当前位置:文档之家› 金属学与热处理第六章 回复与再结晶

金属学与热处理第六章 回复与再结晶

第六章回复与再结晶

(一)填空题

1. 金属再结晶概念的前提是,它与重结晶的主要区别是。

2. 金属的最低再结晶温度是指,它与熔点的大致关系是。

3 钢在常温下的变形加工称,铅在常温下的变形加工称。

4.回复是,再结晶是。

5.临界变形量的定义是,通常临界变形量约在范围内。

6 金属板材深冲压时形成制耳是由于造成的。

7.根据经验公式得知,纯铁的最低再结晶温度为。

(二)判断题

1.金属的预先变形越大,其开始再结晶的温度越高。()

2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。()

3.金属的热加工是指在室温以上的塑性变形过程。()

4.金属铸件不能通过再结晶退火来细化晶粒。()

5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。();

6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。

()

7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( )

8.凡是重要的结构零件一般都应进行锻造加工。()

9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( )

10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( )

(三)选择题

1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。

A.与变形前的金属相同 B 与变形后的金属相同

C 与再结晶前的金属相同D.形成新的晶型

2.金属的再结晶温度是( )

A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值

3.为了提高大跨距铜导线的强度,可以采取适当的( )。

A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火

C 热处理强化D.热加工强化

4 下面制造齿轮的方法中,较为理想的方法是( )。

A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮

C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮

5.下面说法正确的是( )。

A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃

C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃

6 下列工艺操作正确的是( ) 。

A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉

B 用冷拉强化的弹簧钢丝作沙发弹簧

C 室温可以将保险丝拉成细丝而不采取中间退火

D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火

7 冷加工金属回复时,位错( )。

A.增加B.大量消失C.重排 D 不变

8在相同变形量情况下,高纯金属比工业纯度的金属( )。

A.更易发生再结晶B.更难发生再结晶

C 更易发生回复D.更难发生回复

9 在室温下经轧制变形50%的高纯铅的显微组织是( ) 。

A.沿轧制方向伸长的晶粒B.纤维状晶粒

C 等轴晶粒D.带状晶粒

(四)改错题

1.钢的再结晶退火温度一般为1 100℃。

3.低碳钢试样的临界变形度一般都大于30%

4.锡在室温下加工是冷加工,钨在1000℃变形是热加工。

5.再结晶退火温度就是最低再结晶温度。

6.再结晶就是重结晶。

(五)问答题

1.钨(T m=3 410C)在l 100℃、锡(T m=232℃)在室温时进行的冷变形加工分别属于冷加工或热加工?

2.用一根冷拉钢丝绳吊装一大型工件入炉,并随工件一起加热至1 000℃,当出炉后再次吊装工件时,钢丝绳发生断裂,试分析其原因。

3.当把铅铸锭在室温下经多次轧制成薄铅板时,需不需要进行中间退火?为什么?

4.用冷拔钢丝缠绕的螺旋弹簧,经低温加热后,其弹力要比未加热的好,这是为什么? 5.在室温下对铅板进行弯折,你会感到越弯越硬,但稍隔一会儿再行弯折,你会发现铅板又像初时一样柔软,这是什么原因?

6.用低碳钢板冲压成型的零件,冲压后发现各部位的硬度不同?为什么? 如何解决? 7.三个低碳钢试样变形度为5%,15%,30%,如果将它们加热至800℃,指出哪个产生粗晶粒?为什么?

8.口杯采用低碳钢板冷冲而成,如果钢板的晶粒大小很不均匀,那么冲压后常常发现口杯底部出现裂纹,这是为什么?

9.试述影响再结晶过程的因素。如何确定纯金属的最低再结晶温度和实际再结晶退火温度?

10.如何区分热加工与冷加工?为什么锻件比铸件的性能好?热加工会造成哪些缺陷? 11.已知某低碳钢的抗拉强度为500MPa,若要选用这个牌号的钢来制造抗拉强度达900MPa的机器零件,问应采用除热处理以外的哪一种加工方法。

12.作沙发的冷拉弹簧钢丝,冷卷簧以后一般的弹性都能符合要求。

13.在冷拔钢丝生产过程中,常常要穿插几次中间退火工序才能拉到最终所需的尺寸要求。

如不中间退火,一直拉拔到最终尺寸,钢丝表面往往出现裂纹(发纹)甚至有中途拉断的现象发生。这是什么原因?试述中间退火的原理及其作用。

14.解释产生下列现象的原因:室温下,铝的塑性优于铁;铁的塑性优于锌。

(六) 作图题

1.拉制半成品铜丝的过程如图5—1,试在图的下部绘出不同阶段的组织和性能的变化示意图,并加以适当解释。

(七)计算题

1.铅的熔点为327℃,锡的熔点为232℃,它们分别在室温20℃下进行压力加工,此时有无加工硬化现象?为什么?

2.已知W的熔点为3410℃,Fe为1538℃,Cu为1083℃,Pb为327℃。比较几种金属在室温下塑性变形的能力,并简述理由。

(八)思考题

1.用以下三种方法制成齿轮,哪种方法最好?为什么?

