计量经济学-案例分析-第八章
- 格式:docx
- 大小:30.21 KB
- 文档页数:4
15、第八章案例分析(协整检验:基于回归系数的jj检验法)协整检验——基于回归系数的JJ检验法一、研究目的传统的回归分析是建立在变量数据平稳的假定基础之上,而现实中,大多数经济变量都是非平稳的(例如产出、资本存量、收入等经济变量都具有长期增长的趋势)。
因此通过回归分析得到的回归模型缺乏统计意义上的逻辑论证,容易产生伪回归。
伪回归模型有很2高的值和t值,但参数估计值却毫无意义,从而可导致预测失败。
20世纪80年代以来,R计量经济学模型建模理论的一个重大发展就是协整理论的产生,它们为解决伪回归问题提供了坚实的基础。
本案例通过我国生产函数的数据来讨论JJ检验法的原理、方法及其应用。
二、协整的思想1、协整的思想1987年Engle和Granger提出了协整理论及其方法(Engle和Granger,1987),为非平稳时间序列的建模提供了另一种途径。
虽然一些经济变量的本身是非平稳序列,但是,它们的线性组合却有可能是平稳序列。
这种平稳的线性组合被称为协整方程且可被解释为变量之间的长期稳定的均衡关系。
假定一些经济指标被某些经济系统联系在一起,那么从长远看来这些变量应该具有均衡关系。
在短期内,因为外部影响或随机扰动,这些变量有可能偏离均值。
如果这种偏离是暂时的,那么随时间推移将会回到均衡状态,如果这种偏离是持久的,则变量之间不存在均衡关系。
协整(co-integration)就是这种均衡关系的统计表示。
2、协整的定义协整的定义如下:,kdb维向量的分量间被称为,阶协整,记为,如y,(,,)yyy?yCIdb(,)ttttkt12果满足:(1),要求的每个分量; y Id()yyId ()ttit,0,,bd(2)存在非零列向量,使得,。
βy Idb(),βt简称y是协整的,向量又称为协整向量。
βt三、JJ检验法与EG检验法的区别及其优点协整检验从检验的对象上可以分为两种:一种是基于回归系数的协整检验,即Johansen and Juselius(JJ)极大似然法;另一种是基于回归残差的协整检验,即:Engle and Granger 两步法(EG)。
第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。
加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。
如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。
这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。
4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。
试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。
解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi有奖学金1 来自城市无奖学金0 来自农村来自发达地区 1 男性0 来自欠发达地区0 女性Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i |= X i , D 1i =D 3i =1,D 2i =D 4i =0)=(β0+α1+α3)+β1X i (4) 来自发达地区的城市男生,未得到奖学金时的月消费支出: E(Y i |= X i ,D 2i =D 3i =D 4i =1, D 1i =0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。
《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: 2012213572指导老师:蒋翠侠报告日期: 2015.06.18目录第二章简单线性回归模型案例 01 问题引入 02 模型设定 03 估计参数 (2)4 模型检验 (2)第三章多元线性回归模型案例 (4)1 问题引入 (4)2 模型设定 (4)3 估计参数 (5)4 模型检验 (5)第四章多重线性案例 (7)1 问题引入 (7)2 模型设定 (7)3 参数估计 (7)4 对多重共线性的处理 (8)第五章异方差性案例 (10)1 问题引入 (10)2 模型设定 (10)3 参数估计 (10)4 异方差检验 (11)5 异方差性的修正 (13)第六章自相关案例 (14)1 问题引入 (14)2 模型设定 (14)3 用OLS估计 (14)4 自相关其他检验 (15)5 消除自相关 (16)第七章分布滞后模型与自回归模型案例 (18)7.2案例1 (18)1 问题引入 (18)2 模型设定 (18)3 参数估计 (18)7.3案例2 (20)1 问题引入 (20)2 模型设定 (20)3、回归分析 (20)4模型检验 (22)第八章虚拟变量回归案例 (23)1 问题引入 (23)2 模型设定 (23)3 参数估计 (25)4 模型检验 (26)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。
