用向量方法解决垂直问题
- 格式:pdf
- 大小:2.78 MB
- 文档页数:41
利用向量证明平行垂直问题
首先,我们要了解向量代表的是一个方向和大小。
我们可以利用向量的数量积(点乘)和向量积(叉乘)来证明平行和垂直的问题。
对于向量的平行问题:
假设两个向量$\vec{a}$ 和$\vec{b}$,如果$\vec{a}$ 和$\vec{b}$ 平行,那么它们的方向相同或相反。
因此,它们的数量积$\vec{a} \cdot \vec{b}$ 一定大于0。
所以,如果$\vec{a} \cdot \vec{b} > 0$,那么$\vec{a}$ 和$\vec{b}$ 平行。
对于向量的垂直问题:
假设两个向量$\vec{a}$ 和$\vec{b}$,如果$\vec{a}$ 和$\vec{b}$ 垂直,那么它们的方向正交。
因此,它们的数量积$\vec{a} \cdot \vec{b}$ 一定等于0。
所以,如果$\vec{a} \cdot \vec{b} = 0$,那么$\vec{a}$ 和$\vec{b}$ 垂直。
这就是利用向量证明平行和垂直问题的方法。
学习目标 1.能用向量法判断一些简单线线、线面、面面垂直关系.2.能用向量语言表述直线与直线、直线与平面、平面与平面的垂直关系.3.能用向量方法证明空间线面垂直关系的有关定理.知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那么两直线是否垂直?用向量法判断两条直线垂直的一般方法是什么?答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是两直线的方向向量,所以l 1与l 2垂直.判断两条直线是否垂直的方法:(1)在两直线上分别取两点A 、B 与C 、D ,计算向量AB →与CD →的坐标,若AB →·CD →=0,则两直线垂直,否则不垂直.(2)判断两直线的方向向量的数量积是否为零,若数量积为零,则两直线垂直,否则不垂直. 梳理 设直线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0. 知识点二 向量法判断线面垂直思考 若直线l 的方向向量为μ1=⎝⎛⎭⎫2,43,1,平面α的法向量为μ2=⎝⎛⎭⎫3,2,32,则直线l 与平面α的位置关系是怎样的?如何用向量法判断直线与平面的位置关系?答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直线的方向向量与平面的法向量平行,所以直线l 与平面α垂直.判断直线与平面的位置关系的方法:(1)直线l 的方向向量与平面α的法向量共线⇒l ⊥α.(2)直线的方向向量与平面的法向量垂直⇒直线与平面平行或直线在平面内. (3)直线l 的方向向量与平面α内的两相交直线的方向向量垂直⇒l ⊥α.梳理 设直线l 的方向向量a =(a 1,b 1,c 1),平面α的法向量μ=(a 2,b 2,c 2),则l ⊥α⇔a ∥μ⇔a =k μ(k ∈R ).知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x 1,y 1,z 1),μ2=(x 2,y 2,z 2),用向量坐标法表示两平面α,β垂直的关系式是什么? 答案 x 1x 2+y 1y 2+z 1z 2=0.梳理 若平面α的法向量为μ=(a 1,b 1,c 1),平面β的法向量为ν=(a 2,b 2,c 2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔a 1a 2+b 1b 2+c 1c 2=0.类型一 证明线线垂直例1 已知正三棱柱ABC -A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱CC 1上的点,且CN =14CC 1.求证:AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 为坐标原点,OB 为x 轴,OC 为y 轴,OO 1为z 轴建立如图所示的空间直角坐标系.由已知得A ⎝⎛⎭⎫-12,0,0,B ⎝⎛⎭⎫12,0,0,C ⎝⎛⎭⎫0,32,0,N ⎝⎛⎭⎫0,32,14,B 1⎝⎛⎭⎫12,0,1, ∵M 为BC 中点, ∴M ⎝⎛⎭⎫14,34,0.∴MN →=⎝⎛⎭⎫-14,34,14,AB 1→=(1,0,1),∴MN →·AB 1→=-14+0+14=0.∴MN →⊥AB 1→, ∴AB 1⊥MN .反思与感悟 证明两直线垂直的基本步骤:建立空间直角坐标系→写出点的坐标→求直线的方向向量→证明向量垂直→得到两直线垂直.跟踪训练1 如图,在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求证:AC ⊥BC 1.证明 ∵直三棱柱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5, ∴AC 、BC 、C 1C 两两垂直.如图,以C 为坐标原点,CA 、CB 、CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0), ∵AC →=(-3,0,0),BC 1→=(0,-4,4), ∴AC →·BC 1→=0.∴AC ⊥BC 1. 类型二 证明线面垂直例2 如图所示,正三棱柱ABC -A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .证明 如图所示,取BC 的中点O ,连接AO .因为△ABC 为正三角形,所以AO ⊥BC .因为在正三棱柱ABC -A 1B 1C 1中,平面ABC ⊥平面BCC 1B 1, 所以AO ⊥平面BCC 1B 1.