(1) 由厚钢板切出圆饼再加工成齿轮

(2) 由粗钢棒切下圆饼再加工成齿轮

(3) 由圆钢棒热锻成圆饼再加工成齿轮

2.在纯铁板上冲一个孔,再将此板加热至200℃、400℃、600℃后保温1h, 试分析其孔

边缘内部组织的变化。

金属学与热处理重要名词解释

7、弹性模量与刚度:金属在弹性范围内,应力与应变的比值σ/ε称为弹性模量E,也称为杨氏模量。E标志材料抵抗弹性变形的能力,用以表示材料的刚度。 14、断裂韧性:金属材料阻止裂纹失稳扩散的属性或材料的韧性。 1、金属特性:金属在固态下具有以下特征:①具有良好的导电性和导热性;②具有正的电阻温度系数;③具有良好的反射能力、不透明性和金属光泽;④具有良好的塑性变形能力。 4、晶体与晶体特性:原子(或分子)在三维空间呈有规则的周期性排列的一类物质称为晶体。晶体特性:①晶体中的原子(或分子)在三维空间呈有规则的周期性排列;②具有确定的熔点;③具有各向异性;④具有规则的几何外形。 5、空间点阵:将刚球模型中的刚球抽象为纯粹的几何点,得到一个由无数几何点在三维空间规则排列而成的列阵,称之为空间点阵。 6、晶格与晶胞:描述原子(离子、分子)或原子团在晶体中排列方式的几何空间格架称为结晶格子,简称晶格。从晶格选取一个能够完全反映晶体特征的最小几何单元。这个有代表性的最小几何单元称为晶胞。 7、晶面与晶向:在晶体中,有一系列原子所组成的平面称为晶面;任意两个原子之间的连线称为原子列,其所指方向称为晶向。 8、晶面指数与晶向指数:为确定晶面和原子列在晶体中的空间位向所采用的统一符号,分别称为晶面指数与晶向指数。 9、晶面族(或晶向族):某些晶面(或晶向)上的原子排列相同但空间位向不同,它们在晶体学上属等同晶面(或晶向),可归并为一个晶向族称为晶面族(或晶向族)。 10、配位数与致密度:晶格中任一原子周围与其最近邻且等距离的原子数目称为配位数;一个晶胞内原子所占体积与晶胞体积之比称为致密度。 12、多晶型转变或同素异构转变:具有多晶型的金属在温度或压力变化时,由一种晶体结构变为另一种晶体结构的过程叫多晶型转变或同素异构转变。 14、点缺陷:在三维尺度上都很小的晶体缺陷,一般不超过几个原子间距。点缺陷主要有空位、间隙原子和置换原子等。 15、线缺陷:在二维尺度上很小,而在三维尺度上很大的晶体缺陷,包括刃型位错、螺型位错、混合位错。 16、位错:①晶体中沿着某一原子面(或原子列)有一列或若干列原子发生了某种有规律的错排现象;②柏氏矢量不为零的晶体缺陷;③晶体中已滑移区与未滑移区的分界线。 17、晶格畸变:晶格发生的歪扭或伸长。 18、柏氏矢量:通过柏氏回路来确定的,采用一个规定的矢量来描述位错区域晶格畸变总量的大小和方向,该矢量后来被人们称为柏氏矢量。 19、位错密度:单位体积晶体包含的位错线总长度称为位错密度。 20、滑移与攀移:位错沿滑移面的移动称为滑移运动;刃型位错在垂直于滑移面方向上的运动即攀移。刃型位错的实质就是多余半原子面通过空位或原子扩散而扩大或缩小。 23、晶界与亚晶界:相邻晶粒之间的界面叫晶界。亚晶粒之间的界面叫亚晶界。 24、小角度晶界与大角度晶界:相邻晶粒位向差小于10°的为小角度晶界;相邻晶粒位向差大于10°的为大角度晶界。亚晶界属于小角度晶界。小角度晶界与位错:①对称倾侧晶界由一系列相隔一定距离的刃型位错垂直排列而成;②不对称倾侧晶界是由柏氏矢量相互垂直的刃型位错交叉堆集而成;③扭转晶界是由两组螺型位错交叉网络构成。 25、晶界能:单位晶界面积上增加的能量称为晶界能。 26、孪晶与孪晶界:当晶体一部分原子以某一晶面为共有面而与另一部分原子保持镜面对称的位向关系时,称此部分晶体为孪晶。孪晶之间的界面为孪晶界。 27、相界:在复相合金组织中,晶体结构不同的两相分界面称为相界。相界分为共格、半共

《金属学与热处理》复习题参考答案

《金属学与热处理》复习题 绪论 基本概念: 1.工艺性能:金属材料适应实际加工工艺的能力。(分类) 2.使用性能:金属材料在使用时抵抗外界作用的能力。(分类) 3.组织:用肉眼,或不同放大倍数的放大镜和显微镜所观察到的金属材料内部的情景。 宏观组织:用肉眼或用放大几十倍的放大镜所观察到的组织。 (金属内部的各种宏观缺陷) 显微组织:用100-2000倍的显微镜所观察到的组织。 (各个组成相的种类、形状、尺寸、相对数量和分布,是决定性能的主要因素)4:结构:晶体中原子的排列方式。 第一章 基本概念: 1.金属:具有正的电阻温度系数的物质,其电阻随温度升高而增加。 2.金属键;金属正离子和自由电子之间相互作用而形成的键。 3.晶体:原子(离子)按一定规律周期性地重复排列的物质。 4.晶体特性:(原子)规则排列;确定的熔点;各向异性;规则几何外形。 5.晶胞:组成晶格的最基本的几何单元。 6.配位数:晶格中任一原子周围与其最近邻且等距的原子数目。

