0 1 1 0;0 0 1 1;0 0 0 1;1 0 0 0]; %邻接矩阵1342n=length(A);%方阵A 的阶数 s=A*ones(n,1); disp(s'); for k=2:8s=A*s; disp(s'); end[~,k]=sort(s,'descend'); %降序 k' %排名(2) 求元素互不相等的得分向量法 得分向量为 s=A*ones其中,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1111ones记s (1)=ss (k)=A*s (k-1)=A k *ones, k=2, 3, … (s (k)称为k 级得分向量)程序如下:%双向连通竞赛图的名次排序(求元素不等的得分向量) %文件名:p272_1.mclear; clc; format compact ; format short g ; A=[0 1 1 0;0 0 1 1;0 0 0 1;1 0 0 0]; %邻接矩阵 n=length(A);%方阵A 的阶数 s=A*ones(n,1); k=1;while length(unique(s))<n %unique(s)去掉s 中的重复元素 s=A*s; k=k+1; endk % k 级得分向量s' %元素不等的得分列向量 [~,kk]=sort(s,'descend'); %降序 kk' %排名☆(2) 运行求元素互不相等的得分向量法程序。
运行结果(比较[272])(3) 特征根法对于n≥4个顶点的双向连通竞赛图,其邻接矩阵A 为素阵(存在正整数r ,使A r >0),且有1limk kk A s λ→∞=其中,1为全1列向量,λ为最大实特征根且为正,s 为其特征列向量。
%双向连通竞赛图的名次排序(特征根法)%文件名:p272_2.mclear; clc; format compact; format short g;A=[0 1 1 0;0 0 1 1;0 0 0 1;1 0 0 0];%邻接矩阵[V,D]=eig(A); %返回A的特征值和特征向量。
%其中D为A的特征值构成的对角阵,每个特征值%对应的V的列为属于该特征值的一个特征向量。
D=diag(D); %返回矩阵D的对角线元素构成列向量。
D=D.*(imag(D)==0); %复数特征值用0代替,实数的则不变[lamda,k]=max(D);lamdas=V(:,k)/sum(V(:,k)); %最大特征根对应的特征列向量(归一化)[~,k]=sort(s,'descend'); %降序s', k'运行特征根法程序。
给出运行结果(比较[272])2.2(验证)双向连通竞赛图(6顶点)的名次排序p270,272~2736个顶点的竞赛图(教材p270中图1)如下:该图的邻接矩阵为:010111000111110100000011001001001000A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦要求:使用上题的程序。
☆(1) 求出1~4级得分向量,并依据4级得分向量给出排名。
运行结果(比较[272])6 435运行特征根法程序。
运行结果(比较[273])3. 公平的席位分配3.1(验证)参照惯例的席位分配方法p278~279某学校有甲乙丙三个系共有200名学生,其中甲系有103人,乙系有63人,丙系有34人。
(1) 有20个代表席位,采用参照惯例的席位分配方法,分别求出甲乙丙系的“席位分配结果”。
(2) 有21个代表席位,采用参照惯例的席位分配方法,分别求出甲乙丙系的“席位分配结果”。
下面是参照惯例的席位分配方法的求解函数:function [qi,ni]=p278fun(p,n)% p 各单位人数(列向量)% n 总席位(标量)% qi 按比例分配的席位(列向量)% ni 参照惯例的结果(列向量)qi=n*p/sum(p); %按比例各单位所得席位(可能含小数)ni=fix(qi); %各单位所得席位取整m=n-sum(ni); %可能有没分配完的席位if m>0 %席位没分完[~,k]=sort(qi-ni,'descend'); %按降序排序(缺省为升序)ni(k(1: m))=ni(k(1: m))+1; %排在前m个,加1end要求:①在命令窗口分别调用以上函数求解(使用最佳定点或浮点格式(5位数字)控制命令format short g)。