计量经济学分析案例报告
- 格式:doc
- 大小:2.84 MB
- 文档页数:31
计量经济学实验报告实验报告实验课程名称:计量经济学实验案例1:近年来,中国旅游业⼀直保持⾼速发展,旅游业作为国民经济新的增长点,在整个社会经济发展中的作⽤⽇益显现。
中国的旅游业分为国内旅游和⼊境旅游两⼤市场,⼊境旅游外汇收⼊年均增长22.6%,与此同时国内旅游也迅速增长。
改⾰开放20多年来,特别是进⼊90年代后,中国的国内旅游收⼊年均增长14.4%,远⾼于同期GDP 9.76%的增长率。
为了规划中国未来旅游产业的发展,需要定量地分析影响中国旅游市场发展的主要因素。
解题过程:⾸先,通过Eviews,得出回归模型:Y=-274.377+0.013X2+5.438X3+3.272X4+12.986X5-563.108X6tc=-0.208 t2=1.031 t3=3.940 t4=3.465 t5=3.108 t6=-1.753R^2=0.995 F=173.354 DW=2.311从估计结果来看,模型可能存在多重共线性。
因为在OLS下,R^2^2与F值较⼤,⽽各参数估计量的t检验值较⼩,说明各解释变量对Y的联合线性作⽤显著,但各个解释变量存在共线性从⽽使得它们对Y的独⽴作⽤不能分辨,故t检验不显著。
应⽤Eviews,写下命令:cor X2 X3 X4 X5 X6。
得到相关系数矩阵。
可以从中看出五个经济变量之间两两简单相关系数⼤都在0.80以上,甚⾄有的在0.96以上。
表明模型存在着严重的多重共线性。
从⽽为了消除多重共线性,这⾥采⽤逐步回归法。
第⼀步,⽤每个解释变量分别对被解释变量做简单回归。
得:Y=-3462+0.0842X2 t=8.666 R^2=0.903 F=75Y=-2934+9.052X3 t=13 R^2=0.956 F=173Y=640+11.667X4 t=5.196 R^2=0.771 F=27Y=-2265+34.332X5 t=6.46 R^2=0.839 F=42Y=-10897+2014X6 t=8.749 R^2=0.905 F=77根据R^2统计量的⼤⼩排序,可见重要程度依次为X3, X6, X2, X5, X4。
篇一:计量经济学实验报告 (1)计量经济学实验基于eviews的中国能源消费影响因素分析学院:班级:学号:姓名:基于e views的中国能源消费影响因素分析一、背景资料能源消费是指生产和生活所消耗的能源。
能源消费按人平均的占有量是衡量一个国家经济发展和人民生活水平的重要标志。
能源是支持经济增长的重要物质基础和生产要素。
能源消费量的不断增长,是现代化建设的重要条件。
我国能源工业的迅速发展和改革开放政策的实施,促使能源产品特别是石油作为一种国际性的特殊商品进入世界能源市场。
随着国民经济的发展和人口的增长,我国能源的供需矛盾日益紧张。
同时,煤炭、石油等常规能源的大量使用和核能的发展,又会造成环境的污染和生态平衡的破坏。
可以看出,它不仅是一个重大的技术、经济问题,而且以成为一个严重的政治问题。
在20世纪的最后二十年里,中国国内生产总值(gdp)翻了两番,但是能源消费仅翻了一番,平均的能源消费弹性仅为0.5左右。
然而自2002年进入新一轮的高速增长周期后,中国能源强度却不断上升,经济发展开始频频受到能源瓶颈问题的困扰。
鉴于此,研究能源问题不仅具有必要性和紧迫性,更具有很大的现实意义。
由于我国目前面临的所谓“能源危机”,主要是由于需求过大引起的,而我国作为世界上最大的发展中国家,人口众多,所需能源不可能完全依赖进口,所以,研究能源的需求显得更加重要。
二、影响因素设定根据西方经济学消费需求理论可知,影响消费需求的因素有:商品的价格、消费者收入水平、相关商品的价格、商品供给、消费者偏好以及消费者对商品价格的预期等。
对于相关商品价格的替代效应,我们认为其只存在能源品种内部之间,而消费者偏好及消费者对商品价格的预期数据差别较大,不容易进行搜集整理在此暂不涉及。
另外,发展经济学认为,来自知识、人力资本的积累水平所体现的技术进步不仅可以带动劳动产出的增长,而且会通过外部效应可以提高劳动力、自然资源、物质资本与生产要素的生产效率,消除其中收益递减的内在联系,带来递增的规模收益。
计量经济学案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