取B 1C 1的中点O 1,以O 为原点,以OB →,OO 1→,OA →分别为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,则B (1,0,0),D (-1,1,0),A 1(0,2,3),A (0,0,3),B 1(1,2,0). 所以AB 1→=(1,2,-3),BA 1→=(-1,2,3),BD →=(-2,1,0). 因为AB 1→·BA 1→=1×(-1)+2×2+(-3)×3=0. AB 1→·BD →=1×(-2)+2×1+(-3)×0=0.所以AB 1→⊥BA 1→,AB 1→⊥BD →,即AB 1⊥BA 1,AB 1⊥BD . 又因为BA 1∩BD =B ,所以AB 1⊥平面A 1BD . 反思与感悟 用坐标法证明线面垂直的方法及步骤 方法一:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示.(3)找出平面内两条相交直线,并用坐标表示它们的方向向量. (4)分别计算两组向量的数量积,得到数量积为0. 方法二:(1)建立空间直角坐标系. (2)将直线的方向向量用坐标表示. (3)求出平面的法向量.(4)判断直线的方向向量与平面的法向量平行.跟踪训练2 如图,在长方体ABCD -A 1B 1C 1D 1中,AB =AD =1,AA 1=2,点P 为DD 1的中点.求证:直线PB 1⊥平面P AC .证明 如图建系,C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC →=(1,0,-1),P A →=(0,1,-1),PB 1→=(1,1,1),B 1C →=(0,-1,-2),B 1A →=(-1,0,-2).PB 1→·PC →=(1,1,1)·(1,0,-1)=0, 所以PB 1→⊥PC →,即PB 1⊥PC .又PB 1→·P A →=(1,1,1)·(0,1,-1)=0, 所以PB 1→⊥P A →,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC . 类型三 证明面面垂直例3 在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AB ⊥BC ,AB =BC =2,AA 1=1,E 为BB 1的中点,求证:平面AEC 1⊥平面AA 1C 1C .证明 由题意知直线AB ,BC ,B 1B 两两垂直,以点B 为原点,分别以BA ,BC ,BB 1所在直线为x ,y ,z 轴,建立如图所示的空间直角坐标系,则A (2,0,0),A 1(2,0,1),C (0,2,0),C 1(0,2,1),E (0,0,12),故AA 1→=(0,0,1),AC →=(-2,2,0),AC 1→=(-2,2,1),AE →=(-2,0,12).设平面AA 1C 1C 的法向量为n 1=(x ,y ,z ), 则⎩⎪⎨⎪⎧n 1·AA 1→=0,n 1·AC →=0,即⎩⎪⎨⎪⎧z =0,-2x +2y =0.令x =1,得y =1,故n 1=(1,1,0). 设平面AEC 1的法向量为n 2=(a ,b ,c ), 则⎩⎪⎨⎪⎧ n 2·AC 1→=0,n 2·AE →=0,即⎩⎪⎨⎪⎧-2a +2b +c =0,-2a +12c =0. 令c =4,得a =1,b =-1,故n 2=(1,-1,4). 因为n 1·n 2=1×1+1×(-1)+0×4=0, 所以n 1⊥n 2.所以平面AEC 1⊥平面AA 1C 1C . 反思与感悟 证明面面垂直的两种方法(1)常规法:利用面面垂直的判定定理转化为线面垂直、线线垂直去证明.(2)向量法:证明两个平面的法向量互相垂直.跟踪训练3 在四面体ABCD 中,AB ⊥平面BCD ,BC =CD ,∠BCD =90°,∠ADB =30°,E 、F 分别是AC 、AD 的中点,求证:平面BEF ⊥平面ABC .证明 以B 为原点建立如图所示的空间直角坐标系,设A (0,0,a ),则易得B (0,0,0),C ⎝⎛⎭⎫32a ,32a ,0,D (0,3a ,0),E ⎝⎛⎭⎫34a ,34a ,a 2,F (0,32a ,a 2),故AB →=(0,0,-a ),BC →=⎝⎛⎭⎫32a ,32a ,0.设平面ABC 的法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·AB →=0,n 1·BC →=0,即⎩⎪⎨⎪⎧-az 1=0,x 1+y 1=0,取x 1=1,∴n 1=(1,-1,0)为平面ABC 的一个法向量. 设n 2=(x 2,y 2,z 2)为平面BEF 的一个法向量, 同理可得n 2=(1,1,-3).∵n 1·n 2=(1,-1,0)·(1,1,-3)=0, ∴平面BEF ⊥平面ABC .1.下列命题中,正确命题的个数为( )①若n 1,n 2分别是平面α,β的法向量,则n 1∥n 2⇔α∥β; ②若n 1,n 2分别是平面α,β的法向量,则α⊥β ⇔ n 1·n 2=0; ③若n 是平面α的法向量,a 与平面α平行,则n ·a =0; ④若两个平面的法向量不垂直,则这两个平面不垂直. A.1 B.2 C.3 D.4 答案 C解析 ①中平面α,β可能平行,也可能重合,结合平面法向量的概念,易知②③④正确. 2.已知两直线的方向向量为a ,b ,则下列选项中能使两直线垂直的为( ) A.a =(1,0,0),b =(-3,0,0) B.a =(0,1,0),b =(1,0,1) C.a =(0,1,-1),b =(0,-1,1)D.a=(1,0,0),b=(-1,0,0)答案 B解析因为a=(0,1,0),b=(1,0,1),所以a·b=0×1+1×0+0×1=0,所以a⊥b,故选B.3.