7.晶面族:原子排列相同但空间位向不同的所有晶面称为晶面族。 8.晶向族:原子排列相同但空间位向不同的所有晶向称为晶向族。 9.多晶型性:当外部条件(如温度和压强)改变时,有些金属会由一种晶体结构向另一种晶体结构转变。又称为同素异构转变。 10.晶体缺陷:实际晶体中原子排列偏离理想结构的现象。 11.空位:晶格结点上的原子由于热振动脱离了结点位臵,在原来的位臵上形成的空结点。 12.位错:晶体中有一列或若干列原子发生了有规则的错排现象,使长度达几百至几万个原子间距、宽约几个原子间距范围内的原子离开其平衡位臵,发生了有规律的错动。 13.柏氏矢量:在实际晶体中沿逆时针方向环绕位错线作一个闭合回路。在完整晶体中以同样的方向和步数作相同的回路,由回路的终点向起点引一矢量,该矢量即为这条位错线的柏氏矢量。 14.晶粒:晶体中存在的内部晶格位向完全一致,而相互之间位向不相同的小晶体。 15.各向异性:由于晶体中不同晶面和晶向上的原子密度不同,因而晶体在不同方向上的性能有所差异。 16.伪各向同性:由于多晶体中各个晶粒的位向不同,所以不表示出单晶体的各向异性。 17.小角度晶界:相邻晶粒位向差小于10o的晶界。 18.大角度晶界:相邻晶粒位向差小于10o的晶界。 基础知识: 1.三种典型金属结构的晶体学特点。(点阵常数,原子半径,晶胞内原子数,配位数,致密度,间隙种类及大小)

金属学与热处理课后习题答案第六章

第六章金属及合金的塑性变形和断裂 2)求出屈服载荷下的取向因子,作出取向因子和屈服应力的关系曲线,说明取向因子对屈服应力的影响。 答: 1)需临界临界分切应力的计算公式:τk=σs cosυcosλ,σs为屈服强度=屈服载荷/截面积 需要注意的是:在拉伸试验时,滑移面受大小相等,方向相反的一对轴向力的作用。当载荷与法线夹角υ为钝角时,则按υ的补角做余弦计算。 2)c osυcosλ称作取向因子,由表中σs和cosυcosλ的数值可以看出,随着取向因子的增大,屈服应力逐渐减小。cosυcosλ的最大值是υ、λ均为45度时,数值为0.5,此时σs为最小值,金属最易发生滑移,这种取向称为软取向。当外力与滑移面平行(υ=90°)或垂直(λ=90°)时,cosυcosλ为0,则无论τk数值如何,σs均为无穷大,表示晶体在此情况下根本无法滑移,这种取向称为硬取向。 6-2 画出铜晶体的一个晶胞,在晶胞上指出: 1)发生滑移的一个滑移面 2)在这一晶面上发生滑移的一个方向 3)滑移面上的原子密度与{001}等其他晶面相比有何差别 4)沿滑移方向的原子间距与其他方向有何差别。 答: 解答此题首先要知道铜在室温时的晶体结构是面心立方。 1)发生滑移的滑移面通常是晶体的密排面,也就是原子密度最大的晶面。在面心立方晶格中的密排面是{111}晶面。 2)发生滑移的滑移方向通常是晶体的密排方向,也就是原子密度最大的晶向,在{111}晶面中的密排方向<110>晶向。 3){111}晶面的原子密度为原子密度最大的晶面,其值为2.3/a2,{001}晶面的原子密度为1.5/a2 4)滑移方向通常是晶体的密排方向,也就是原子密度高于其他晶向,原子排列紧密,原子间距小于其他晶向,其值为1.414/a。 6-3 假定有一铜单晶体,其表面恰好平行于晶体的(001)晶面,若在[001]晶向

金属学与热处理第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。() 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。() 3.金属的热加工是指在室温以上的塑性变形过程。() 4.金属铸件不能通过再结晶退火来细化晶粒。() 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 () 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( ) 8.凡是重要的结构零件一般都应进行锻造加工。() 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( ) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是( ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错( )。 A.增加B.大量消失C.重排 D 不变 8在相同变形量情况下,高纯金属比工业纯度的金属( )。 A.更易发生再结晶B.更难发生再结晶

金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题

第六章 1.试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么? 2. 答:由Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。位错数目n与引起塞积的晶界到位错源的距离成正比。晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形。在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。 2.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义? 答:残余内应力存在的原因 1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀; 2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力; 3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力。 实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命。 3.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。 答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。 金属脆性断裂过程中,极少或没有宏观塑性变形,但在局部区域任然存在着一定的微观塑性变形。断裂时承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力,因此又称为低应力断裂。 在塑性材料中,断裂是胃口形成、扩大和连接的过程,在打的应力作用下,基体金属产生塑性变形后,在基体和非金属夹杂物、析出相粒子周围产生应力集中,使界面拉开,或使异相颗粒折断形成微孔。微孔扩大和链接也是基体金属塑性变形的结果。当微孔扩大到一定的程度,相邻微孔见的金属产生较大的塑性变形后就发生微观塑性失稳,就像宏观实验产生缩颈一样,此时微孔将迅速扩大,直至细缩成一线,最后由于金属与金属件的连线太少,不足以承载而发生断裂。 脆性材料中,由于断裂前既无宏观塑性变形,又无其他预兆,并且一旦开裂后,裂纹扩展迅速,造成整体断裂或河大的裂口,有时还产生很多碎片,容易导致严重事故。 4.何谓断裂韧度,它在机械设计中有何作用? 答:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度。它反映了材料抵抗裂纹失稳扩展即抵抗脆断的能力,是材料的力学性能指标。 5.分析回复和再结晶阶段空位与位错的变化及其对性能的影响。