例如,2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元,最高的上海市达人均10464元,上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
矚慫润厲钐瘗睞枥庑赖。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
聞創沟燴鐺險爱氇谴净。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
残骛楼諍锩瀨濟溆塹籟。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
四、提高居民消费水平的对策建议根据以上分析,可以看出提高居民消费水平的根本途径是大力发展生产力。
但在大力发展生产力,1、国内生产总值对居民消费水平的影响为了研究居民消费水平和经济发展水平的关系,我们把国内生产总值作为经济发展水平的代表性指标。
由经济理论分析可知,经济发展水平与居民消费水平有密切关系。
因此,我们设定居民消费水平HCL 与国内生产总值GDP 的关系为: 111μβα++=GDP HCL假定模型中随机误差项1μ满足古典假定,运用OLS 法估计模型参数,结果如下:GDPHCL 0368.02275.93+=(9.2969)(181.1983)其中,可决系数2R =0.9993。
从回归结果可以看出,模型拟合度很好,可决系数很高,这也表明国内生产总值确实对居民消费水平有显著影响。
其中,GDP 每增长1亿元,居民消费水平平均增加0.04元。
案例分析报告一、研究目的陈述所研究的问题内容以及问题的重要性。
随着国民经济的发展,人民收入水平不断提高。
本文运用Eview软件嬉闹模型来研究人均国内生产总值的变化对全国居民消费水平变化的影响。
人均国内生产总值增加,意味着国民经济水平提高,居民收入增加,居民的消费能力提升,消费水平随之提高。
反之,人均国内生产总值减少,居民的收入同步减少,消费水平降低。
当前,大多数国家都致力于提高居民的消费水平,分析研究二者的关系有利于我们更清楚的认识人均国内经济的发展与居民消费水平提高息息相关,从而以提高人均国内经济为出发点,提高居民的消费水平。
促进经济的健康发展。
关键词:人均国内生产总值,居民消费水平,分析通过对我国居民消费水平的历史及现状研究,建立了居民消费水平的经济模型,并研究了模型中主要变量对模型的影响程度,在此基础上提出了提高居民消费水平的对策建议。
二、模型设定提示:给出数据,通过散点图确定适合使用线性模型。
表一:(整理的数据源于中经教育专网)散点图:图一Dependent Variable: YMethod: Least SquaresDate: 04/24/10 Time: 16:29Sample: 1992 2008Included observations: 17Variable Coefficient Std. Error t-Statistic Prob.C 723.2111 102.7522 7.038400 0.0000X 0.336978 0.009308 36.20491 0.0000R-squared 0.988686 Mean dependent var 3930.765 Adjusted R-squared 0.987932 S.D. dependent var 1953.486 S.E. of regression 214.6012 Akaike info criterion 13.68557 Sum squared resid 690804.9 Schwarz criterion 13.78360 Log likelihood -114.3274 F-statistic 1310.795 Durbin-Watson stat 0.181578 Prob(F-statistic) 0.000000用Eviews求出回归模型中的参数三、估计参数图二四、模型检验1、经济意义检验(若建模是依据某个经济理论,检验该参数是否与该经济理论相符,否则解释参数的经济意义)2、拟合优度检验3、参数显著性检验1、经济意义检验由图二可知,全国居民消费水平Y随人均国内生产总值X的一元线性回归方程为Y=723.2111 + 0.336978*X(7.038400) (36.20491)2R=0.988686斜率的经济意义是:在1992——2008年间,中国的人均国内生产总值每增加1元时全国居民消费水平平均增加0.336978元。
