超氧化物歧化酶
- 格式:doc
- 大小:41.50 KB
- 文档页数:5
超氧化物歧化酶偏高2481.引言1.1 概述超氧化物歧化酶(Superoxide Dismutase,SOD)是一种重要的抗氧化酶,主要负责将细胞内产生的超氧阴离子(O2-)转化为较稳定的氧气(O2)和过氧化氢(H2O2)。
超氧化物歧化酶的正常功能对于维持细胞内氧化还原平衡、保护细胞免受氧化应激的损害具有至关重要的作用。
然而,当身体出现超氧化物歧化酶偏高的情况时,就意味着机体的氧化应激水平升高,超氧阴离子的清除能力减弱,导致细胞内氧化损伤加剧。
超氧化物歧化酶偏高的原因多种多样,可能与遗传因素、环境因素、生活方式等有关。
一些研究表明,长期暴露于高氧环境、缺乏抗氧化剂摄入、慢性炎症等都可能导致超氧化物歧化酶水平的升高。
超氧化物歧化酶偏高对身体健康产生的影响是多方面的。
首先,过量的超氧阴离子会与其他自由基产生反应,造成细胞内脂质、蛋白质和核酸的氧化损伤,从而引发细胞凋亡、炎症反应等病理过程。
其次,超氧化物歧化酶偏高与一些慢性病的发生发展密切相关,如心血管疾病、神经退行性疾病等。
此外,超氧化物歧化酶偏高还可能对机体的免疫功能、抗肿瘤能力等产生不利影响。
针对超氧化物歧化酶偏高的问题,我们可以采取一些应对措施来降低其水平。
首先,合理饮食是关键,增加摄入富含抗氧化成分的食物,如新鲜蔬菜、水果、坚果等。
其次,适度的体育锻炼可以增强机体的抗氧化能力,如有氧运动、力量训练等。
此外,保持良好的生活习惯也是必不可少的,如避免吸烟、少饮酒、定期进行体检等。
在总结上述内容的基础上,本文将重点探讨超氧化物歧化酶偏高的原因、对身体健康的影响以及相应的应对措施。
通过对这一问题的深入研究,我们可以更好地了解超氧化物歧化酶在细胞内的作用机制,为相关疾病的预防和治疗提供理论依据。
1.2 文章结构文章结构部分的内容可以按以下方式编写:文章结构部分的目的是介绍整篇文章的组织结构,帮助读者更好地理解文章的内容和逻辑关系。
本文按照以下三个部分进行论述:引言、正文和结论。
超氧化物歧化酶的应用研究进展一、本文概述超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一种重要的抗氧化酶,广泛存在于生物体内,其主要功能是催化超氧化物阴离子自由基(O2-)的歧化反应,从而保护细胞免受氧化应激的损害。
近年来,随着生物技术和分子生物学的发展,超氧化物歧化酶的应用研究取得了显著的进展。
本文旨在综述超氧化物歧化酶在各个领域的应用研究进展,包括其在医学、农业、食品工业以及环境保护等领域的应用,以期为相关领域的研究提供参考和借鉴。
在医学领域,超氧化物歧化酶作为一种重要的抗氧化剂,被广泛应用于疾病的治疗和预防。
研究表明,超氧化物歧化酶能够清除体内的自由基,减轻氧化应激对细胞的损伤,从而起到抗衰老、抗疲劳、抗辐射等作用。
超氧化物歧化酶还被用于治疗一些与氧化应激相关的疾病,如心血管疾病、癌症、糖尿病等。
在农业领域,超氧化物歧化酶的应用主要集中在提高植物抗逆性和促进植物生长方面。
通过基因工程技术将超氧化物歧化酶基因导入植物体内,可以提高植物对逆境的抵抗能力,如耐盐、耐旱、耐寒等。
同时,超氧化物歧化酶还可以促进植物的生长和发育,提高植物的产量和品质。
在食品工业领域,超氧化物歧化酶作为一种天然的抗氧化剂,被广泛应用于食品的加工和保存过程中。
它可以有效地抑制食品的氧化变质,延长食品的保质期,同时保持食品的营养成分和口感。
在环境保护领域,超氧化物歧化酶也被用于处理一些环境污染问题。
例如,超氧化物歧化酶可以用于处理工业废水中的有害物质,减少其对环境的污染。
超氧化物歧化酶还可以用于土壤修复和生态恢复等方面。
