最优化方法 第五章 无约束最优化方法
- 格式:ppt
- 大小:231.00 KB
- 文档页数:36
牛顿法无约束最优化证明牛顿法是一种常用的非线性优化方法,它通过逐步逼近最优解来求解无约束最优化问题。
本文将介绍牛顿法的数学原理及其证明过程。
首先,我们考虑一个无约束的最优化问题,即:min f(x)其中,f(x)为目标函数,x为优化变量。
我们的目标是找到一个x,使得f(x)最小。
牛顿法的基本思想是通过求解目标函数的局部二次近似来逐步逼近最优解。
具体来说,我们首先选取一个初始点x0,然后利用目标函数的一、二阶导数信息,计算出目标函数在x0处的局部二次近似:f(x) ≈ f(x0) + f(x0)·(x-x0) + 1/2(x-x0)T·H(x0)·(x-x0) 其中,f(x0)为目标函数在x0处的梯度,H(x0)为目标函数在x0处的黑塞矩阵。
我们将局部二次近似表示为:Q(x) = f(x0) + f(x0)·(x-x0) + 1/2(x-x0)T·H(x0)·(x-x0) 然后,我们将Q(x)的导数置为零,得到如下方程:H(x0)·(x-x0) = -f(x0)接着,我们解出上述方程的解x1,将x1作为新的近似点,重复上述步骤,迭代求解,直到收敛于最优解。
接下来,我们来证明牛顿法的收敛性。
我们假设目标函数f(x)满足如下条件:1. f(x)是二次可微的凸函数。
2. H(x)是正定的。
在这种情况下,我们可以证明牛顿法是线性收敛的。
具体来说,设xk为牛顿法第k次迭代的近似解,x*为最优解,则有:f(xk+1) - f(x*) ≤ C·(f(xk) - f(x*))2其中,C>0是一个常数。
这个式子表明,每次迭代后,算法的误差都会平方级别的减小。
证明过程比较复杂,需要利用函数的泰勒展开式、中值定理等工具。
具体证明过程可以参考相关数学文献。
综上所述,牛顿法是一种有效的无约束最优化方法,其收敛速度较快,但需要满足一定的条件才能保证收敛性。
数学中的最优化方法数学是一门综合性强、应用广泛的学科,其中最优化方法是数学的一个重要分支。
最优化方法被广泛应用于各个领域,如经济学、物理学、计算机科学等等。
本文将从理论和应用两个角度探讨数学中的最优化方法。
一、最优化的基本概念最优化是在给定约束条件下,寻找使某个目标函数取得最大(或最小)值的问题。
在数学中,最优化可以分为无约束最优化和有约束最优化两种情况。
1. 无约束最优化无约束最优化是指在没有限制条件的情况下,寻找使目标函数取得最大(或最小)值的问题。
常见的无约束最优化方法包括一维搜索、牛顿法和梯度下降法等。
一维搜索方法主要用于寻找一元函数的极值点,通过逐步缩小搜索区间来逼近极值点。
牛顿法是一种迭代方法,通过利用函数的局部线性化近似来逐步逼近极值点。
梯度下降法则是利用函数的梯度信息来确定搜索方向,并根据梯度的反方向进行迭代,直至达到最优解。
2. 有约束最优化有约束最优化是指在存在限制条件的情况下,寻找使目标函数取得最大(或最小)值的问题。
在解决有约束最优化问题时,借助拉格朗日乘子法可以将问题转化为无约束最优化问题,进而使用相应的无约束最优化方法求解。
二、最优化方法的应用最优化方法在各个领域中都有广泛的应用。
以下将以几个典型的应用领域为例加以说明。
1. 经济学中的最优化在经济学中,最优化方法被广泛应用于经济决策、资源配置和生产计划等问题的求解。
例如,在生产计划中,可以使用线性规划方法来优化资源分配,使得总成本最小或总利润最大。
2. 物理学中的最优化最优化方法在物理学中也是常见的工具。
例如,在力学中,可以利用最大势能原理求解运动物体的最优路径;在电磁学中,可以使用变分法来求解电磁场的最优配置;在量子力学中,可以利用变分法来求解基态能量。
3. 计算机科学中的最优化在计算机科学中,最优化方法被广泛应用于图像处理、机器学习和数据挖掘等领域。
例如,在图像处理中,可以使用最小割算法来求解图像分割问题;在机器学习中,可以使用梯度下降法来求解模型参数的最优值。