适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。
随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。
研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。
影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。
从理论上说居民收入水平越高,居民计算机拥有量越多。
计量经济学夏凡第八章动态计量模型基础第一节分布滞后模型第二节单位根检验第三节协整与误差修正模型计量经济学夏凡引言⏹传统的时序模型●一般先从已知相关理论出发设定模型形式,再由样本数据估计模型中的参数⏹这种方法使建模过程对相关理论有很强的依赖性⏹动态计量经济学模型●20世纪70年代末,以英国计量经济学家Hendry为代表,将理论和数据信息有效结合,提出了动态计量经济学模型的理论与方法●为时序模型带来了重要的发展量经济学夏凡第一节分布滞后模型⏹几何分布滞后模型⏹多项式分布滞后模型⏹自回归分布滞后模型量经济学夏凡基本概念⏹分布滞后模型●⏹如果p是有限数,称为有限分布滞后模型⏹如果p是无限数,称为无限分布滞后模型npptxxxytptpttt,,2,111++=+++++=--εβββα计量经济学夏凡基本概念(续)⏹分布滞后模型的两个问题●由于存在滞后值,则要损失若干个自由度⏹如果滞后时期长,而样本较小,自由度损失就较大,有时甚至无法进行估计●通常一个变量的滞后变量之间共线性问题严重,影响估计量的精度⏹解决方法●对系数施加约束条件,减少待估参数的数目计量经济学夏凡几何分布滞后模型⏹几何分布滞后模型●又称Koyck滞后模型●反映变量的影响程度随滞后期的延长而按几何级数递减⏹经济变量间的因果关系,往往随着时间间隔的延伸而逐渐减弱●模型⏹●()1221ti ititttttxxxxyελβαεβλλββα++=+++++=∑∞=---1<λ计量经济学夏凡几何分布滞后模型(续1)⏹模型的第二种表达形式●⏹对(1)式取一期滞后,并两边同乘λ得●⏹(1)式减去(2)式得●⏹令,即可得到模型的第二种表达式●用y t-1代替了x的滞后变量⏹减小了多重共线性的程度()ttttuyxy+++-=-11λβλα()212211----++++=ttttxxyλεβλλβλαλ()111---++-=-tttttxyyλεεβλαλ1--=tttuλεε计量经济学夏凡几何分布滞后模型(续2)⏹模型的估计●模型中的随机扰动项通常存在一阶负相关关系⏹参数估计变得较复杂●可采用工具变量法和广义差分法相结合的估计方法计量经济学夏凡多项式分布滞后模型⏹多项式分布滞后模型●为解决几何分布滞后模型存在的问题,Almon提出了多项式分布滞后(PDL:Polynomial Distributed Lag)模型⏹用多项式表示滞后变量系数βi和滞后长度i的关系⏹一般,多项式阶数不超过3次计量经济学夏凡多项式分布滞后模型(续1)⏹对于模型●其解释变量之间存在多重共线性,不能采用OLS估计●将βi分解为⏹●其中,且●即将每个参数用一个多项式表示()()()()pqpipipi qqi<-++-+-+=ααααβ221pi,,2,1,0=()()Nkkpkpppp∈⎩⎨⎧-==-=1222/12/()30tpi ititxyεβα++=∑=-计量经济学夏凡多项式分布滞后模型(续2)⏹模型的估计●(3)式可改写为⏹●其中●则(4)式实际上比(3)式少了p-q个参数●可对模型施加约束条件⏹近端(near end)约束和远端(far end)约束⏹应用时,可同时指定上述两种约束,或其中之一,也可不含约束条件()4110tqtqtttzzzyμαααα+++++=()()qjxpizitjpijt,,1,0=-=-=∑计量经济学夏凡多项式分布滞后模型(续3)⏹PDL模型的确定因素●滞后期p、多项式次数q和约束条件⏹PDL模型的特点●优点⏹减少了待估参数,因此减小了多重共线性的程度⏹方程的变换并没有改变干扰项的形式,没有引入自相关问题,可用OLS直接估计变换后的方程●缺点⏹样本损失没有减少●只有(n-q)个观测值可用于估计计量经济学夏凡多项式分布滞后模型(续4)⏹操作命令●ls y x1 x2pdl(series_name,lags,order,options)⏹lags:代表滞后期p⏹order:表示多项式阶数q⏹options:指定约束类型,没有约束条件时缺省●1:近端约束●2:远端约束●3:同时采用近端和远端两种约束计量经济学夏凡多项式分布滞后模型(续5)⏹[例8-1]某水库1998年至2000年各旬的流量、降水量数据如下所示。
