形,BD∩AC=G,∴G是BD的中点.又∵E是
BB1的中点,∴DB1∥GE.又DB1⊄平面
ACE,GE⊂平面ACE,∴B1D∥平面ACE.
变式 (1)如图,四棱锥P-ABCD的底面为平行四边形,M为棱PC的中点.
求证:(1)BC∥平面PAD;
(2)AP∥平面MBD.
证明:(1)因为四棱锥P-ABCD的底面为平行四边形,所以BC∥AD,又BC⊄平面
意可知四边形ABC1D1为平行四边形,则AD1∥BC1.又AD1∥EF,所以EF∥BC1.因
为EF⊄平面BCC1B1,BC1⊂平面BCC1B1,所以EF∥平面BCC1B1.显然正方体的其
余4个面都不与EF平行.故选B.
变式 (3)如图所示,四棱锥S - ABCD的底面是平行四边
形,M,N分别是SA,BD上的点,且 = .求证:MN∥平面
SBC.
证明:连接AN并延长,使之交BC于点P,连接SP.因为AD∥BC,所以 = .又
= ,所以 = ,所以MN∥SP.
因为MN⊄平面SBC,SP⊂平面SBC,所以MN∥平面SBC.
小结
1.利用直线与平面平行的判定定理证明线面平行的一般步骤
解析
思考►►►
如何判定一条直线与一个平面平行?
【解析】 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面
平行.
解析
直线与平面平行的判定定理:
表示定理
直线与平面
平行的
判定定理
图形
文字
符号
如果平面外一条直线
a⊄α,
与此平面内的一条直
b⊂α,
线平行,那么该直线