超氧化物歧化酶作为一种重要的抗氧化酶,在各个领域都展现出广泛的应用前景。
随着科学技术的不断进步,相信超氧化物歧化酶的应用研究将会取得更加显著的成果。
二、SOD的结构与功能超氧化物歧化酶(Superoxide Dismutase,简称SOD)是一类广泛存在于生物体内的金属酶,其主要功能是催化超氧化物(O2-)的歧化反应,从而将其转化为过氧化氢(H2O2)和氧气(O2)。
超氧化物歧化酶超氧化物歧化酶(Superoxide Dismutase,SOD)是细胞内一种重要的抗氧化酶,它能够将超氧自由基转化为氧气和过氧化氢,起到保护细胞免受氧化损伤的作用。
本文将对超氧化物歧化酶的结构、功能、应用以及未来研究方向进行探讨。
一、超氧化物歧化酶的结构人体中存在三种SOD:Cu/Zn-SOD、Mn-SOD 和Fe-SOD。
其中,Cu/Zn-SOD主要分布在胞浆和细胞外液,需要Cu2+和Zn2+的协同作用;Mn-SOD主要分布在线粒体中,需要Mn2+作为辅因子;Fe-SOD主要分布在细菌中,需要Fe2+作为辅因子。
这些辅因子通过配位作用与蛋白质结合,增强了SOD的抗氧化活性。
各种SOD的结构方式不同,Cu/Zn-SOD和Fe-SOD均为四聚体,而Mn-SOD为二聚体。
SOD的基本结构是四分子组成的双链β-桶,其中锌或锰离子位于β-桶的中央,与四个蛋白质链上的组氨酸、赖氨酸和组替氨酸配位形成四面体几何构型,从而激活酶的抗氧化功能。
二、超氧化物歧化酶的功能超氧自由基是生物体内产生的一种强氧化剂,它具有很强的氧化损伤作用,可引起DNA断裂、蛋白质结构变性和脂膜的过氧化,从而对细胞和组织产生不良影响。
而SOD可以催化以下反应:2O2- + 2H+ → O2 + H2O2,将超氧自由基转化为氧气和过氧化氢,从而减少氧化损伤的发生。
SOD还可以参与许多生理过程。
它能够调节植物细胞的生长和发育,提高植物的逆境适应性;同时,SOD还可以抑制多种炎症反应和人体免疫反应,对于治疗炎症性疾病和肿瘤具有重要作用。
三、超氧化物歧化酶的应用1. 保健品和药物开发:若把SOD制成保健品或药物,则能保护人体免受氧化损伤,对于预防老年病和癌症具有积极意义。
2. 动物饲料添加剂:SOD可以提高动物的生长率和免疫力,增加产蛋量和酪蛋白合成能力,从而提高动物产品的质量和产量。
3. 化妆品原料:SOD能够保护皮肤免受紫外线和污染物的氧化损伤,从而具有抗衰老和美白作用。
超氧化物歧化酶和谷胱甘肽过氧化物酶超氧化物歧化酶和谷胱甘肽过氧化物酶是两种重要的抗氧化酶,在生物体内起着抵抗氧化损伤的重要作用。
本文将详细介绍这两种酶的结构、功能和应用。
一、超氧化物歧化酶1. 结构超氧化物歧化酶(superoxide dismutase,SOD)是一种由两个同构或不同构亚基组成的金属酶,分别为Cu/Zn SOD、Mn SOD和Fe SOD三种。
其中Cu/Zn SOD是最早被发现的一种,主要存在于细胞质和细胞外基质中,包括红细胞、胶质细胞、肌肉细胞、肝细胞等。
Mn SOD主要存在于线粒体中,而Fe SOD则主要存在于古菌和部分细菌中。
Cu/Zn SOD由两个亚基组成,每个亚基含一个铜原子和一个锌原子,总质量为32kDa;Mn SOD由四个同构亚基组成,每个亚基含有一个锰原子,总质量为100kDa;Fe SOD也由四个亚基组成,每个亚基含有一个铁原子,总质量为135kDa。
2. 功能超氧化物歧化酶主要起着将细胞内生成的超氧自由基转化为氢氧化物和氧分子的作用,从而防止超氧自由基的毒性影响。
超氧自由基是一种高度活性的存在于细胞内的一种氧化物,它可以与身体内的重要分子结合,使得它们失去功能。
超氧自由基还可以促进细胞内的氧化脂质,造成损伤。