计量经济学案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象,验证经济理论和检验经济政策的有效性。
在实际应用中,计量经济学常常通过案例研究来展示其理论和方法在解决实际问题中的应用。
下面,我们将通过一个实际的案例来说明计量经济学的应用。
某国家的一家汽车制造商希望了解汽车价格与销量之间的关系,以便制定合理的定价策略。
为了研究这一问题,他们收集了过去几年的汽车价格和销量数据,并进行了分析。
首先,他们利用计量经济学中的回归分析方法,建立了汽车价格和销量之间的数学模型。
在这个模型中,销量是因变量,而价格是自变量。
通过回归分析,他们得到了汽车价格对销量的影响程度,以及其他可能影响销量的因素。
接着,他们进行了统计检验,验证了他们建立的数学模型的有效性。
通过检验结果,他们确认了汽车价格对销量的影响,并排除了其他因素对销量的影响。
这为他们制定合理的定价策略提供了重要的依据。
最后,他们利用建立的数学模型,进行了一系列的预测和模拟。
他们可以通过调整汽车价格,来预测不同定价策略对销量的影响,以及对企业利润的影响。
这些预测和模拟结果为企业提供了重要的决策参考。
通过这个案例,我们可以看到计量经济学在实际应用中的重要性和价值。
它不仅可以帮助企业了解市场和消费者行为,还可以为企业决策提供科学的依据。
当然,计量经济学的方法和工具不仅局限于汽车制造业,它在其他行业和领域也有着广泛的应用。
总之,计量经济学案例的研究对于理论的验证和实证分析都具有重要的意义。
通过实际案例的研究,我们可以更好地理解计量经济学的方法和工具,以及它们在解决实际问题中的应用。
希望这个案例能够给大家带来一些启发,也希望大家能够更加重视计量经济学的学习和研究。
南开大学《计量经济学》案例分析案例一:用回归模型预测木材剩余物(file:b1c3)伊春林区位于黑龙江省东北部。
全区有森林面积218.9732万公顷,木材蓄积量为2.324602亿m3。
森林覆盖率为62.5%,是我国主要的木材工业基地之一。
1999年伊春林区木材采伐量为532万m3。
按此速度44年之后,1999年的蓄积量将被采伐一空。
所以目前亟待调整木材采伐规划与方式,保护森林生态环境。
为缓解森林资源危机,并解决部分职工就业问题,除了做好木材的深加工外,还要充分利用木材剩余物生产林业产品,如纸浆、纸袋、纸板等。
因此预测林区的年木材剩余物是安排木材剩余物加工生产的一个关键环节。
下面,利用一元线性回归模型预测林区每年的木材剩余物。
显然引起木材剩余物变化的关键因素是年木材采伐量。
给出伊春林区16个林业局1999年木材剩余物和年木材采伐量数据如表1.1。
散点图见图1.1。
观测点近似服从线性关系。
建立一元线性回归模型如下:y t = β0 + β1 x t + u t表1.1 年剩余物y t和年木材采伐量x t数据林业局名年木材剩余物y t(万m3)年木材采伐量x t(万m3)乌伊岭26.13 61.4 东风23.49 48.3 新青21.97 51.8 红星11.53 35.9 五营7.18 17.8 上甘岭 6.80 17.0 友好18.43 55.0 翠峦11.69 32.7 乌马河 6.80 17.0 美溪9.69 27.3 大丰7.99 21.5 南岔12.15 35.5 带岭 6.80 17.0 朗乡17.20 50.0 桃山9.50 30.0 双丰 5.52 13.8合计202.87 532.00图1.1 年剩余物y t和年木材采伐量x t散点图图1.2 EViews输出结果EViews估计结果见图1.2。
在已建立Eviews数据文件的基础上,进行OLS估计的操作步骤如下:打开工作文件,从主菜单上点击Quick键,选Estimate Equation 功能。
计量经济学案例分析姓名:学号:学院:管理学院专业: 10级工程管理计量经济学案例分析案例:研究从1989-2009年,影响我国国债发行总量的主要因素。
当年的国债发行总量(Y),国内生产总值(X1)、城乡居民储蓄存款(X2)、国家财政收入(X3)、国家财政赤字(X4)、国债余额(X5)。
在这里,国债发行总量作为被解释变量,其余为解释变量。
