曲线拟合的最小二乘法
- 格式:ppt
- 大小:719.00 KB
- 文档页数:46
曲线拟合(curve-fitting ):工程实践中,用测量到的一些离散的数据},...2,1,0),,{(m i y x i i =求一个近似的函数)(x ϕ来拟合这组数据,要求所得的拟合曲线能最好的反映数据的基本趋势(即使)(x ϕ最好地逼近()x f ,而不必满足插值原则。
因此没必要取)(i x ϕ=i y ,只要使i i i y x -=)(ϕδ尽可能地小)。
原理:给定数据点},...2,1,0),,{(m i y x i i =。
求近似曲线)(x ϕ。
并且使得近似曲线与()x f 的偏差最小。
近似曲线在该点处的偏差i i i y x -=)(ϕδ,i=1,2,...,m 。
常见的曲线拟合方法:1.使偏差绝对值之和最小2.使偏差绝对值最大的最小3.使偏差平方和最小最小二乘法:按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
推导过程:1. 设拟合多项式为:2. 各点到这条曲线的距离之和,即偏差平方和如下:3. 问题转化为求待定系数0a ...k a 对等式右边求i a 偏导数,因而我们得到了: .......4、 把这些等式化简并表示成矩阵的形式,就可以得到下面的矩阵:5. 将这个范德蒙得矩阵化简后可得到:6. 也就是说X*A=Y ,那么A = (X'*X)-1*X'*Y ,便得到了系数矩阵A ,同时,我们也就得到了拟合曲线。
MATLAB 实现:MATLAB 提供了polyfit ()函数命令进行最小二乘曲线拟合。
调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)[p,s,mu]=polyfit(x,y,n)x,y 为数据点,n 为多项式阶数,返回p 为幂次从高到低的多项式系数向量p 。
x 必须是单调的。
矩阵s 包括R (对x 进行QR 分解的三角元素)、df(自由度)、normr(残差)用于生成预测值的误差估计。
Lab04.曲线拟合的最小二乘法实验【实验目的和要求】1.让学生体验曲线拟合的最小二乘法,加深对曲线拟合的最小二乘法的理解;2.掌握函数ployfit和函数lsqcurvefit功能和使用方法,分别用这两个函数进行多项式拟合和非多项式拟合。
【实验内容】1.在Matlab命令窗口,用help命令查询函数polyfit和函数lsqcurvefit 功能和使用方法。
2.用多项式y=x3-6x2+5x-3,产生一组数据(xi,yi)(i=1,2,…,n),再在yi上添加随机干扰(可用rand产生(0,1)均匀分布随机数,或用randn产生N(0,1)均匀分布随机数),然后对xi和添加了随机干扰的yi用Matlab提供的函数ployfit用3次多项式拟合,将结果与原系数比较。
再作2或4次多项式拟合,分析所得结果。
3.用电压V=10伏的电池给电容器充电,电容器上t时刻的电压为,其中V0是电容器的初始电压,τ是充电常数。
对于下面的一组t,v数据,用Matlab提供的函数lsqcurvefit确定V0和τ。
t(秒) 0.5 1 2 3 4 5 7 9v(伏) 6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63 【实验仪器与软件】1.CPU主频在1GHz以上,内存在128Mb以上的PC;2.Matlab 6.0及以上版本。
实验讲评:实验成绩:评阅教师:200 年月日问题及算法分析:1、利用help命令,在MATLAB中查找polyfit和lsqcurvefit函数的用法。
2、在一组数据(xi,yi)(i=1,2,…,n)上,对yi上添加随机干扰,运用多项式拟合函数,对数据进行拟合(分别用2次,3次,4次拟合),分析拟合的效果。
3、根据t和V的关系画散点图,再根据给定的函数运用最小二乘拟合函数,确定其相应参数。
第一题:(1)>> help polyfitPOLYFIT Fit polynomial to data.P = POLYFIT(X,Y,N) finds the coefficients of a polynomial P(X) ofdegree N that fits the data Y best in a least-squares sense. P is arow vector of length N+1 containing the polynomial coefficients indescending powers, P(1)*X^N + P(2)*X^(N-1) +...+ P(N)*X + P(N+1).[P,S] = POLYFIT(X,Y,N) returns the polynomial coefficients P and astructure S for use with POLYVAL to obtain error estimates forpredictions. S contains fields for the triangular factor (R) from a QRdecomposition of the Vandermonde matrix of X, the degrees of freedom(df), and the norm of the residuals (normr). If the data Y are random,an estimate of the covariance matrix of P is(Rinv*Rinv')*normr^2/df,where Rinv is the inverse of R.[P,S,MU] = POLYFIT(X,Y,N) finds the coefficients of a polynomial inXHAT = (X-MU(1))/MU(2) where MU(1) = MEAN(X) and MU(2) = STD(X). Thiscentering and scaling transformation improves the numerical propertiesof both the polynomial and the fitting algorithm.Warning messages result if N is >= length(X), if X has repeated, ornearly repeated, points, or if X might need centering and scaling.Class support for inputs X,Y:float: double, singleSee also poly, polyval, roots.Reference page in Help browserdoc polyfit>>(2)>> help lsqcurvefitLSQCURVEFIT solves non-linear least squares problems.LSQCURVEFIT attempts to solve problems of the form:min sum {(FUN(X,XDATA)-YDATA).