超氧化物歧化酶的另一个重要作用是防止蛋白质的氧化损伤。
蛋白质的氧化损伤常常导致它们的功能失调、聚集和降解,从而损害细胞内正常的代谢活动。
3. 应用超氧化物歧化酶具有广泛的应用领域。
它可以用于治疗由于氧化损伤引起的各种疾病,如神经炎、帕金森病、关节炎等。
此外,超氧化物歧化酶还可以被用于食品、药品和保健品的防腐剂,以及环境污染的治理中。
谷胱甘肽过氧化物酶(glutathione peroxidase,GPx)是一种由四个同构亚基组成的硒酶。
它主要存在于细胞质和线粒体中,也可存在于血浆中。
GPx的亚基分子量约为21kDa,总分子量约为83kDa。
GPx的活性部位是一个半胱氨酸残基和一个硒氧离子组成的硒离子。
超氧化物歧化酶(SOD)编辑超氧化物歧化酶(Superoxide Dismutase SOD)是一种广泛存在于动植物、微生物中的金属酶。
能催化生物体内超氧自由基(O2-)发生歧化反应,是机体内O2-的天然消除剂[1] 。
从而清除O2-,在生物体的自我保护系统中起着极为重要的作用。
在免疫系统中也有极为重要的作用[2] 。
中文名丹青宝牌SOD口服片外文名superoxidedismutase别称抗衰老之星主要原料SOD、人参,黄芪是否含防腐剂否主要营养成分SOD是超氧化物歧化酶主要食用功效清除自由基、逆转亚健康、延缓衰老,改善睡眠、改善肠胃功能、预防老年性痴呆,抗氧化、抗辐射损伤,提高免疫力适宜人群老人、儿童、妇女,免疫低下者、术后康复者副作用无储藏方法避光,置于阴凉干燥处目录1简介2SOD的研发史1简介编辑SOD是一种金属酶,含有铜和锌两种离子,需氧。
生物中,SOD催化使对抗体有关的超氧阴离子变成双氧水,随后被双氧水分解,保护机体免受超氧阴离子的影响,是一种新型的抗氧化酶。
超氧化物歧化酶Orgotein (Superoxide Dismutase, SOD),别名肝蛋白,简称:SOD。
SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。
对人体不断地补充SOD具有抗衰老的特殊效果。
2SOD的研发史编辑1938年英国科学家Mann和Keilin首次从牛红血球中分离出一种含铜蛋白质,最初定名为血铜蛋白。
1956 年英国教授Harman D提出了“自由基衰老学说”,认为自由基是引起衰老和疾病的最终根源。
1969年美国生化专家Fridovich和他的学生Mccord从牛红细胞中重新发现这种蛋白,定名为SOD,并报告SOD有清除自由基的作用。
1980年日本著名医学博士羽靳负指出:关节神经痛、白内障、黄褐斑、癌症等,多种疾病与过量的自由基有关,SOD可以有效清除自由基。
1985年全世界100多个国家的数百位科学家一致公认人体内存在着一套对抗自由基的机制,这套机制由体内SOD支配和调控,SOD是对抗和俘获自由基的核心力量,是体内唯一以自由基为底物的清除剂。
超氧化物歧化酶底物通道
超氧化物歧化酶(Superoxide Dismutase,SOD)本身并没有所谓的“底物通道”,但SOD作为一种抗氧化金属酶,它通过催化反应转化超氧阴离子自由基(O2^-)为氧气(O2)和过氧化氢(H2O2),这一过程对维护生物体内氧化与抗氧化的平衡非常重要。
具体来说,SOD的作用机制涉及以下几个关键点:
1.催化作用:SOD能够识别并催化超氧阴离子自由基,将其转化为相对不活跃的分子氧和过氧化氢。
2.分类:根据SOD中金属辅基的不同,可以将其分为三类:Cu/Zn-SOD主要存在于真核细胞质内,Mn-SOD主要在线粒体中发现,而Fe-SOD则多见于原核细胞中。
3.功能重要性:SOD的功能对于抵御氧化应激至关重要,它帮助减少由自由基引发的损伤,并与许多疾病的发生和发展相关联。