金属学与热处理

一,金属的热加工与冷加工 热加工 在工业生产中,热加工通常是指将金属材料加热至高温进行锻造、热轧等的压力加工过程 几乎所有的金属材料都要进行热加工和进一步加工: 除了一些铸件和烧结件之外,几乎所有的金属材料都要进行热加工,其中一部分成为成品,在热加工状态下使用,另一部分为中间制品,尚需进一步加工 无论是成品还是中间制品,它们的性能都受热加工过程所形成组织的影响 热加工和冷加工的定义: 从金属学的角度来看,所谓热加工是指在再结晶温度以上的加工过程;在再结晶温度以下的加工过程称为冷加工。例如铅的再结晶温度低于室温,因此,在室温下对铅进行加工属于热加工。钨的再结晶温度约为1200度,即使在1000度拉制钨丝也属于冷加工。 热加工过程中存在加工硬化和回复再结晶软化两个相反的过程: 如前所述,只要有塑性变形,就会产生加工硬化现象,而只要有加工硬化,在退火时就会发生回复再结品。由于热加工是在高于再结晶温度以上的塑性变成过程,所以因塑性变形引起硬化过程和回复再结晶引起的软化过程几乎同时存在。图7-26示意地表示了动静态再结晶的概念 1.不过,这时的回复再结晶是边加工边发生的,因此称为动态回复和动态再结 晶,而把变形中断或终止后的保温过程中,或者是在随后的冷却过程中所的回复于再结晶称为静态回复和静态再结晶

2.它们与前面讨论的回复与再结晶(也属于静态回复和静态再结品)一致,唯 一不同的地方是它们利用热加工的余热进行,而不需要重新加热 金属材料热加工后的组织与性能受着热加工时的硬化过程和软化过程的影响1.由此可见,金属材料热加工后的组织与性能受着热加工时的硬化过程和软化 过程的影响,而这个过程又受着变形温度、应变速率、变形程度以及金属本身性质的影响。 2.例如当变形程度大而加热温度低时,由变形引起的硬化过程占优势,随着加 工过程的进行,金属的强度和硬度上升而塑性逐渐下降,金属内部的品格畸变得不到完全恢复,变形阻力越来越大,甚至会使金属断裂。 3.反之当金属变形程度较小而变形温度较高时,由于再结晶和晶粒长大占优 势,金属的晶粒会越来越粗大,这时虽然不会引起金属断裂,也会使金属的性能恶化。 可见,了解动态回复和动态再结晶的规律对于控制热加工时的织织与性能具有重要意义 二,动态回复与动态再结晶 热加工的第一类真应力真应变曲线如图7.27所示 此类曲线的材料: ●铝及铝合金、工业纯铁,铁素体钢、镁、锌等材料均属于这一类。 ●铜及铜合金、镍及镍合金、 铁、奥氏体钢、金、银等材料属于这一类。热加工的第一类真应力真应变曲线与冷加工时的真应力真应变曲线显著不同 真应力随真应变变化的特点: 变形开始时,应力先随应变而增大,但增加率越来越小,继而材料开始均匀塑性

(完整版)金属学与热处理考点总结及课后答案第二版

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,

提高材料的强度。 二、纯金属的结晶 重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。 基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。 相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。 过冷度:理论结晶温度与实际结晶温度的差称为过冷度。 变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。 过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。从热力学的角度上看,没有过冷度结晶就没有趋动力。根据 T R k ?∝1可知当过冷度T ?为零时临界晶核半径R k 为无穷大,临界形核功(21T G ?∝?)也为无穷大。临界晶核半径R k 与临界形核功为无穷大时,无法形核,所以液态金属不能结晶。晶体的长大也需要过冷度,所以液态金属结晶需要过冷度。 细化晶粒的方法:增加过冷度、变质处理、振动与搅拌。 铸锭三个晶区的形成机理:表面细晶区:当高温液体倒入铸模后,结晶先从模壁开始,靠近模壁一层的液体产生极大的过冷,加上模壁可以作为非均质形核的基底,因此在此薄层中立即形成大量的晶核,并同时向各个方向生长,形成表面细晶区。柱状晶区:在表面细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶前沿过冷都很小,不能生成新的晶核。垂直模壁方向散热最快,因而晶体沿相反方向生长成柱状晶。中心等轴晶区:随着柱状晶的生长,中心部位的液体实际温度分布区域平缓,由于溶质原子的重新分配,在固液界面前沿出现成分过冷,成分过冷区的扩大,促使新的晶核形成长大形成等轴晶。由于液体的流动使表面层细晶一部分卷入液体之中或柱状晶的枝晶被冲刷脱落而进入前沿的液体中作为非自发生核的籽晶。 三、二元合金的相结构与结晶 重点内容:杠杆定律、相律及应用。 基本内容:相、匀晶、共晶、包晶相图的结晶过程及不同成分合金在室温下的显微组织。合金、成分过冷;非平衡结晶及枝晶偏析的基本概念。

金属学与热处理资料总结试用期末复习考研哈尔滨工业大学(哈工大)重庆大学(重大)

★金属的定义:金属是具有正的电阻温度系数的物质, 通常具有良好的导电性、导热性、延展性、高的密度和高的光泽。 ★金属原子的结构特点:其最外层的电子(价电子)数很少,一般为1~2个,不超过3个。★结合力: ①金属键:共有价电子→电子云→键无方向性和饱和性②离子键: 得失价电子→正负离子③共价键: 共有电子对→键有饱和性④范德瓦尔键 : 一个分子的正电荷部位与另一分子的负电荷部位间以微弱静电引力相引而结合在一起称为分子键。 ★金属的键能:键能高,熔点、强度、模量也越高;原子半径热膨胀系数小 ★晶带轴:平行于或者相交于同一直线的一组晶面组成一个晶带,而该直线叫做晶带轴。