若直线l的方向向量为a=(1,0,2),平面α的法向量为μ=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α斜交答案 B解析∵a∥μ,∴l⊥α.4.平面α的一个法向量为m=(1,2,0),平面β的一个法向量为n=(2,-1,0),则平面α与平面β的位置关系是()A.平行B.相交但不垂直C.垂直D.不能确定答案 C解析∵(1,2,0)·(2,-1,0)=0,∴两法向量垂直,从而两平面垂直.5.已知平面α与平面β垂直,若平面α与平面β的法向量分别为μ=(-1,0,5),ν=(t,5,1),则t的值为________.答案 5解析∵平面α与平面β垂直,∴平面α的法向量μ与平面β的法向量ν垂直,∴μ·ν=0,即(-1)×t+0×5+5×1=0,解得t=5.空间垂直关系的解决策略40分钟课时作业一、选择题1.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m 等于( ) A.-2 B.2 C.6 D.10 答案 D解析 因为a ⊥b ,故a ·b =0,即-2×3+2×(-2)+m =0,解得m =10.2.若平面α,β的法向量分别为a =(-1,2,4),b =(x ,-1,-2),并且α⊥β,则x 的值为( )A.10B.-10C.12D.-12答案 B解析 因为α⊥β,则它们的法向量也互相垂直, 所以a ·b =(-1,2,4)·(x ,-1,-2)=0, 解得x =-10.3.已知点A (0,1,0),B (-1,0,-1),C (2,1,1),P (x ,0,z ),若P A ⊥平面ABC ,则点P 的坐标为( )A.(1,0,-2)B.(1,0,2)C.(-1,0,2)D.(2,0,-1) 答案 C解析 由题意知AB →=(-1,-1,-1),AC →=(2,0,1),AP →=(x ,-1,z ),又P A ⊥平面ABC ,所以有AB →·AP →=(-1,-1,-1)·(x ,-1,z )=0,得-x +1-z =0, ① AC →·AP →=(2,0,1)·(x ,-1,z )=0,得2x +z =0,②联立①②得x =-1,z =2,故点P 的坐标为(-1,0,2).4.在正方体ABCD -A 1B 1C 1D 1中,若E 为A 1C 1的中点,则直线CE 垂直于( ) A.AC B.BD C.A 1D D.A 1A 答案 B解析 建立如图所示的空间直角坐标系.设正方体的棱长为1,则A (0,1,0),B (1,1,0),C (1,0,0),D (0,0,0),A 1(0,1,1),C 1(1,0,1),E ⎝⎛⎭⎫12,12,1,∴CE →=⎝⎛⎭⎫-12,12,1,AC →=(1,-1,0), BD →=(-1,-1,0),A 1D →=(0,-1,-1),A 1A →=(0,0,-1), ∵CE →·BD →=(-1)×(-12)+(-1)×12+0×1=0,∴CE ⊥BD .5.若平面α,β垂直,则下面可以作为这两个平面的法向量的是( ) A.n 1=(1,2,1),n 2=(-3,1,1) B.n 1=(1,1,2),n 2=(-2,1,1) C.n 1=(1,1,1),n 2=(-1,2,1) D.n 1=(1,2,1),n 2=(0,-2,-2) 答案 A解析 ∵1×(-3)+2×1+1×1=0, ∴n 1·n 2=0,故选A.6.两平面α,β的法向量分别为μ=(3,-1,z ),v =(-2,-y ,1),若α⊥β,则y +z 的值是( )A.-3B.6C.-6D.-12 答案 B解析 α⊥β⇒μ·v =0⇒-6+y +z =0,即y +z =6. 二、填空题7.在三棱锥S -ABC 中,∠SAB =∠SAC =∠ACB =90°,AC =2,BC =13,SB =29,则异面直线SC 与BC 是否垂直________.(填“是”或“否”) 答案 是解析 如图,以A 为原点,AB ,AS 分别为y 轴,z 轴建立空间直角坐标系,则由AC =2,BC =13,SB =29, 得B (0,17,0),S (0,0,23),C ⎝ ⎛⎭⎪⎫21317,417,0, SC →=⎝⎛⎭⎪⎫21317,417,-23,CB →=⎝⎛⎭⎪⎫-21317,1317,0. 因为SC →·CB →=0,所以SC ⊥BC .8.已知点P 是平行四边形ABCD 所在的平面外一点,如果AB →=(2,-1,-4),AD →=(4,2,0),AP →=(-1,2,-1).对于结论:①AP ⊥AB ;②AP ⊥AD ;③AP →是平面ABCD 的法向量;④AP →∥BD →.其中正确的是________.(填序号) 答案 ①②③解析 ∵AP →·AB →=(-1,2,-1)·(2,-1,-4)=-1×2+2×(-1)+(-1)×(-4)=0,∴AP ⊥AB ,即①正确;∵AP →·AD →=(-1,2,-1)·(4,2,0)=(-1)×4+2×2+(-1)×0=0,∴AP ⊥AD ,即②正确; 又∵AB ∩AD =A , ∴AP ⊥平面ABCD ,即AP →是平面ABCD 的一个法向量,即③正确; ∵AP →是平面ABCD 的法向量, ∴AP →⊥BD →,即④不正确.9.在空间直角坐标系Oxyz 中,已知点P (2cos x +1,2cos 2x +2,0)和点Q (cos x ,-1,3),其中x ∈[0,π].若直线OP 与直线OQ 垂直,则x 的值为________. 答案 π2或π3解析 由题意得OP →⊥OQ →,∴cos x ·(2cos x +1)-(2cos 2x +2)=0. ∴2cos 2x -cos x =0, ∴cos x =0或cos x =12.