4.应用前景:由于SOD在延缓衰老、防治疾病等方面的潜在效用,目前对其活性的改变及其抑制剂的研究也在进行之中,以期发现新的治疗手段。
综上所述,SOD通过其催化作用在抗氧化防御系统中发挥关键作用,而并非通过某种特定的“底物通道”。
超氧化物岐化酶
超氧化物歧化酶(Superoxide Dismutase,SOD)是一种重要的抗氧化酶,它可以将活性氧代谢成氧和氢氧化物,从而起到降低免疫系统细胞受损的作用,并因此成为广泛研究的热点领域。
超氧化物歧化酶具有多种形式,其中最常见的类型包括CU/Zn-SOD、Mn-SOD 和Fe-SOD。
CU/Zn-SOD 以细胞质及细胞膜中的超氧化物物种(O2-)为底物,执行将O2- 分解为H2O2 的反应,Mn-SOD 则以线粒体超氧化物物种(O2•-)为底物,进行将O2•- 分解为
O2- 及H2O2 的反应,而在Fe-SOD 中,则直接以O2- 为底物,将O2- 分解为H2O2。
SOD 具有多方面的功效,它不仅有能够减缓细胞老化的作用,也能够增强免疫细胞的功能,而且还具有调节细胞代谢的作用。
此外,SOD 还能够减少受损细胞的数量,从而有益于细胞的恢复及修复,能够防止细胞的过度分解,从而有效阻止细胞破坏及老化。
SOD 能够帮助减弱细胞和细胞膜与环境的氧自由基氧化反应,可以能够维持细胞膜脂质的可塑性和稳定性,从而减少细胞与外界的氧自由基氧化冲击,并能够在合理的抑制氧自由基的氧化反应的基础上,维持正常的代谢水平。
此外,SOD 还可以维护细胞环境的稳定性,从而能够延缓老化的过程,使细胞保持健康状态,并且能够延缓某些老化相关疾病的发生,增强对各种炎症性及感染性疾病的免疫功能,例如癌症,心脏病等。
超氧化物歧化酶
超氧化物歧化酶(superoxidedismutase,SOD)是一种金属酶,在生物界中分布极广,目前已从细菌、藻类、真菌、昆虫、鱼类、高等植物和哺乳动物等生物体内分离得到SOD。
在食物中,超氧化物歧化酶主要存在于肝脏等多种动物组织以及菠菜、银杏、番茄等植物中。
SOD的生物学功能主要包括:
(一)抗氧化抗衰老作用
目前认为衰老、罹患某些疾病都与机体过氧化反应有关。
自由基O2 过多会加速机体衰老而诱发多种疾病,SOD作为能催化超氧阴离子歧化的自由基清除剂,具有辅助延缓衰老的作用。
随着机体的老化,SOD的含量会逐步下降,适时地补充外源性SOD可清除机体内过量的超氧阴离子自由基,辅助延缓由于自由基侵害而出现的多种衰老现象。
(二)提高机体对疾病的抵抗力
SOD能预防或减轻由氧自由基引发的多种疾病。
目前,SOD的应用主要集中在预防和减轻辐射损伤、炎症、关节病、缺血再灌注损伤、氧中毒、‘老年性白内障、糖尿病等多种病症上。
超氧化物歧化酶
超氧化物歧化酶(Superoxide dismutase,SOD)是一种存在于细胞内的酶类物质,它在生物体内起着重要的抗氧化作用。
超氧化物歧化酶能够催化超氧自由基(superoxide radical)的还原反应,将其转化为氧气(O2)和过氧化氢(H2O2)。
这一反应能够有效地减少超氧自由基的浓度,从而减轻细胞和组织的氧化应激损伤。
超氧化物歧化酶存在于多种生物体中,包括人类、动物和植物。
在人类体内,超氧化物歧化酶分为不同的亚型,主要包括铜锌超氧化物歧化酶(Cu/Zn-SOD)、锰超氧化物歧化酶(Mn-SOD)和细胞外超氧化物歧化酶(EC-SOD)。
它们分别位于细胞质、线粒体和细胞外基质中,以适应不同的氧化环境。
超氧化物歧化酶对细胞的保护作用非常重要。
超氧自由基是一种高度反应性的氧自由基,在细胞代谢过程中产生,并与其他氧自由基共同引发氧化应激反应。