多晶型转变:当外部的温度和压强改变时,有些金属会由一种晶体结构向另一种晶体结构转变,称之为多晶型转变,又称为同素异构转变(重结晶,二次结晶) 第二章: 凝固:金属由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 宏观现象:过冷 热力学条件: 微观过程:形核和长大 影响金属结晶过冷度的因素: 答:①金属的本性 ②金属的纯度 ③冷却速度;④铸造模具所用材料 形核方式:均匀形核,非均匀形核 液固界面的微观结构:具有粗糙界面(杰克逊因子<2):垂直方式长大; 光滑界面(杰克逊因子>5)、台阶长大:二维晶核、螺型位错; 正温度梯度:平面状界面、 负温度梯度:树枝状 第三章: 二元相图: 匀晶相图:固溶体合金,适于变形成形 选择性结晶规律: 不平衡结晶:成分偏析 成分过冷:正温度梯度下可能长成树枝晶 共晶相图:适于铸造成形 伪共晶:由非共晶成分的合金所得到的共晶组织 离异共晶:共晶体中的一相依附于先析出相生长,使共晶组织特征消失 包晶相图: 铸锭三晶区的形成过程 表层细晶区:当高温液态金属倒入铸模后,靠近模壁一层的液体产生较大的过冷,结晶先 从铸模壁开始,并且模壁可以作为非均匀形核的基底,因此,在此薄层中会形成大量的晶 核,同时向各个方向生长,形成了表面细晶区。 柱状晶区:在表层细晶区形成的同时,铸模温度迅速升高,液态金属冷却速度减慢,结晶 前沿沿模壁方向过冷度迅速减小,,只有垂直模壁方向上得散热最快,因而,晶体沿垂直 与模壁方向生长而形成柱状晶。 中心等轴晶区:随着柱状晶的生长,中心部位的液体温度分布逐渐趋于平缓,各向的散热 速度趋于一致,从而晶核长大成等轴晶。 第四章 分析碳铁碳合金(钢、铁)的平衡结晶过程,画出组织示意图。 相:铁素体、奥氏体、渗碳体(共晶渗碳体、一次渗碳体,二次渗碳体、共析渗碳体)液相 组织: 铁素体 奥氏体 珠光体 莱氏体 计算相组成与组织组成物相对含量。 m m T T L G ΔΔ=

金属学与热处理

金属学与热处理 金属学是研究金属及其合金的科学,涉及金属的结构、性质、制备和应用等方面。热处理是金属学中一种常用的工艺,通过对金属材料的加热和冷却来改变其微观结构和性能。下面将分为几个段落回答您的问题。 第一段:金属学的基本概念和研究内容 金属学是一门学科,研究金属及其合金的结构、性质、制备和应用等方面。金属由金属原子组成,具有特定的晶体结构和导电性能。金属学的研究内容包括金属的晶体结构和晶体缺陷、金属的力学性能、热处理和变形加工等。 第二段:金属的热处理工艺和目的 热处理是金属学中一种重要的工艺,通过对金属材料的加热和冷却来改变其微观结构和性能。常见的热处理工艺包括退火、淬火、回火和固溶处理等。热处理的目的是改善金属材料的力学性能、耐腐蚀性能和加工性能,使其适应不同的应用需求。 第三段:退火和淬火的作用和原理 退火是通过加热和缓慢冷却金属材料,使其晶体结构发生变化,从而改善其韧性和可加工性。退火的原理是在加热过程中,金属的晶体缺

陷和应力得到消除,晶粒的尺寸和形态发生变化。淬火是迅速冷却金属材料,使其形成硬脆的组织,提高其硬度和强度。淬火的原理是通过快速冷却,使金属的晶体结构变为马氏体或贝氏体,从而实现硬化效果。 第四段:回火和固溶处理的意义和方法 回火是在淬火后将金属材料加热至适当温度后冷却,通过消除淬火产生的残余应力和改善组织结构,来调整金属材料的硬度和韧性。回火的方法包括单次回火、多次回火和复杂回火等。固溶处理是将金属材料加热至固溶温度,然后快速冷却,以改善合金的强度和耐腐蚀性。固溶处理的方法包括快速固溶处理和时效处理等。 以上便是对金属学与热处理的问题的回答,希望对您有所帮助。如有其他问题,请随时提问。

金属学与热处理

金属:具有正的电阻温度特性的物质。 晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。原子排列规律不同,性能也不同。 点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。 晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。这个用以完全反映晶格特征最小的几何单元称为晶胞。 多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。 空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位; 位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。基本类型有两种:即刃型位错和螺型位错。 晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。小角度晶界位相差小于10°,基本上由位错组成。大角度晶界相邻晶粒位相差大于10°,晶界很薄。 亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。 柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。使畸变能降低,同时使位错难以运动,造成金属的强化。这就是利用溶质原子与位错交互作用的柯垂尔气团--柯氏气团。用以解释钢的脆化、强度提高等宏观现象。 元:组成合金的最基本的独立的物质,简称元 相:合金中结构相同、成分和性能均一并以界面互相分开的组成部分,称之为相。 组织:由于形成条件不同,形成具有不同形状、大小数量及分布的相相互结合而成的综合体。 固溶体:组元以不同比例混合后形成的固相晶体结构与组成合金的某一组元相同,这种相称固溶体 化合物:是构成的组元相互作用,生成不同与任何组元晶体结构的新物质 相图:是表示合金系中合金的状态与温度、压力与成分之间关系的一种图解。又称状态图或平衡图。 表象点:位于相图中,并能表示合金成分、温度的点称表象点。 吉布斯相律:相律是表示平衡条件下,系统的自由度数、组元数和相数之间的关系,是系统平衡条件的数学表达式。相律可用下式表示:f = c -p +2 当系统的压力为常数时,则为:f = c-p + 1式中,c 系统的组元数,p 平衡条件下系统中相数,f 为自由度数。 自由度:是指在保持合金系中相的数目不变的条件下,合金系中可以独立改变的影响合金状态因素的数目 匀晶转变:从液相结晶出单相的固溶体,这种结晶过程称匀晶转变 异分结晶:固溶体结晶过程中,结晶出的固相与母相成分不同,这种结晶也称为选择结晶。 同分结晶:纯金属结晶时,所结晶出的晶体与母相化学成分完全一样。 枝晶偏析:生成固体的成分不均匀-偏析,快速冷却时在一个晶粒内部先后结晶的成分有差别,所以称为晶内偏析,金属的晶体往往以树枝晶方式生长,偏析的分布表现为不同层次的枝晶成分