又x ∈[0,π], ∴x =π2或x =π3.10.在△ABC 中,A (1,-2,-1),B (0,-3,1),C (2,-2,1).若向量n 与平面ABC 垂直,且|n |=21,则n 的坐标为________________. 答案 (-2,4,1)或(2,-4,-1)解析 据题意,得AB →=(-1,-1,2),AC →=(1,0,2).设n =(x ,y ,z ),∵n 与平面ABC 垂直,∴⎩⎪⎨⎪⎧ n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧ -x -y +2z =0,x +2z =0,可得⎩⎪⎨⎪⎧y =4z ,y =-2x . ∵|n |=21,∴x 2+y 2+z 2=21,解得y =4或y =-4.当y =4时,x =-2,z =1;当y =-4时,x =2,z =-1.三、解答题11.如图,在四棱锥P -ABCD 中,P A ⊥平面ABCD ,AB =4,BC =3,AD =5,∠DAB =∠ABC =90°,E 是CD 的中点.证明:CD ⊥平面P AE .证明 如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设P A =h ,则相关各点的坐标为A (0,0,0),B (4,0,0),C (4,3,0),D (0,5,0),E (2,4,0),P (0,0,h ).易知CD →=(-4,2,0),AE →=(2,4,0),AP →=(0,0,h ).因为CD →·AE →=-8+8+0=0,CD →·AP →=0,所以CD ⊥AE ,CD ⊥AP ,而AP ,AE 是平面P AE 内的两条相交直线,所以CD ⊥平面P AE .12.如图,在四棱锥P -ABCD 中,底面ABCD 是矩形,P A ⊥底面ABCD ,P A =AB =1,AD =3,点F 是PB 的中点,点E 在边BC 上移动.求证:无论点E 在BC 边的何处,都有PE ⊥AF .证明 建立如图所示空间直角坐标系,则P (0,0,1),B (0,1,0),F ⎝⎛⎭⎫0,12,12,D ()3,0,0,设BE =x (0≤x ≤3),则E (x ,1,0),PE →·AF →=(x ,1,-1)·⎝⎛⎭⎫0,12,12=0, 所以x ∈[0, 3 ]时都有PE ⊥AF ,即无论点E 在BC 边的何处,都有PE ⊥AF .13.已知正方体ABCDA 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.(1)证明 以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.设正方体棱长为a ,则 A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e ) (0≤e ≤a ),A 1E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),A 1E →·BD →=a 2-a 2+(e -a )·0=0,∴A 1E →⊥BD →,即A 1E ⊥BD .(2)解 设平面A 1BD ,平面EBD 的法向量分别为n 1=(x 1,y 1,z 1),n 2=(x 2,y 2,z 2). ∵DB →=(a ,a ,0),DA 1→=(a ,0,a ),DE →=(0,a ,e ),∴⎩⎪⎨⎪⎧ ax 1+ay 1=0,ax 1+az 1=0,⎩⎪⎨⎪⎧ ax 2+ay 2=0,ay 2+ez 2=0. 取x 1=x 2=1,得n 1=(1,-1,-1),n 2=(1,-1,a e), 由平面A 1BD ⊥平面EBD 得n 1⊥n 2,∴2-a e =0,即e =a 2. ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .。
直线与平面垂直的方法直线与平面垂直是一个基本的几何概念,它表示直线与平面之间的相互关系。
在三维空间中,直线与平面的垂直关系可以通过几种方法来确定。
方法一:使用向量求垂直设直线L的向量方向为v,平面P的法线向量为n。
则L与P垂直的条件是v·n=0,即直线L的向量与平面P的法线向量的点积为0。
这是因为两个向量的点积为0意味着它们相互垂直。
具体而言,我们可以通过以下步骤使用向量求垂直:1. 求直线的向量:a) 确定直线上两点A(x1, y1, z1)和B(x2, y2, z2);b) 直线的向量v = AB = (x2 - x1, y2 - y1, z2 - z1)。
2. 求平面的法线向量:a) 找出平面上的三个点(点A、点B、点C);b) 确定平面的两个向量:AB和AC;c) 使用向量叉乘,求平面的法线向量:n = AB ×AC。
3. 进行点乘运算:a) 将直线的向量v和平面的法线向量n进行点乘运算。
b) 若结果为0,则直线与平面垂直;c) 若结果不为0,则直线与平面不垂直。
方法二:使用平面的方程求垂直设平面P的方程为Ax + By + Cz + D = 0,直线L的参数方程为{x = x0 + at, y = y0 + bt, z = z0 + ct},其中(a, b, c)为直线的方向向量。
则直线L与平面P垂直的条件是平面的法线向量(n)与直线的方向向量(a, b, c)的点乘为0。
具体而言,我们可以通过以下步骤使用平面的方程求垂直:1. 将直线的参数方程代入平面的方程中,得到以下表达式:A(x0 + at) + B(y0 + bt) + C(z0 + ct) + D = 0。
2. 展开并整理上述表达式,得到以下结果:Ax0 + By0 + Cz0 + D + (aA + bB + cC)t = 0。