氧化应激反应可以导致细胞膜的脂质过氧化、蛋白质的氧化修饰以及核酸的损伤,进而引发多种疾病和衰老过程。
超氧化物歧化酶通过清除超氧自由基,可以降低细胞氧化应激水平,维护细胞内的氧化平衡。
研究表明,超氧化物歧化酶在许多疾病的发生和发展中发挥着重要作用。
例如,某些遗传性疾病与超氧化物歧化酶的功能缺陷有关,导致细胞氧化应激增加。
此外,超氧化物歧化酶也与神经退行性疾病、心血管疾病、肿瘤等疾病的发生密切相关。
因此,研究超氧化物歧化酶的功能和调控机制对于理解疾病的发病机理以及开发相关的治疗方法具有重要意义。
超氧化物歧化酶超氧化物歧化酶,别名肝蛋白、奥谷蛋白,简称:SOD。
SOD是一种源于生命体的活性物质,能消除生物体在新陈代谢过程中产生的有害物质。
对人体不断地补充SOD具有抗衰老的特殊效果。
超氧化物歧化酶是1938年Marn等人首次从牛红血球中分离得到超氧化物歧化酶开始算起,人们对SOD的研究己有七十多年的历史。
1969年McCord等重新发现这种蛋白,并且发现了它们的生物活性,弄清了它催化过氧阴离子发生歧化反应的性质,所以正式将其命名为超氧化物歧化酶。
SOD(超氧化物歧化酶)是国际上公认的具有人体垃圾“清道夫”、“抗衰王”、“美容骄子”之称,是对抗“百病之源”活性氧自由基最有力的物质,是近半个世纪以来社会科学界、医学界、生物界最举世瞩目的价值发现,它的研究与发展代表着生物医药的高科技技术发展的前沿,在科技成果及学术领域占据重要的国际地位。
SOD(超氧化物歧化酶)被国家列入生物医药“国家十一五规划”重点项目。
2011年是“国家十二五规划”的第一年,SOD行业将再次跻身国家当前优先发展的高科技产业化项目,标志着中国健康产业链SOD新兴行业的崛起, 使全人类迈入健康经济时代。
利用超氧化物歧化酶(SOD)产业化建设,一方面可架构生物医药、保健食品、日用美容化妆品、化工化学、农业五大版块经济支柱的绿色产业链循环经济圈发展。
另一方面打造SOD科技应用成果转化的孵化器平台引领生化医药美容化妆品食品等行业的新型健康原料的应用,有利于促进再生资源利用,产生巨大的社会效益和经济效益。
一、反应机理超氧化物岐化酶,它催化如下的反应:2O2-+2H+→H2O2+O2O2-称为超氧阴离子自由基,是生物体多种生理反应中自然生成的中间产物。
它是活性氧的一种,具有极强的氧化能力,是生物氧毒害的重要因素之一。
SOD是机体内天然存在的超氧自由基清除因子,它通过上述反应可以把有害的超氧自由基转化为过氧化氢。
尽管过氧化氢仍是对机体有害的活性氧,但体内的过氧化氢酶(CAT)和过氧化物酶(POD)会立即将其分解为完全无害的水。
这样,三种酶便组成了一个完整的防氧化链条。
SOD属于金属蛋白酶,按照结合金属离子种类不同,该酶有以下三种:含铜与锌超氧化物歧化酶(Cu-ZnSOD )、含锰超氧化物歧化酶(Mn-SOD )和含铁超氧化物歧化酶(Fe-SOD )。
三种SOD都催化超氧化物阴离子自由基,将之歧化为过氧化氢与氧气。
目前,人们认为自由基(也称游离基)与绝大部分疾病以及人体的衰老有关。
所谓的自由基就是当机体进行代谢时,能夺去氧的一个电子,这样这个氧原子就变成自由基。
自由基很不稳定,它要在身体组织细胞的分子中再夺取电子来使自己配对,当细胞分子推陈出新动一个电子后,它也变成自由基,又要去抢夺细胞膜或或细胞核分子中的电子,这样又称会产生新的自由基。
如,超氧化物阴离子自由基、羟自由基、氢自由基和甲基自由基,等等。
在细胞由于自由基非常活泼,化学反应性极强,参与一系列的连锁反应,能引起细胞生物膜上的脂质过氧化,破坏了膜的结构和功能。
它能引起蛋白质变性和交联,使体内的许多酶及激素失去生物活性,机体的免疫能力、神经反射能力、运动能力等系统活力降低,同时还能破坏核酸结构和导致整个机体代谢失常等,最终使机体发生病变。