数据如下:作散点图观察各变量的增长趋势,如图所示:从上面的散点图可以看出Y,X1,X2,X3,X4,X5都是逐年增长的,但增长速率并不相同,是曲线增长,为便于研究,将模型设置如下:lnY t=β0+β1lnX1t+β2lnX2t+β3lnX3t+β4lnX4t+β5lnX5t+μt其中,μ为随机误差项。
进行普通最小二乘回归,结果如下所示:lnY=−5.950463+3.204509lnX1−2.170162lnX2−2.007389lnX3+0.1876280lnX4 +1.976280lnX5模型估计结果说明,在假定其他条件不变的情况下,当年国内生产总值每增长1%,国债发行总量会增加3.204509%;在假定其他条件不变的情况下,当年城乡居民储蓄额每增长1%,国债发行总量会减少2.170162%;在假定其他条件不变的情况下,当年财政收入每增长1%,国债发行总量会减少2.007389%;在假定其他条件不变的情况下,当年财政赤字每增长1%,国债发行总量会增加0.1876280%;在假定其他条件不变的情况下,当年国债余额每增加1%,国债发行总量会增加1.976280%。
上述分析与实际不符,模型需要进一步调整。
多重共线性检验由普通最小二乘回归结果知R2=0.986336,修正后的可决系数为0.981782,这说明模型对样本的拟合较好。
F值为216.5585,很显著,即“国内生产总值”、“城乡居民储蓄额”、“财政收入”、“财政赤字”和“国债余额”5个变量联合起来对“国债发行总量”有显著影响。
【精品】《计量经济学》实验报告
一、实验目的
通过本实验,了解计量经济学的基本概念,认识计量经济学的应用,以及如何利用统计软件STATA进行计量经济学的研究。
二、实验内容
本次实验利用国外一项有关家庭经济收支的调查资料,分析收入与消费的关系,研究对收入的影响因素。
三、实验方法
(1)调查资料:国外家庭收支资料是由100个家庭的收支情况数据组成,其中包括这100个家庭的收入、消费、家庭编号、家庭购买力等。
(2)计量模型:在该实验中,建立二元线性回归模型:
(3)计量经济学的应用:利用STATA软件进行实证分析,以估计该家庭收入与消费的关系,并进一步研究影响收入的因素。
四、实验结果
(1)估计结果:家庭收入与消费的估计结果如下:
模型结果:Y=0.697+2.154X
线性拟合结果:R2=0.811,p=0.000
(2)影响收入的因素:利用STATA软件回归分析发现,家庭购买力、家庭编号等因素影响家庭收入。
五、实验结论
通过本次实验,我们可以得出以下结论:
(1)计量经济学是一种有效的用来研究家庭收入与消费关系的方法。
(2)家庭收入与消费显著正相关,即家庭收入越高,消费也越高。
(3)家庭购买力以及家庭编号等因素对家庭收入有显著影响。
【精品】计量经济学案例【案例一:经济增长与劳动力市场】计量经济学在劳动经济学中有着广泛的应用。
为了评估经济增长与劳动力市场之间的关系,可以使用生产函数模型,这一模型包括了劳动和资本等投入变量,以及一个因变量,即经济产出。
假设我们有一份涵盖了各个国家历年的GDP和劳动力人口的数据集,我们可以将数据设定为面板数据,并进行固定效应模型估计。
首先,我们需要对数据进行平稳性检验以避免伪回归。
我们可以用单位根检验,如ADF检验或IPS检验等来进行检查。
如果数据是平稳的,我们可以进行下一步,也就是估计生产函数模型。
如果我们发现劳动力和经济增长之间存在正相关关系,那么我们可能会得出结论:增加劳动力可以促进经济增长。
另一方面,如果资本和经济增长之间存在更强的关系,那么我们可能会建议政策制定者通过增加投资来刺激经济增长。
【案例二:价格与需求】计量经济学也被广泛应用于研究价格与需求之间的关系。
例如,在商品市场中,价格和需求之间存在负相关关系。
为了验证这一点,我们可以使用OLS估计法进行回归分析。
假设我们有一份包含各种商品价格和销售量的数据集。
我们可以将价格作为自变量,销售量作为因变量进行回归。
如果回归结果的斜率是负的,说明价格和销售量之间存在负相关关系,即当价格上升时,销售量会下降。
如果回归结果的斜率是正的,那么我们可能需要进一步检查数据是否存在异常值或者是否存在其他因素影响了结果。
通过这种分析,我们可以更好地理解价格和需求之间的关系,从而帮助政策制定者做出更好的决策。
例如,如果一个公司想要提高其产品的销售量,它可能需要考虑降低价格或者提供其他形式的促销活动。