《计量经济学》各章数据第8章 滞后变量模型例8.2.1 已知某地区制造业部门1955-1974年期间的资本存量y 和销售额x 的统计资料如表8.2.1(单位:百万元)。
表8.2.1 某地区制造业部门资本存量和销售额资料设定有限分布滞后模型为t t t t t t u x b x b x b x b a y +++++=---3322110运用经验加权法,选择下列三组权数:递减滞后、A 型滞后、不变滞后①81,41,21,1;②41,32,21,41;③41,41,41,41 分别估计上述模型,并从中选择最佳的方程。
例8.2.2 表8.2.3给出了某企业产品1988-2007年的产量y 和销售量x 的资料。
试利用分布滞后模型建立产量关于销售量的回归模型。
表8.2.3 某企业产品1988-2007年产量和销售量资料例8.3.1 表8.3.1给出了1994-2005年某地区居民消费y 与可支配收入x 的调查数据。
假定本期消费不仅与本期收入有关,而且与以前各期收入有关,此时消费函数模型有如下形式t t t t t u x b x b x b a y +++++=-- 22110其中,t y 与t x 分别代表第t 期的消费和收入。
假定随机项t u 满足全部经典假定,试用库伊克模型估计这一消费模型。
表8.3.1 某地区居民消费与收入调查数据8.5 案例分析表8.5.1给出了某地区消费总额y(亿元)和货币收入总额x(亿元)的年度资料,试分析消费同收入的关系。
表8.5.1 某地区消费总额和货币收入总额年度资料思考与练习14.表1给出了某行业1975-1994年的库存额y 和销售额x 的资料。
试利用分布滞后模型:t t t t t t u x b x b x b x b a y +++++=---3322110建立库存函数(用2次有限多项式变换估计这个模型)。
表1 某行业1975-1994年库存额和销售额资料15.表2给出了美国1970-1987年间个人消费支出(C )与个人可支配收入(I )的数据(单位:10亿美元,1982年为基期)表2 美国1970-1987年个人消费支出与个人可支配收入数据t t t u I a a C ++=21 t t t t u C b I b b C +++=-1321请回答以下问题:(1)估计以上两模型;(2)估计边际消费倾向(MPC )17.表3给出了1970-1991年美国制造业固定厂房设备投资y 与销售额x 的相关数据(单位:亿元)。
第八章答案8.1 Sen 和Srivastava (1971)在研究贫富国之间期望寿命的差异时,利用101个国家的数据,建立了如下的回归模型:2.409.39ln3.36((ln 7))i i i i Y X D X =-+--(4.37) (0.857) (2.42) R 2=0.752其中:X 是以美元计的人均收入;Y 是以年计的期望寿命;Sen 和Srivastava 认为人均收入的临界值为1097美元(ln10977=),若人均收入超过1097美元,则被认定为富国;若人均收入低于1097美元,被认定为贫穷国。
括号内的数值为对应参数估计值的t-值。
1)解释这些计算结果。
2)回归方程中引入()ln 7i i D X -的原因是什么?如何解释这个回归解释变量? 3)如何对贫穷国进行回归?又如何对富国进行回归? 4)从这个回归结果中可得到的一般结论是什么? 练习题8.1参考解答: 1. 结果解释依据给定的估计检验结果数据,对数人均收入对期望寿命在统计上并没有显著影响,截距和变量()ln 7i i D X -在统计上对期望寿命有显著影响;同时,()()2.40 3.3679.39 3.36ln ((ln 7)) 1 2.409.39ln 0 i i i i i i i X D X D Y X D ⎧-+⨯+---==⎨-+=⎩富国时穷国时 表明贫富国之间的期望寿命存在差异。
2. 回归方程中引入()ln 7i i D X -的原因是从截距和斜率两个方面考证收入因素对期望寿命的影响。
这个回归解释变量可解释为对期望寿命的影响存在截距差异和斜率差异的共同因素。
3. 对穷国进行回归时,回归模型为12ln 1097i i i i i i Y X Y X αα=+≤,其中,为美元时的寿命; 对富国进行回归时,回归模型为12ln 1097i i i i i i Y X Y X ββ=+>,其中,为美元时的寿命;4. 一般的结论为富国的期望寿命药高于穷国的期望寿命,并且随着收入的增加,在平均意义上,富国的期望寿命的增加变化趋势优于穷国,贫富国之间的期望寿命的确存在显著差异。
第八章案例分析
改革开放以来,随着经济的发展中国城乡居民的收入快速增长,同时城乡居民的储蓄存
款也迅速增长。
经济学界的一种观点认为,20世纪90年代以后由于经济体制、住房、医疗、养老等社会保障体制的变化,使居民的储蓄行为发生了明显改变。
为了考察改革开放以来中
国居民的储蓄存款与收入的关系是否已发生变化,以城乡居民人民币储蓄存款年底余额代表