3. 对比上述方程中t的系数,即(aA + bB + cC),若其为0,则直线与平面垂直;若不为0,则直线与平面不垂直。
3.2.2 利用向量解决平行、垂直问题1.用向量方法证明空间中的平行关系(1)证明线线平行设直线l,m的方向向量分别是a=(a1,b1,c1),b=(a2,b2,c2),则l∥m⇔□01a∥b⇔□02 a=λb⇔□03a1=λa2,b1=λb2,c1=λc2(λ∈R).(2)证明线面平行设直线l的方向向量为a=(a1,b1,c1),平面α的法向量为u=(a2,b2,c2),则l∥α⇔□04a⊥u⇔□05a·u=0⇔□06a1a2+b1b2+c1c2=0.(3)证明面面平行①设平面α,β的法向量分别为u=(a1,b1,c1),v=(a2,b2,c2),则α∥β⇔□07u∥v⇔u=λv⇔□08a1=λa2,b1=λb2,c1=λc2(λ∈R).②由面面平行的判定定理,要证明面面平行,只要转化为相应的线面平行、线线平行即可.2.用向量方法证明空间中的垂直关系(1)证明线线垂直设直线l1的方向向量u1=(a1,b1,c1),直线l2的方向向量u2=(a2,b2,c2),则l1⊥l2⇔□09u1⊥u2⇔□10u1·u2=0⇔□11a1a2+b1b2+c1c2=0.(2)证明线面垂直设直线l的方向向量是u=(a1,b1,c1),平面α的法向量v=(a2,b2,c2),则l⊥α⇔□12 u∥v⇔□13u=λv(λ∈R)⇔□14a1=λa2,b1=λb2,c1=λc2(λ∈R).(3)证明面面垂直若平面α的法向量u=(a1,b1,c1),平面β的法向量v=(a2,b2,c2),则α⊥β⇔□15u ⊥v⇔□16u·v=0⇔□17a1a2+b1b2+c1c2=0.1.判一判(正确的打“√”,错误的打“×”)(1)若两直线方向向量的数量积为0,则这两条直线一定垂直相交.( )(2)若一直线与平面垂直,则该直线的方向向量与平面内的所有直线的方向向量的数量积为0.( )(3)两个平面垂直,则其中一平面内的直线的方向向量与另一平面内的直线的方向向量垂直.( )答案 (1)× (2)√ (3)×2.做一做(请把正确的答案写在横线上)(1)若直线l 1的方向向量为u 1=(1,3,2),直线l 2上有两点A (1,0,1),B (2,-1,2),则两直线的位置关系是________.(2)若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则直线l 与平面α的位置关系为________.(3)已知两平面α,β的法向量分别为u 1=(1,0,1),u 2=(0,2,0),则平面α,β的位置关系为________.(4)若平面α,β的法向量分别为(-1,2,4),(x ,-1,-2),并且α⊥β,则x 的值为________.答案 (1)垂直 (2)垂直 (3)垂直 (4)-10探究1 利用空间向量解决平行问题例1 已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .[证明] (1)如图所示,建立空间直角坐标系Dxyz ,则有D (0,0,0),A (2,0,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2), 所以FC 1→=(0,2,1),DA →=(2,0,0),AE →=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA →,n 1⊥AE →, 即⎩⎪⎨⎪⎧n 1·DA →=2x 1=0,n 1·AE →=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2). 因为FC 1→·n 1=-2+2=0,所以FC 1→⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE . (2)因为C 1B 1→=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一个法向量. 由n 2⊥FC 1→,n 2⊥C 1B 1→,得 ⎩⎪⎨⎪⎧n 2·FC 1→=2y 2+z 2=0,n 2·C 1B 1→=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.令z 2=2,得y 2=-1,所以n 2=(0,-1,2), 因为n 1=n 2,所以平面ADE ∥平面B 1C 1F . 拓展提升利用向量法证明平行问题的两种途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的共线关系; (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行平行关系的证明.【跟踪训练1】 在长方体ABCD -A 1B 1C 1D 1中,AB =4,AD =3,AA 1=2,P ,Q ,R ,S 分别是AA 1,D 1C 1,AB ,CC 1的中点.求证:PQ ∥RS .证明 证法一:以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Dxyz .则P (3,0,1),Q (0,2,2),R (3,2,0),S (0,4,1), PQ →=(-3,2,1),RS →=(-3,2,1),∴PQ →=RS →,∴PQ →∥RS →,即PQ ∥RS . 证法二:RS →=RC →+CS →=12DC →-DA →+12DD 1→,PQ →=PA 1→+A 1Q →=12DD 1→+12DC →-DA →,∴RS →=PQ →,∴RS →∥PQ →,即RS ∥PQ . 