【案例三:教育投资与经济增长】计量经济学也被广泛应用于研究教育投资与经济增长之间的关系。
一些研究表明,教育投资可以促进经济增长。
为了验证这一点,我们可以使用时间序列数据集进行回归分析。
假设我们有一份包含了各个国家历年的教育投资和GDP数据的时间序列数据集。
我们可以将教育投资作为自变量,GDP作为因变量进行回归。
《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号:2012213572 指导老师:蒋翠侠报告日期:2015.06.18目录第二章简单线性回归模型案例 (2)1 问题引入 (3)2 模型设定 (3)3 估计参数 (5)4 模型检验 (5)第三章多元线性回归模型案例 (7)1 问题引入 (7)2 模型设定 (8)3 估计参数 (9)4 模型检验 (9)第四章多重线性案例 (11)1 问题引入 (11)2 模型设定 (11)3 参数估计 (12)4 对多重共线性的处理 (13)第五章异方差性案例 (15)1 问题引入 (15)2 模型设定 (15)3 参数估计 (15)4 异方差检验 (16)5 异方差性的修正 (18)第六章自相关案例 (19)1 问题引入 (20)2 模型设定 (20)3 用OLS估计 (20)4 自相关其他检验 (21)5 消除自相关 (22)第七章分布滞后模型与自回归模型案例 (25)7.2案例1 (25)1 问题引入 (25)2 模型设定 (25)3 参数估计 (25)7.3案例2 (27)1 问题引入 (27)2 模型设定 (27)3、回归分析 (28)4 模型检验 (30)第八章虚拟变量回归案例 (31)1 问题引入 (31)2 模型设定 (31)3 参数估计 (33)4 模型检验 (35)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。
适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。
随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。
研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。
影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。
从理论上说居民收入水平越高,居民计算机拥有量越多。
《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: **********指导老师:***报告日期: 2015.06.18目录第二章简单线性回归模型案例 (1)1 问题引入 (1)2 模型设定 (1)3 估计参数 (3)4 模型检验 (3)第三章多元线性回归模型案例 (5)1 问题引入 (5)2 模型设定 (5)3 估计参数 (6)4 模型检验 (6)第四章多重线性案例 (8)1 问题引入 (8)2 模型设定 (8)3 参数估计 (8)4 对多重共线性的处理 (9)第五章异方差性案例 (11)1 问题引入 (11)2 模型设定 (11)3 参数估计 (11)4 异方差检验 (12)5 异方差性的修正 (14)第六章自相关案例 (15)1 问题引入 (15)2 模型设定 (15)3 用OLS估计 (15)4 自相关其他检验 (16)5 消除自相关 (17)第七章分布滞后模型与自回归模型案例 (19)7.2案例1 (19)1 问题引入 (19)2 模型设定 (19)3 参数估计 (19)7.3案例2 (21)1 问题引入 (21)2 模型设定 (21)3、回归分析 (21)4 模型检验 (23)第八章虚拟变量回归案例 (24)1 问题引入 (24)2 模型设定 (24)3 参数估计 (26)4 模型检验 (27)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。
适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。
随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。
研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。