金属学与热处理考纲

最终热处理:淬火()→低温回火()(除T7外) 注:K:碳化物;A’:残余奥氏体;M 回:回火马氏体;T 回 :回火托氏体;S 回 :回火索氏体。

简答题 晶体与非晶体在结构和性能上的主要区别是什么? 答:结构上:主要在于内部的原子排列情况。晶体中,原子按一定的规律周期性地重复排列着;而非晶体,其内部原子则是散乱分布着,至多有些局部的短程规律排列。 性能上:晶体具有一定的熔点,非晶体没有确定的熔点或凝固点。 另外,单晶体各向异性,多晶体与非晶体各向同性。(P4) bcc、fcc、hcp 各代表什么,其配位数和致密度各为多少? 答:分别代表体心立方,面心立方和密排六方; 配位数分别是8,12,12; 致密度分别是0.68,0.74,0.74。(P7-9) 什么是钢的TTT曲线及钢的临界冷却速度,有何用途? 答:TTT曲线也叫C曲线,即过冷奥氏体等温转变图。 钢的临界冷却速度:过冷奥氏体在连续冷却过程中转变为某种组织的最大或最小冷却速度。作用:根据他制定冷却方法,估算淬火后钢件的组织与性能。 钢中加入合金元素的主要目的与作用是什么? 答:改善钢的各种性能。在热力学上,扩大或缩小奥氏体区域;力学上,使C曲线向左或向右移动。除钴和铝(2.5%以上)外,合金元素使c曲线右移;还可以增加淬透性,细化晶粒,改善钢的力学性能,物理化学性能,机械性能等。 晶体缺陷有哪三类,各至少举一列说明。 答:点缺陷:空位,间隙原子,置换原子 线缺陷:刃型和螺旋型位错;面缺陷:晶界,亚晶界,孪晶界和相界等 为什么金属结晶的必须过冷? 答:只有当实际结晶温度低于理论结晶温度的时候,才能获得结晶过程所需要的驱动力,即△T→△G。 间隙固溶体和置换固溶体有何区别?(P61页开始) 金属塑性变形有哪两种基本方式,哪种为主? 答:滑移与孪生,以滑移为主。(P164) 塑性变形对金属的组织和性能有何影响? 答:组织:1:晶体形状发生变化2:亚结构细化;3:引起形变织构(丝织构与板织构),性能上引起加工硬化。(什么是加工硬化?) 塑性变形金属在随后的加热过程中,随温度的上升其组织和性能将有什么变化? 答:组织上,随温度的升高,晶粒内部开始出现新的小晶粒,随时间延长,新晶粒不断出现并长大,随时间继续增加,新晶

金属学与热处理试题及答案

复习自测题 绪论及第一章金属的晶体构造自测题 (一)区别概念 1.屈服强度和抗拉强度; 2.晶体和非晶体; 3 刚度及强度 (二)填空 1.及非金属相比,金属的主要特性是 2.体心立方晶胞原子数是,原子半径是,常见的体心立方构造的金属有。 3.设计刚度好的零件,应根据指标来选择材料。 是材料从状态转变为状态时的温度。 4 T K 5 屈强比是及之比。 6.材料主要的工艺性能有、、和。 7 材料学是研究材料的、、和四大要素以及这四大要素相互关系及规律的一门科学;材料性能取决于其内部的,后者又取决于材料的和。 8 本课程主要包括三方面内容:、和。 (三)判断题 1.晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。 ( ) 2.因为面心立方和密排六方晶体的配位数和致密度都一样,因此分别具有这两种晶体构造的金属其性能根本上是一样的。( ) 3.因为单晶体具有各向异性,多晶体中的各个晶粒类似于单晶体,由此推断多晶体在各个方向上的性能也是不一样的。( ) 4.金属的理想晶体的强度比实际晶体的强度高得多。 5.材料的强度高,其硬度就高,所以其刚度也大。 (四)改错题 1.通常材料的电阻随温度升高而增加。 3.面心立方晶格的致密度为0.68。 4.常温下,金属材料的晶粒越细小时,其强度硬度越高,塑性韧性越低。5.体心立方晶格的最密排面是{100}晶面。 (五) 问答题