居民储蓄(Y),以国民总收入GNI代表城乡居民收入,分析居民收入对储蓄存款影响的数量关系。
表8.1为1978-2003年中国的国民总收入和城乡居民人民币储蓄存款年底余额及增加额的数据。
单位:亿元
2004
鉴数值,与用年底余额计算的数值有差异。
为了研究1978—2003年期间城乡居民储蓄存款随收入的变化规律是否有变化,考证城
乡居民储蓄存款、国民总收入随时间的变化情况,如下图所示:
图8.5
从图8.5中,尚无法得到居民的储蓄行为发生明显改变的详尽信息。
若取居民储蓄的增量
(YY ),并作时序图(见图 8.6)
从居民储蓄增量图可以看出,城乡居民的储蓄行为表现出了明显的阶段特征:
2000年有两个明显的转折点。
再从城乡居民储蓄存款增量与国民总收入之间关系的散布图
看(见图8.7),也呈现出了相同的阶段性特征。
为了分析居民储蓄行为在 1996年前后和2000年前后三个阶段的数量关系,引入虚拟变 量D 和D2°D 和D 2的选择,是以1996>2000年两个转折点作为依据,1996年的GNI 为66850.50 亿元,2000年的GNI 为国为民8254.00亿元,并设定了如下以加法和乘法两种方式同时引入 虚拟变量的的模型:
YY = 1+ 2GNI t
3
GNI t
66850.50 D 1t
+
4
GNh 88254.00 D
2t
i
D
1
t 1996年以后 D
1 t 2000年以后 其中:
D
1t
_
t 1996年及以前
2t
0 t 2000年及以前
对上式进行回归后,有:
Dependent Variable: YY Method: Least Squares Date: 06/16/05 Time: 23:27
120000 8.7
1996年和
100000-
40000
2WM
GNi
o eOB2&ISEea9a9l2949698[Ma2
20CUC
ir-“-
1CC0C
图
8.6
*OOCO
mnoot , RtKXD Tconr
GF*
Sample (adjusted): 1979 2003
Included observations: 25 after adjustments
Variable Coefficient Std. Error t-Statistic Prob.
C -830.4045 172.1626 -4.823374 0.0001 GNI
0.144486 0.005740 25.17001 0.0000 (GNI-66850.50)*DUM1
-0.291371 0.027182 -10.71920 0.0000 (GNI-88254.00)*DUM2
0.560219
0.040136
13.95810
0.0000
R-squared
0.989498 Mean dependent var 4168.652 Adjusted R-squared 0.987998 S.D. dependent var 4581.447 S.E. of regression 501.9182 Akaike info criterion 15.42040 Sum squared resid 5290359. Schwarz criterion 15.61542 Log likelihood -188.7550 F-statistic 659.5450 Durbin-Watson stat
1.677712
Prob(F-statistic)
0.000000
即有:
YY = -830.4045 + 0.1445GNI t - 0.2914 GNI t -66850.50 6 + 0.5602 GNI t -88254.00 D ?t
se= ( 172.1626) ( 0.0057) ( 0.0272) t = (-4.8234)
(25.1700) (-10.7192)
由于各个系数的t 检验均大于2,表明各解释变量的系数显著地不等于 存款年增加额的回归模型分别为:
(0.0401)
(13.9581)
2 2
R 0.9895 R 0.9880 F 659.5450 DW 1.6777 t 1996 1996<t 2000 t 2000
0,居民人民币储蓄
YY = -830.4045 + 0.1445GNI t+ 1t
YY YY = 18649.8312- 0.1469GNI t+ 2t
YY =- 30790.0596 + 0.4133GNI t+ 3t
这表明三个时期居民储蓄增加额的回归方程在统计意义上确实是不相同的。
1996 年以前收入每增加1 亿元,居民储蓄存款的增加额为0.1445 亿元;在2000 年以后,则为0.4133 亿元,已发生了很大变化。
上述模型与城乡居民储蓄存款与国民总收入之间的散布图是吻合的,与当时中国的实际经济运行状况也是相符的。
需要指出的是,在上述建模过程中,主要是从教学的目的出发运用虚拟变量法则,没有考虑通货膨胀因素。
而在实证分析中,储蓄函数还应当考虑通货膨胀因素。