探究2 利用空间向量解决垂直问题例2 如图,在四棱锥E -ABCD 中,AB ⊥平面BCE ,CD ⊥平面BCE ,AB =BC =CE =2CD =2,∠BCE =120°.求证:平面ADE ⊥平面ABE .[证明] 取BE 的中点O ,连接OC ,则OC ⊥EB , 又AB ⊥平面BCE .∴以O 为原点建立空间直角坐标系Oxyz .如图所示.则由已知条件有C (1,0,0),B (0,3,0),E (0,-3,0),D (1,0,1),A (0,3,2). 设平面ADE 的法向量为n =(a ,b ,c ),则n ·EA →=(a ,b ,c )·(0,23,2)=23b +2c =0,n ·DA →=(a ,b ,c )·(-1,3,1)=-a +3b +c =0.令b =1,则a =0,c =-3, ∴n =(0,1,-3).∵AB ⊥平面BCE ,∴AB ⊥OC ,又OC ⊥EB ,且EB ∩AB =B ,∴OC ⊥平面ABE , ∴平面ABE 的法向量可取为m =(1,0,0). ∵n ·m =(0,1,-3)·(1,0,0)=0, ∴n ⊥m ,∴平面ADE ⊥平面ABE . 拓展提升利用向量法证明几何中的垂直问题的两条途径(1)利用三角形法则和平面向量基本定理实现向量间的相互转化,得到向量的垂直关系. (2)通过建立空间直角坐标系,借助直线的方向向量和平面的法向量进行证明.证明线面垂直时,只需直线的方向向量与平面的法向量平行或直线的方向向量与平面内两相交的直线的方向向量垂直.在判定两个平面垂直时,只需求出这两个平面的法向量,再看它们的数量积是否为0.【跟踪训练2】 如右图所示,在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,D 1B 1的中点.求证:EF ⊥平面B 1AC .证明 证法一:设AB →=a ,AD →=c ,AA 1→=b ,则EF →=EB 1→+B 1F →=12(BB 1→+B 1D 1→)=12(AA 1→+BD →)=12(AA 1→+AD →-AB →)=12(-a +b +c ),∵AB 1→=AB →+AA 1→=a +b .∴EF →·AB 1→=12(-a +b +c )·(a +b )=12(b 2-a 2+c ·a +c ·b ) =12(|b |2-|a |2+0+0)=0. ∴EF →⊥AB 1→,即EF ⊥AB 1,同理,EF ⊥B 1C . 又AB 1∩B 1C =B 1, ∴EF ⊥平面B 1AC .证法二:设正方体的棱长为2,以DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴建立如图所示的直角坐标系,则A (2,0,0),C (0,2,0),B 1(2,2,2),E (2,2,1),F (1,1,2).∴EF →=(1,1,2)-(2,2,1) =(-1,-1,1).AB 1→=(2,2,2)-(2,0,0)=(0,2,2),AC →=(0,2,0)-(2,0,0)=(-2,2,0),∴EF →·AB 1→=(-1,-1,1)·(0,2,2)=(-1)×0+(-1)×2+1×2=0.EF →·AC →=(-1,-1,1)·(-2,2,0)=2-2+0=0, ∴EF →⊥AB 1→,EF →⊥AC →, ∴EF ⊥AB 1,EF ⊥AC . 又AB 1∩AC =A , ∴EF ⊥平面B 1AC .证法三:同法二得AB 1→=(0,2,2),AC →=(-2,2,0), EF →=(-1,-1,1).设面B 1AC 的法向量n =(x ,y ,z ), 则AB →1·n =0,AC →·n =0,即⎩⎪⎨⎪⎧2y +2z =0,-2x +2y =0,取x =1,则y =1,z =-1,∴n =(1,1,-1),∴EF →=-n ,∴EF →∥n ,∴EF ⊥平面B 1AC . 探究3 与平行、垂直有关的探索性问题例3 如图,在三棱锥P -ABC 中,AB =AC ,D 为BC 的中点,PO ⊥平面ABC ,垂足O 落在线段AD 上,已知BC =8,PO =4,AO =3,OD =2.(1)证明:AP ⊥BC ;(2)在线段AP 上是否存在点M ,使得平面AMC ⊥平面BMC ?若存在,求出AM 的长;若不存在,请说明理由.[解] (1)证明:如图,以O 为原点,以射线OD 为y 轴的正半轴,射线OP 为z 轴的正半轴,建立空间直角坐标系Oxyz .则O (0,0,0),A (0,-3,0),B (4,2,0),C (-4,2,0),P (0,0,4), AP →=(0,3,4),BC →=(-8,0,0),由此可得AP →·BC →=0,所以AP →⊥BC →,即AP ⊥BC .(2)假设存在满足题意的M ,设PM →=λPA →,λ≠1,则PM →=λ(0,-3,-4).BM →=BP →+PM →=BP →+λPA →=(-4,-2,4)+λ(0,-3,-4)=(-4,-2-3λ,4-4λ),AC →=(-4,5,0).设平面BMC 的法向量n 1=(x 1,y 1,z 1), 平面APC 的法向量n 2=(x 2,y 2,z 2). 由⎩⎪⎨⎪⎧BM →·n 1=0,BC →·n 1=0,得⎩⎪⎨⎪⎧-4x 1-(2+3λ)y 1+(4-4λ)z 1=0,-8x 1=0,即⎩⎪⎨⎪⎧x 1=0,z 1=2+3λ4-4λy 1,可取n 1=⎝ ⎛⎭⎪⎫0,1,2+3λ4-4λ.由⎩⎪⎨⎪⎧AP →·n 2=0,AC →·n 2=0,即⎩⎪⎨⎪⎧3y 2+4z 2=0,-4x 2+5y 2=0,得⎩⎪⎨⎪⎧x 2=54y 2,z 2=-34y 2,可取n 2=(5,4,-3),由n 1·n 2=0,得4-3×2+3λ4-4λ=0,解得λ=25,故PM →=⎝ ⎛⎭⎪⎫0,-65,-85,AM →=AP →+PM →=⎝ ⎛⎭⎪⎫0,95,125,所以AM =3.