1.从原子结合的观点来看,金属、陶瓷和高分子材料有何主要区别在性能上有何表现 2.试用金属键结合的方式,解释金属具有良好导电性、导热性、塑性和金属光泽等根本特性。 (六) 计算作图题 1.在一个晶胞中,分别画出室温纯铁(011)、(111)晶面及[111)、[011)晶向。2.一直径为11.28mm,标距为50mm的拉伸试样,加载为50000N时,试样的伸长为。撤去载荷,变形恢复,求该试样的弹性模量。 3.a-Fe的晶格常数,γ-Fe的晶格常数。试求出a-Fe和γ-Fe的原子半径和密度(Fe的原子量为55.85)。 4.设有一刚性球模型。当由面心立方晶格转变成为体心立方晶格时,计算其体积膨胀率。假设在912℃时,γ-Fe的晶格常数a=,a-Fe的晶格常数,又计算γ-Fe转变成为a-Fe的体积膨胀率。试比拟两者差异的原因。 第二章纯金属的结晶自测题 (一)判断题 1.液态金属构造及固态金属构造比拟接近,而及气态金属相差较远。 2.过冷是结晶的必要条件,无论过冷度大、小,都能保证结晶过程得以进展。 3.当纯金属结晶时,形核率总是随着过冷度的增大而增加。( ) 4.金属面心立方晶格的致密度比体心立方晶格的致密度高。( ) 5.金属晶体各向异性的产生,及不同晶面和晶向上原子排列的方式和密度相关。( ) 6.金属的结晶过程分为两个阶段,即先形核,形核停顿之后,便发生长大,使晶粒充满整个容积。 7.玻璃是非晶态固体材料,没有各向异性现象。( ) (二)选择题 1.纯金属结晶时,冷却速度越快,那么实际结晶温度将。 A.越高且越低C越接近理论结晶温度D.上下波动越大 2.在实际金属结晶时,往往通过控制N/G比值来控制晶粒度。当时,将获得粗大晶粒。 A.N/G很大B.N/G很小C.N/G居中,0.N/G=1 3.晶体中的晶界属于。 A.点缺陷且线缺陷C面缺陷0.体缺陷 4.材料的刚度及有关。 A.弹性模量B.屈服强度C抗拉强度D.延伸率 5.纯金属结晶的冷却曲线中,由于结晶潜热而出现结晶平台现象。这个结晶平台对应的横坐标和纵坐标表示。 A理论结晶温度和时间 B 时间和理论结晶温度 C自由能和温度D.温度和自由能 〔三)问答题 1.阐述液态金属构造特点并说明它为什么接近固态而及气态相差较远 2.如果其它条件一样,试比拟以下铸造条件下铸件晶粒的大小,为什么 ①金属模浇注及砂模浇注;②高温浇注及低温浇注;

金属学与热处理试题及答案

复习自测题 绪论及第一章金属的晶体结构自测题 (一)区别概念 1.屈服强度和抗拉强度; 2.晶体和非晶体; 3 刚度与强度 (二)填空 1.与非金属相比,金属的主要特性是 2.体心立方晶胞原子数是,原子半径是,常见的体心立方结构的金属有。 3.设计刚度好的零件,应根据指标来选择材料。 是材料从状态转变为状态时的温度。 4 T K 5 屈强比是与之比。 6.材料主要的工艺性能有、、和。 7 材料学是研究材料的、、和四大要素以及这四大要素相互关系与规律的一门科学;材料性能取决于其内部的,后者又取决于材料的和。 8 本课程主要包括三方面内容:、和。 (三)判断题 1.晶体中原子偏离平衡位置,就会使晶体的能量升高,因此能增加晶体的强度。 ( ) 2.因为面心立方和密排六方晶体的配位数和致密度都相同,因此分别具有这两种晶体结构的金属其性能基本上是一样的。( ) 3.因为单晶体具有各向异性,多晶体中的各个晶粒类似于单晶体,由此推断多晶体在各个方向上的性能也是不相同的。( ) 4.金属的理想晶体的强度比实际晶体的强度高得多。 5.材料的强度高,其硬度就高,所以其刚度也大。 (四)改错题 1.通常材料的电阻随温度升高而增加。 3.面心立方晶格的致密度为0.68。 4.常温下,金属材料的晶粒越细小时,其强度硬度越高,塑性韧性越低。5.体心立方晶格的最密排面是{100}晶面。 (五) 问答题

1.从原子结合的观点来看,金属、陶瓷和高分子材料有何主要区别?在性能上有何表现? 2.试用金属键结合的方式,解释金属具有良好导电性、导热性、塑性和金属光泽等基本特性。 (六) 计算作图题 1.在一个晶胞中,分别画出室温纯铁(011)、(111)晶面及[111)、[011)晶向。2.已知一直径为11.28mm,标距为50mm的拉伸试样,加载为50000N时,试样的伸长为0.04mm。撤去载荷,变形恢复,求该试样的弹性模量。 3.已知a-Fe的晶格常数a=0.28664nm,γ-Fe的晶格常数a=0.364nm。试求出a-Fe 和γ-Fe的原子半径和密度(已知Fe的原子量为55.85)。 4.设有一刚性球模型。当由面心立方晶格转变成为体心立方晶格时,计算其体积膨胀率。若在912℃时,γ-Fe的晶格常数a=0.3633nm,a-Fe的晶格常数a=0.2892nm,又计算γ-Fe转变成为a-Fe的体积膨胀率。试比较两者差别的原因。 第二章纯金属的结晶自测题 (一)判断题 1.液态金属结构与固态金属结构比较接近,而与气态金属相差较远。 2.过冷是结晶的必要条件,无论过冷度大、小,都能保证结晶过程得以进行。 3.当纯金属结晶时,形核率总是随着过冷度的增大而增加。( ) 4.金属面心立方晶格的致密度比体心立方晶格的致密度高。( ) 5.金属晶体各向异性的产生,与不同晶面和晶向上原子排列的方式和密度相关。( ) 6.金属的结晶过程分为两个阶段,即先形核,形核停止之后,便发生长大,使晶粒充满整个容积。 7.玻璃是非晶态固体材料,没有各向异性现象。( ) (二)选择题 1.纯金属结晶时,冷却速度越快,则实际结晶温度将。 A.越高且越低C越接近理论结晶温度D.高低波动越大 2.在实际金属结晶时,往往通过控制N/G比值来控制晶粒度。当时,将获得粗大晶粒。 A.N/G很大B.N/G很小C.N/G居中,0.N/G=1 3.晶体中的晶界属于。 A.点缺陷且线缺陷C面缺陷0.体缺陷 4.材料的刚度与有关。 A.弹性模量B.屈服强度C抗拉强度D.延伸率 5.纯金属结晶的冷却曲线中,由于结晶潜热而出现结晶平台现象。这个结晶平台对应的横坐标和纵坐标表示。 A理论结晶温度和时间 B 时间和理论结晶温度 C自由能和温度D.温度和自由能 (三)问答题 1.阐述液态金属结构特点并说明它为什么接近固态而与气态相差较远? 2.如果其它条件相同,试比较下列铸造条件下铸件晶粒的大小,为什么?