无约束最优化问题的求解算法和应用随着科技的发展和应用领域的扩大,无约束最优化问题已经越来越成为一种关注的研究领域。
在现实生活中,无约束最优化问题的求解可以应用在多个方面,比如金融、医学、机械工程等等。
然而,在实际应用中,我们往往需要利用已经发展的优秀算法进行求解。
本文将会介绍无约束最优化问题的求解算法及其应用。
一、无约束最优化问题的概念无约束最优化问题指的是在一定的条件下,通过调整某些变量来最大或最小化指定的目标函数。
这些变量的调整需遵守一定的限制条件,并且通过各种数值分析方法,比如数值解析和计算机数值算法等技术来求解这样的问题。
无约束最优化问题的数学形式一般为:$$ \min_{x \in \mathbb{R}^n} f(x) $$其中,$x \in \mathbb{R}^n$ 是 $n$ 维空间中的一个向量,$f(x)$ 则是目标函数,该函数需要满足一定的条件,比如连续、可微、凸等等。
当函数连续、可微的情况下,就能有效地应用求导法来求解这个问题。
二、基于梯度下降的算法在求解无约束最优化问题时,最常用的算法就是基于梯度下降的算法。
该算法通过沿着负梯度的方向一步步得逼近全局极小值。
算法的主要流程如下:1、初始化变量$x$,比如$x=0$;2、计算目标函数$ f(x)$ 的梯度 $\nabla f(x)$;3、计算下降方向 $p$,$p=-\nabla f(x)$;4、选择步长 $\alpha$,更新$x$ $x_{k+1} = x_{k} + \alpha p$;5、重复执行步骤2-4 进行更新,直到满足一定的终止条件为止。
这种方法的收敛性非常好,同时也比较容易实现。
在实际应用中,通常会将其与其他迭代方法组合使用,比如牛顿、拟牛顿等方法来提升其求解精度。
三、基于共轭梯度的算法基于梯度下降的算法虽然求解精度较好,但是当求解目标函数具有高度弱凸性质时,算法的收敛速度会相对较慢。
为了克服这类问题,研究人员往往会采用共轭梯度法。
⽆约束最优化的常⽤⽅法11/22/2017 12:40:56 PM优化问题在很多领域有着重要的应⽤。
为了⽇后查阅⽅便,本⽂列举常见的⽆约束优化⽅法的计算公式。
需要说明的是,本⽂的⼤部分内容选⾃图书《算法笔记》。
⼀、梯度下降法梯度下降法(Gradient Descent Method)也叫做最速下降法(Steepest Descent Method),因为负梯度是函数局部下降最快的⽅向。
梯度下降梯度下降法的迭代格式为x k+1=x k−αk∇f(x k)梯度下降法⾮常简单,只需要知道如何计算⽬标函数的梯度就可以写出迭代格式。
因此,尽管在不少情况下梯度下降法的收敛速度都很慢,也依然不影响它在⼯业界的⼴泛应⽤。
梯度下降法应⽤到⼀些具体模型上有时也会被视作⼀类特定的算法,例如神经⽹络中的后向传导算法(Back Propagation Algorithm)。
随机梯度下降在机器学习中经常有f(x)=∑m i=1ℓi(x),其中ℓi(x)是第i个训练样本的损失函数。
这时我们可以使⽤随机梯度下降法(Stochastic Gradient Descent Method)。
其迭代格式为x k+1=x k−αk∇ℓr(x k)其中r∈1,2,⋯,m为随机数。
这种做法可以理解为随机选择⼀个训练样本,进⾏⼀次梯度下降的训练。
在机器学习的问题中,我们通常不需要真的求得最优值,这样不精确的迭代,使得算法不容易过拟合。
由于随机梯度下降法的普及,与此相对的梯度下降法有时被称为批量梯度下降法(Batch Gradient Descent Method),因为它同时考虑所有训练样本。
介于批量梯度下降法和随机梯度下降法之间,还有⼩批量梯度下降法(Min-Batch Gradient Descent Method),也就是每次迭代选择若⼲个训练样本。
步长αk的选取梯度下降法可采⽤BB步长(Barzilai Borwein)。
BB步长有两个计算公式,选择其⼀即可。