因此,自由基作为人体垃圾,能够促使某些疾病的发生和机体的衰老。
虽然自由基会对机体产生诸多危害,但是在一般的条件下人体细胞内也存在着清除自由基、抑制自由基反应的体系,它们有的属于抗氧化酶类,有的属于抗氧化剂。
像SOD就是一种主要的抗氧化酶,能清除超氧化物自由基,在防御氧的毒性、抑制老年疾病以及预防衰老等方面起着重要作用。
二、SOD(超氧化物歧化酶)的应用1、SOD(超氧化物歧化酶)对抗人体衰老的临床应用人体随着年龄的增加,皮肤会变得粗糙、发皱、变黑和形成老年斑,其中老年斑是皮肤衰老的典型现象,即在老年人的面部、手部皮肤上出现黑褐色斑块或斑点。
老年斑主要由黑色素组成,而自由基在黑色素形成、反应和组成中起重要作用。
在有空气存在时,光照黑色素可使其耗氧增加,产生O-2 和羟自由基。
在衰老的皮肤和脑中存在的另两类色素是脂褐素和蜡样质,也可使皮肤变黑和粗糙。
这两种物质均由自由基引起。
脂褐素和蜡样质本身也含大量自由基,可以通过多种途径产生O-2 。
自由基虽是造成人体衰老的重要原因,但机体并不是易衰老的,机体内也存在着抗衰老的物质。
机体内存在着一系列的自由基清除剂(如: SOD、CAT、GSH - PX)和一些抗氧化物(如:维生素A、维生素E、维生素C等) 。
其中, SOD是非常重要的,它可以不断地清除由光照黑色素耗氧过多而产生的O-2 ,防止过多的黑色素的形成。
它不断地清除由脂褐素和蜡样质产生的O-2 ,避免过多的脂质发生过氧化,而减少脂褐素和蜡样质的形成,防止衰老。
美国FDA在科学家大量试验数据和大众的呼吁中,终于在1998年批准使用SOD产品。
SOD在美国盛行几十年,未来十年美国国民平均寿命可能达到95岁,现有报导称美国科学家能通过药物提高人的寿命使人的寿命达到100岁。
研究表明,其中SOD是一种不可缺少的药物。
尽管SOD只能打针,口服无效(因为SOD对PH很敏感,胃呈强酸性),尽管SOD非常娇气,常温下只能存活几天,但是怕麻烦,视时间为金钱的美国人还是掀起了注射SOD的热潮,渴望青春的中年妇女,不愿衰老的老人,免疫力低下,想留住美丽的年轻女士……都是SOD的狂热追求者。
2、SOD(超氧化物歧化酶)与人体疾病治疗的作用人类机体所处的环境复杂,体内经常不断地产生自由基,特别在病理过程中,产生大量的O-2 ,这些O-2 反过来促进病情加重,因而SOD在清除O-2 中则显得异常重要。
肺气肿是由于肺组织的中性白细胞含弹性蛋白酶及弹性蛋白酶抑制剂不平衡所致。
弹性蛋白酶抑制剂有α- 蛋白酶抑制剂及支气管粘膜蛋白抑制剂两种,均可受O-2 攻击而失活,导致肺气肿。
环境污染物(如:O3、氮、硫等)能提高肺的巨噬细胞的活力而不断释放O-2 ,吸烟也会使自由基大量进入肺内。
在肺中,O-2 产生破坏性极强的•OH等,O-2 和•OH攻击弹性蛋白酶抑制剂,使其失活,而造成肺气肿。
类风湿关节炎、全身性红斑狼疮等自身免疫性疾病是由于机体丧失阻止自身组分的抗体形成,而产生自体抗体。
这些抗体与正常的机体级组分结合,引起吞噬细胞吞噬而表现出病理状态。
吞噬细胞在吞噬过程中产生大量的O-2 ,O-2 攻击机体而加剧病变。
机体受原子弹、氢弹的辐射冲击,从事放射辐射工作而防护不良的工作人员,受电离辐射后,形成各种不同产物,且产物又发生连锁反应,生成许多自由基而攻击人体,导致辐射病。
SOD的增加能抑制因辐射而引起的肿瘤的形成,并增加成纤维细胞的分化能力, 有效地防止肿瘤的恶性发展。
另外,某些药物中毒、氧中毒、大气污染综合症和老年性白内障等疾病的发生均与O2 - 相关联。