影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。
从理论上说居民收入水平越高,居民计算机拥有量越多。
所以我们设定“城镇居民家庭平均每百户计算机拥有量(台)”为被解释变量,“城镇居民平均每人全年家庭总收入(元)”为解释变量。
2、模型设定(1)对数据X和Y的统计结果的描述图表2-1:X和Y的描述统计结果(2)X 和Y 的散点图及分析图表2-2:各地区城镇居民每百户计算机拥有量与人均总收入的散点图分析:从散点图2-2中,可以看出各地区城镇居民计算机拥有量随着人均总收入水平的提高而增加,近似于线性关系,为分析中国各地区城镇居民每百户计算机拥有量随人均总收入变动的数量规律性,可以考虑建立如下简单线性回归模型:t t u X Y ++=21ββt3、估计参数图表2-3:回归结果可用规范的形式将参数估计和检验的结果写为315836.1438320.0002873.09580.112====+=∧n F R Y (11.9826)(2.1267)t 24)(0.000 (5.6228) X tt4、模型检验(1)经济意义检验所估计的参数∧1β=11.9580,∧2β=0.002 873,说明城镇居民家庭人均总收入每增加1元,平均说来城镇居民每百户计算机拥有量将增加0.002 873台,这与预期的经济意义相符。
(2)拟合优度和统计检验由拟合优度R 2=0.831996可知,所建立的模型对样本数据的拟合度较高。
对回归参数的显著性检验——t 检验:对β1建立下列假设条件:原假设H 0:β1=0 备择假设H 1:β1≠0取α=0.05,β1服从t~(29),P 值检验的结果是0.0421< 0.05,所以应该拒绝原假设β1=0,接受备择假设β1≠0,说明β1对被解释变量有显著性影响。
对β2建立下列假设条件:原假设H0:β2=0 备择假设H1:β2≠0取α=0.05,β2服从t~(29),P值检验的结果是0.0000<0.05,所以应该拒绝原假设β2=0,接受备择假设β2≠0,说明解释变量城镇居民平均每人家庭总收入对被解释变量城镇居民平均每百户计算机拥有量有显著影响。
图表2-4:剩余项、实际值、拟合值图形第三章多元线性回归模型案例1、问题引入改革开放以来,中国经济增长迅速,各级政府对教育的投入不断增加,2012年,各级政府的教育的支出达到国内生产总值的4%,其中地方支出占约94%。
为了研究影响中国地方财政教育支出差异的主要原因,分析地方财政教育支出增的数量规律,预测中国地方财政教育支出的增长趋势。
总结了影响中国地方财政教育支出的主要的因素有:(1)由地区经济规模决定的地方整体财力;(2)地区人口数量不同决定各地教育规模不同;(3)人民对教育质量的需求对以政府教育投入为代表的公共财政的需求会有相当的影响。
(4)物价水平,影响地方财政对教育的支出。
(5)地方政府对教育投入的能力与意愿研究范围:2011年31个省市区的数据为样本。
2、模型设定(1)地方财政教育支出及影响因素图表3-1:地方财政教育支出及影响因素数据图形从上图可以看出,各地区地方财政教育经费支出及各影响因素的差异明显,其变动的方向基本相同,相互间可能具有一定的相关性。
探索将模型设定为线性回归模型形式:i i i i i i ii u X X X X X Y ++++++=66554433221ββββββ3、估计参数图表3-2:回归结果由上图中数据,模型估计的结果写为:317539.1819679.09732.0)8422.1()5109.2()8267.2()9643.4()3167.6()5820.2()3214.470()0867.9()0517.0()0080.0()0018.0()8816.935(4100.8868162.221460.00395.00112.049.2416265432_2====--=+++++-=∧n F X X X X X Y i R R t4、模型检验(1)经济意义检验:在假定其它变量不变的情况下,地区生产总值(GDP)每增长1亿元,平均说来地方财政教育支出将增长0.0112亿元;地区年末人口每增长1万人,平均说来地方财政教育支出会增长0.0395亿元;当居民平均每人教育现金消费增加1元,平均说来地方财政教育支出会增长0.1460亿元;当居民教育消费价格指数增加1个百分点,平均说来地方财政教育支出会增长22.8162亿元。