综上所述,存在点M 符合题意,AM =3. 拓展提升利用向量解决探索性问题的方法对于探索性问题,一般先假设存在,利用空间坐标系,结合已知条件,转化为代数方程是否有解的问题,若有解满足题意则存在,若没有满足题意的解则不存在.【跟踪训练3】 如图,直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4.(1)求证:BC 1⊥平面AB 1C ;(2)在AB 上是否存在点D ,使得AC 1∥平面CDB 1.解 (1)证明:由已知AC =3,BC =4,AB =5,因而△ABC 是∠ACB 为直角的直角三角形,由三棱柱是直三棱柱,则CC 1⊥平面ABC ,以CA ,CB ,CC 1分别为x ,y ,z 轴建立空间直角坐标系,从而CA →=(3,0,0),BC 1→=(0,-4,4),则BC 1→·CA →=(0,-4,4)·(3,0,0)=0,则BC 1→⊥AC →,所以BC 1⊥AC .又四边形BCC 1B 1为正方形,因而BC 1⊥B 1C .又∵B 1C ∩AC =C ,∴BC 1⊥平面AB 1C .(2)假设存在点D (x ,y,0),使得AC 1∥平面CDB 1,CD →=(x ,y,0),CB 1→=(0,4,4), 设平面CDB 1的法向量m =(a ,b ,c ),则⎩⎪⎨⎪⎧m ·CD →=0,m ·CB 1→=0,即⎩⎪⎨⎪⎧xa +yb =0,4b +4c =0.令b =-x ,则c =x ,a =y ,所以m =(y ,-x ,x ),而AC 1→=(-3,0,4),则AC 1→·m =0,得-3y +4x =0.① 由D 在AB 上,A (3,0,0),B (0,4,0)得x -3-3=y4,即得4x +3y =12,② 联立①②可得x =32,y =2,∴D ⎝ ⎛⎭⎪⎫32,2,0,即D 为AB 的中点. 综上,在AB 上存在点D ,使得AC 1∥平面CDB 1,点D 为AB 的中点.1.利用向量证明线线平行的两种思路一是建立空间直角坐标系,通过坐标运算,利用向量平行的坐标表示证明;二是用基底思路,通过向量的线性运算,利用共线向量定理证明.2.向量法证明线线垂直的方法用向量法证明空间中两条直线相互垂直,其主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的空间直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加减运算,结合图形,将要证明的两条直线的方向向量用基向量表示出来.利用数量积运算说明两向量的数量积为0.3.向量法证明线面垂直的方法(1)向量基底法,具体步骤如下:①设出基向量,用基向量表示直线的方向向量;②找出平面内两条相交直线的方向向量并分别用基向量表示;③分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.(2)坐标法,具体方法如下:方法一:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③将平面内任意两条相交直线的方向向量用坐标表示;④分别计算直线的方向向量与平面内两条相交直线的方向向量的数量积.方法二:①建立空间直角坐标系;②将直线的方向向量用坐标表示;③求平面的法向量;④说明平面的法向量与直线的方向向量平行.4.证明面面垂直的两种思路一是证明其中一个平面过另一个平面的垂线,即转化为线面垂直;二是证明两平面的法向量垂直.1.已知线段AB的两端点坐标为A(9,-3,4),B(9,2,1),则线段AB与坐标平面( ) A.xOy平行B.xOz平行C.yOz平行D.yOz相交答案 C解析 因为AB →=(9,2,1)-(9,-3,4)=(0,5,-3),所以AB ∥平面yOz .2.若两个不同平面α,β的法向量分别为u =(1,2,-1),v =(-3,-6,3),则( ) A .α∥β B .α⊥βC .α,β相交但不垂直D .以上均不正确 答案 A解析 ∵v =-3u ,∴α∥β.3.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z 等于( )A .3B .6C .-9D .9 答案 C解析 ∵l ⊥α,v 与平面α平行,∴u ⊥v ,即u ·v =0,∴1×3+3×2+z ×1=0,∴z =-9.4.在三棱锥P -ABC 中,CP ,CA ,CB 两两垂直,AC =CB =1,PC =2,在如图所示的空间直角坐标系中,下列向量中是平面PAB 的法向量的是( )A.⎝⎛⎭⎪⎫1,1,12 B .(1,2,1) C .(1,1,1) D .(2,-2,1) 答案 A解析 PA →=(1,0,-2),AB →=(-1,1,0),设平面PAB 的一个法向量为n =(x ,y,1),则x -2=0,即x =2;-x +y =0,即y =x =2.所以n =(2,2,1).因为⎝⎛⎭⎪⎫1,1,12=12n ,所以A正确.5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 为棱BB 1的中点,在棱DD 1上是否存在点P ,使MD ⊥平面PAC?解 如图,建立空间直角坐标系,则A (1,0,0),C (0,1,0),D (0,0,0),M ⎝⎛⎭⎪⎫1,1,12.假设存在P (0,0,x )满足条件,则PA →=(1,0,-x ),AC →=(-1,1,0).设平面PAC 的法向量为n =(x 1,y 1,z 1),则由⎩⎪⎨⎪⎧ PA →·n =0,AC →·n =0,得⎩⎪⎨⎪⎧ x 1-xz 1=0,-x 1+y 1=0.令x 1=1得y 1=1,z 1=1x ,即n =⎝ ⎛⎭⎪⎫1,1,1x , 由题意MD →∥n ,由MD →=⎝⎛⎭⎪⎫-1,-1,-12,得x =2, ∵正方体棱长为1,且2>1,∴棱DD 1上不存在点P ,使MD ⊥平面PAC .。