机体内的O-2 可以引起各种疾病, SOD作为O-2 的天然清除剂,在正常情况下,O-2 与SOD保持动态平衡,但在病理状态下,产生过量的O-2 ,机体本身产生的SOD 能完全清除这些过多的O-2 ,这些过多的O-2 则对机体产生危害。
SOD可以催化O-2 进行歧化反应,减轻O-2 对上述疾病的作用。
机体内含有SOD,并且机体组织中的SOD还会随着年龄的增加而增加,如J. Hollander 研究发现随着人年龄的增加,腓肠肌中SOD的活性也在增加。
但是,机体自身产生的SOD是有限的,因此在疾病治疗中可以通过注射或口服SOD药物增加机体中的SOD,达到治疗疾病的作用。
目前,许多研究者根据SOD的无致敏性和无抗原性的特点,采用SOD制剂来治疗疾病。
如直接注射SOD制剂于发炎的关节部位来缓解类风湿关节炎;口服SOD治疗药物和抗生素中毒已经取得较好的效果; SOD还可促进骨折后细胞分裂、增殖、促进骨折后骨的生长,缩短骨折愈合时间。
SOD不但可用于疾病的治疗,也可用于临床检查,如用SOD作为硅肺诊断的指标。
硅肺是由于粉尘中的SiO2引起自由基反应启动膜的脂质过氧化反应而导致膜损伤,引起肺泡巨噬细胞破坏与分解而造成硅肺。
通过测定SOD的含量来作为一个硅肺诊断指标。
SOD 作为一种人体内最重要的酶之一,它所起的作用是不可小视的。
临床上可用SOD治疗和预防下列疾病:急性炎症和水肿、氧中毒预防(预防措施,进入高压氧舱的工作人员,可预先注射SOD)、氧中毒治疗、自身免疫性疾病(早期治疗)、肺气肿、辐射病及辐射防护、老年性白内障、抗衰老。
SOD 在医学应用领域的拓展,取决于对其作用机制和生成机制的更深入研究,期待发现。
3、SOD(超氧化物歧化酶)在化妆品中的应用SOD(超氧化物歧化酶)广泛应用于化妆品添加剂方面,如利用超氧化物歧化酶生产的SOD面膜、SOD蜜等护肤品和SOD精粉、SOD原液、SOD胶囊等口服化妆品,目前已有不下数百种产品。
SOD 在皮肤表层可能抑制氧自由基的强氧化作用,达到护肤的目的。
研究证明, SOD添加于化妆品中可起到四方面的作用:一是有明显的防晒效果,光照使皮肤变黑的主要原因是氧自由基损害, SOD 可有效防止皮肤受电离辐射(特别是紫外线)的损伤,从而起到防晒效果;二是SOD 为抗氧酶,能有效防止皮肤衰老、祛斑、抗皱;三是有明显的抗炎效果,对防治皮肤病有一定效果;四是SOD具有一定的防治斑痕形成的作用。
SOD在化妆品中妆品应用广泛, SOD也被用于化妆品中,如我国的大宝SOD蜜,用于防止皮肤衰老,另一些含SOD量高的药物如人参、三七、黄芪等也受到重视。
4、SOD(超氧化物歧化酶)在农业上的应用SOD在转基因植物中的过量表达能不同程度地提高植物对逆境的抵抗能力,Mn-SOD基因的过量表达在一定程度上可以提高植物转基因植物对氧胁迫的耐受性。
通过基因工程手段,增加植物内的SOD的表达,可以大大增强植物的抗逆性。
目前有研究者对存在于线粒体中的Mn -SOD进行科学试验,将Mn–SOD导入烟草、苜蓿的叶绿体后,其转基因植株可以增加对臭氧及干旱胁迫的抗性。
Fe -SOD 基因转化烟草叶绿体, Fe- SOD 的过量表达能够增强叶绿体质膜和光合系统Ⅱ对MV (甲基紫精) 和高盐过氧化胁迫的抗性。
5、SOD(超氧化物歧化酶)在食品工业中的应用SOD(超氧化物歧化酶)在食品工业中的应用也比较广泛。
在食品中加入SOD可以增强抗衰老、抗炎、抗辐射、抗疲劳等保健作用。
其主要表现在四个方面:(1)、作为保健食品的功效因子或食品营养强化剂该保健品具有良好的抗衰老、抗炎、抗辐射、抗疲劳等保健强身的效果。
目前已有添加有SOD的蛋黄酱、牛奶、可溶性咖啡、啤酒、白酒、果汁饮料、矿泉水、奶糖、酸牛乳、冷饮类等类型的保健食品面市。