当教育支出在地方财政支出中的比重增加1%,平均说来地方财政教育支出会增长866.41亿元。
(2)统计检验拟合优度:9732.02=R ,修正的可决系数为9679.02_=R ,说明模型对样本的拟合很好。
F 检验:给定显著性水平α=0.05,查F 分布表自由度为k-1=5和n-k=25的临界值为61.225,5=)(αF ,由于F=181.7539>2.61,应拒绝原假设,说明回归方程整体显著。
t 检验:在显著性水平α=0.05时从1βΛ 到 5βΛ的t 统计量对应的P 值分别是0.0161,0.0000,0.0000,0.0091,0.0189,均小于0.05,所以是显著地。
6βΛ的t 统计量对应的P 值为0.0773>0.05,而0.0773<0.1,说明在α=0.05,时“教育支出在地方财政支出中的比重”对地方财政教育支出没有显著影响,而在α=0.10 时,有显著影响。
第四章多重线性案例1、问题引入近年来,中国旅游业一直保持高速发展,旅游业作为国民经济的新增长点,在整个社会经济的发展中的作用日益明显。
中国的旅游业分为国内旅游和入境旅游两袋市场,入境旅游外汇收入年均增长22.6%,与此同时,国内旅游业迅速增长。
为了规划中国未来国内旅游产业的发展,需要定量地分析影响中国国内旅游市场发展的主要因素。
2、模型设定经分析,影响国内旅游市场收入的主要要是,除了国内旅游人数和旅游支出以为,可能与相关基础设施有关。
为此设定变量如下:被解释变量为:第t 年全国国内旅游收入-Yt 影响因素有 :国内旅游人数X2城镇居民人均旅游支出X3农村居民人均旅游支出X4 基础设施-铁路里程X5所以设定多元线性回归模型:3、参数估计图表4-1:OLS 回归结果234512345t t t t t tY X X X X u βββββ=+++++该模型R2=0.9814,拟合程度较好,F检验值225.8475,明显显著。
但是在显著性水平 =0.05时,x2的系数不显著。
而且x3,x5的符号与预期相反,这表明可能存在严重的多重共线性。
图表4-3:相关系数矩阵可以看出,各解释变量相互之间相关系数较高,确定存在一定的共线性,通过辅助回归得出各个回归的可决系数和方差扩大因子:被解释变量可决系数R²的值方差扩大因子0.9285 13.9860X20.8315 5.9347X30.7902 4.7664X40.9615 25.9740X5方差扩大因子大于10时,相应解释变量与其余解释变量间有共线性,由此可知X3。
X5有严重的共线性4、对多重共线性的处理图后补估计结果为:ln Yˆ=-8.4495+0.9168lnX2+0.4136lnX3+0.2890lnX4+0.9982lnX5 (0.6050) (0.0936) (0.1390) (0.0459) (0.4209) t= (-13.97) (9.80) (2.98) (6.30) (2.37) P(t)=(0.0000) (0.0000) (0.0107) (0.0000) (0.0338)R2=0.9972 F=1550.58 P(F)=0.0000该模型可决系数较高,F 检验值为1550.58,明显显著,各系数也显著。
说明消除了多重共线性。
对系数估计值的解释:在其他变量保持不变的情况下,如果旅游人数每增加1%,则国内旅游收入平均增加0.92%;如果城镇居民旅游支出每增加1%,则国内旅游收入平均增加0.41%;如果农村居民旅游支出每增加1%,则国内旅游收入平均增加0.29%;如果铁路里程每增加1%,则国内旅游收入平均增加1%。
所有的检验变量的符号都与先验预期相一致,及旅游人数、城乡居民旅游支出和铁路里程都与国内旅游收入正相关。
第五章异方差性案例1、问题引入为了给制定医疗机构的规划提供依据,分析医疗机构与人口数量之间的关系。
建立卫生医疗机构数与人口数之间的回归模型。
以四川省2000年各地区医疗机构数与人口数。
为实验研究范围。
2、模型设定被解释变量:卫生医疗机构数-Y 解释变量 :人口数-X 理论模型设定为: i Y =1b +i X 2b +i u 3、参数估计图表5-1:回归结果估计结果为:iˆY =-562.9074+5.3728i X (291.5642) (0.6442) t=(-1.9306) (8.3398)2R =0.7854 F=69.5525该模型结果认为人口数量每增加1万人,平均医疗机构将增加5.37个,与实际情况不相符,所以该模型可能存在异方差。