高中数学解向量垂直问题的技巧在高中数学中,向量是一个重要的概念,它在几何和代数中都有广泛的应用。
解向量垂直问题是数学学习中的一个重要环节,掌握解题技巧可以帮助学生更好地理解和应用向量概念。
本文将介绍几种解向量垂直问题的常用技巧,并通过具体题目进行说明和分析,帮助高中学生和他们的父母更好地理解和掌握这些技巧。
一、向量垂直的定义和性质在解向量垂直问题之前,我们首先需要了解向量垂直的定义和性质。
两个向量垂直的条件是它们的内积等于零,即如果向量a和向量b垂直,那么它们的内积a·b=0。
此外,根据向量的性质,如果两个向量垂直,它们的夹角为90度。
二、解向量垂直问题的技巧1. 利用向量的性质解向量垂直问题时,我们可以利用向量的性质来简化计算。
例如,如果已知两个向量的坐标表示,我们可以直接计算它们的内积,如果内积等于零,则可以判断这两个向量垂直。
如果向量的坐标表示比较复杂,我们可以利用向量的运算性质进行化简,然后再进行内积计算。
举例说明:已知向量a(2, 3)和向量b(-3, 2),判断它们是否垂直。
解析:根据向量的性质,我们可以计算向量a和向量b的内积,即2×(-3)+3×2=-6+6=0。
因此,向量a和向量b垂直。
2. 利用向量的投影解向量垂直问题时,我们还可以利用向量的投影来简化计算。
向量的投影是指一个向量在另一个向量上的投影长度,它可以帮助我们判断两个向量是否垂直。
举例说明:已知向量a(3, 4)和向量b(2, -3),判断它们是否垂直。
解析:我们可以计算向量a在向量b上的投影和向量b在向量a上的投影,如果它们的投影长度都为零,则可以判断这两个向量垂直。
向量a在向量b上的投影为(3, 4)·(2, -3)/(2, -3)·(2, -3)×(2, -3)=(6-12+12)/(4+9)×(2, -3)=(6)/(13)×(2, -3)=(12/13, -18/13)。
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
高中数学证明线面垂直的方法
高中数学中,证明线面垂直的方法有多种。
下面将介绍其中的一些方法,并对其进行拓展。
1. 使用向量法证明线面垂直:
首先,我们可以将直线和平面表示为向量的形式。
如果直线的方向向量与平面的法向量垂直(即两者的内积为0),则可以得出直线与平面垂直。
2. 使用坐标法证明线面垂直:
在直角坐标系中,我们可以将直线和平面的方程表示为一般式或标准式。
通过求解方程组,如果直线的方向向量与平面的法向量垂直(即两者的斜率之积为-1),则可以得出直线与平面垂直。
3. 使用三角法证明线面垂直:
如果直线上的一条边与平面上的一条边分别平行,且这两条边的夹角为直角(90度),则可以得出直线与平面垂直。
这个方法通常用于证明物体在投影过程中的垂直关系。
4. 使用平行四边形法证明线面垂直:
如果直线上的一条边与平面上的一条边构成平行四边形的相邻边,且这两条边的长度相等,则可以得出直线与平面垂直。
这个方法通常用于证明平行四边形的性质,从而推导出线面垂直的结论。
在实际问题中,证明线面垂直的方法还可以根据具体情况进行选择。
例如,在物理学中,我们可以利用力的性质和物体的运动规律来推导出线面垂直的关系;在几何学中,我们可以使用相似三角形或勾股定理等基本几何定理进行推导。
总之,证明线面垂直的方法可以根据具体情况选择不同的数学工具和定理。
通过合理运用这些方法,我们可以推导出线面垂直的结论,并在解决实际问题中应用这一关系。
用向量证明线面垂直用向量证明线面垂直是数学中一个重要的问题,它是判断二维和三维空间中两个线段(或面)是否垂直的一种方法。
在判断两条线是否垂直时,我们可以将它们抽象成向量,并利用矢量运算来证明它们是否垂直。
本文将介绍如何用向量证明线面垂直,并给出案例来加深对这一概念的理解。
【向量法则】首先,我们应该明白,用向量来证明线是否垂直的基本法则是:如果两个向量(线)的点积结果为零,则这两个向量垂直。
点积(也称内积)是指将两个向量进行乘积运算,并把结果放在一起形成一个数。
例如,设A=(a1,a2),B=(b1,b2),那么A和B的点积就是AB=a1b1+a2b2。
如果结果为0,则说明这两个向量垂直。
【三维向量】当判断两个三维向量是否垂直时,我们可以用同样的方法。
假设A=(a1,a2,a3),B=(b1,b2,b3),那么A和B的点积就是AB=a1b1+a2b2+a3b3。
如果结果为0,则说明这两个向量垂直。
【用向量证明线面垂直】用向量证明线面垂直就是用向量证明两个线段(或面)是否垂直。
在理解关于向量与线段(或者面)的垂直性的问题时,可以将它们抽象成一组向量,并对这组向量求点积。
如果结果为0,则说明两个线段(或面)垂直。
【案例分析】下面我们用一个例子来详细讨论用向量证明线面垂直的方法:假设有两个三维空间中的线段,可以用向量表示为A=(1,2,3)和B=(-3,2,-1),我们可以计算AB,得到结果:AB=1(-3)+2(2)+3(-1) = -7。
由于AB=-7≠0,因此我们得出结论:线段A和B不垂直。
【结论】本文介绍了用向量证明线面垂直的方法,以及一个简单的案例来说明上述方法的实际应用。
用向量证明线面垂直的基本法则是:如果两个向量的点积结果为零,则这两个向量垂直。
在判断两条线是否垂直时,我们可以将它们抽象成向量,并利用矢量运算来证明它们是否垂直。
本文的研究结果将为数学中垂直性的相关研究和应用提供重要的理论支持。