金属学与热处理(哈尔滨工业大学_第二版)课后习题问题详解

第一章 1.作图表示出立方晶系(1 2 3)、(0 -1 -2)、(4 2 1)等晶面和[-1 0 2]、[-2 1 1]、[3 4 6] 等晶向 3.某晶体的原子位于正方晶格的节点上,其晶格常数a=b≠c, c=2/3a。今有一晶面在X、Y、Z坐标轴上的截距分别是5个原子间距,2个原子间距和3个原子间距,求该晶面的晶面参数。 解:设X方向的截距为5a,Y方向的截距为2a,则Z方向截距为3c=3X2a/3=2a,取截距的倒数,分别为 1/5a,1/2a,1/2a 化为最小简单整数分别为2,5,5 故该晶面的晶面指数为(2 5 5) 4.体心立方晶格的晶格常数为a,试求出(1 0 0)、(1 1 0)、(1 1 1)晶面的晶面间距,并指出面间距最大的晶面 解:(1 0 0)面间距为a/2,(1 1 0)面间距为√2a/2,(1 1 1)面

间距为√3a/3 三个晶面晶面中面间距最大的晶面为(1 1 0) 7.证明理想密排六方晶胞中的轴比c/a=1.633 证明:理想密排六方晶格配位数为12,即晶胞上底面中心原子与其下面的3个位于晶胞内的原子相切,成正四面体,如图所示 则OD=c/2,AB=BC=CA=CD=a 因△ABC是等边三角形,所以有OC=2/3CE 由于(BC)2=(CE)2+(BE)2 则 有(CD)2=(OC)2+(1/2c)2,即 因此c/a=√8/3=1.633 8.试证明面心立方晶格的八面体间隙半径为r=0.414R 解:面心立方八面体间隙半径r=a/2-√2a/4=0.146a 面心立方原子半径R=√2a/4,则a=4R/√2,代入上式有

金属学与热处理知识点总结

金属学与热处理知识点总结

金属学与热处理总结 一、金属的晶体结构 重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。 基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、 晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。 金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。 位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。 位错的柏氏矢量具有的一些特性: ①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。 刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。 晶界具有的一些特性: ①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。 二、纯金属的结晶

变化。 基本内容:回复、再结的概念、变形金属加热时储存能的变化。再结晶后的晶粒尺寸;影响再结晶的主要因素性能的变化规律。 变形金属加热时显微组织的变化、性能的变化:随温度的升高,金属的硬度和强度下降,塑性和韧性提高。电阻率不断下降,密度升高。金属的抗腐蚀能力提高,内应力下降。 再结晶:冷变形后的金属加热到一定温度之后,在原来的变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化,并恢复到完全软化状态,这个过程称之为再结晶。 热加工的主要作用(或目的)是:①把钢材加工成所需要的各种形状,如棒材、板材、线材等;②能明显的改善铸锭中的组织缺陷,如气泡焊合,缩松压实,使金属材料的致密度增加;③使粗大的柱状晶变细,合金钢中大块状碳化物初晶打碎并使其均匀分布;④减轻或消除成分偏析,均匀化学成分等。使材料的性能得到明显的改善。 影响再结晶的主要因素:①再结晶退火温度:退火温度越高(保温时间一定时),再结晶后的晶粒越粗大;②冷变形量:一般冷变形量越大,完成再结晶的温度越低,变形量达到一定程度后,完成再结晶的温度趋于恒定;③原始晶粒尺寸:原始晶粒越细,再结晶晶粒也越细;④微量溶质与杂质原子,一般均起细化晶粒的作用;⑤第二相粒子,粗大的第二相粒子有利于再结晶,弥散分布的细小的第二相粒子不利于再结晶;⑥形变温度,形变温度越高,再结晶温度越高,晶粒粗化;⑦加热速度,加热速度过快或过慢,都可能使再结晶温度升高。 塑性变形后的金属随加热温度的升高会发生的一些变化: 显微组织经过回复、再结晶、晶粒长大三个阶段由破碎的或纤维组织转变成等轴晶粒,亚晶尺寸增大;储存能降低,内应力松弛或被消除;各种结构缺陷减少;强度、硬度降低,塑性、韧度提高;电阻下降,应力腐蚀倾向显著减小。 八、扩散 重点内容:影响扩散的因素;扩散第一定律表达式。 基本内容:扩散激活能、扩散的驱动力。柯肯达尔效应,扩散第二定律表达式。 柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象称为柯肯达尔效应。 影响扩散的因素: ①温度:温度越高,扩散速度越大; ② 晶体结构:体心结构的扩散系数大于面心结构的扩散系数; ③ 固溶体类型:间隙原子的扩散速度大于置换原子的扩散速度; ④ 晶体缺陷:晶体缺陷越多,原子的扩散速度越快; ⑤ 化学成分:有些元素可以加快原子的扩散速度,有些可以减慢扩散速度。 扩散第一定律表达式:扩散第一定律表达式:dx dC D J -= 其中,J 为扩散流量;D 为扩散系数;dx dC 为浓度梯度。 扩散的驱动力为化学位梯度,阻力为扩散激活能

相关主题
文本预览
相关文档 最新文档