^2} where X, XDATA, YDATA and the valuesX returned by FUN can be vectors ormatrices.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA) starts at X0 and finds coefficients Xto best fit the nonlinear functions in FUN to the data YDATA (in theleast-squares sense). FUN accepts inputs X and XDATA and returns avector (or matrix) of function values F, where F is the same size asYDATA, evaluated at X and XDATA. NOTE: FUN should returnFUN(X,XDATA)and not the sum-of-squares sum((FUN(X,XDATA)-YDATA).^2).((FUN(X,XDATA)-YDATA) is squared and summed implicitly in thealgorithm.)X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB) defines a set of lower andupper bounds on the design variables, X, so that the solution is in therange LB <= X <= UB. Use empty matrices for LB and UB if no boundsexist. Set LB(i) = -Inf if X(i) is unbounded below; set UB(i) = Inf ifX(i) is unbounded above.X=LSQCURVEFIT(FUN,X0,XDATA,YDATA,LB,UB,OPTIONS) minimizes with thedefault parameters replaced by values in the structure OPTIONS, anargument created with the OPTIMSET function. See OPTIMSET for details.Used options are Display, TolX, TolFun, DerivativeCheck, Diagnostics,FunValCheck, Jacobian, JacobMult, JacobPattern, LineSearchType,LevenbergMarquardt, MaxFunEvals, MaxIter, DiffMinChange andDiffMaxChange, LargeScale, MaxPCGIter, PrecondBandWidth, TolPCG,OutputFcn, and TypicalX. Use the Jacobian option to specify that FUNalso returns a second output argument J that is the Jacobian matrix atthe point X. If FUN returns a vector F of m components when X has length n, then J is an m-by-n matrix where J(i,j) is the partialderivative of F(i) with respect to x(j). (Note that the Jacobian J isthe transpose of the gradient of F.)[X,RESNORM]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returns the valueof thesquared 2-norm of the residual at X: sum {(FUN(X,XDATA)-YDATA).^2}.[X,RESNORM,RESIDUAL]=LSQCURVEFIT(FUN,X0,...) returns the value of residual,FUN(X,XDATA)-YDATA, at the solution X.[X,RESNORM,RESIDUAL,EXITFLAG]=LSQCURVEFIT(FUN,X0,XDATA,YDATA,...) returnsan EXITFLAG that describes the exit condition of LSQCURVEFIT. Possiblevalues of EXITFLAG and the corresponding exit conditions are1 LSQCURVEFIT converged to a solution X.2 Change in X smaller than the specified tolerance.3 Change in the residual smaller than the specified tolerance.4 Magnitude of search direction smaller than the specified tolerance.0 Maximum number of function evaluations or of iterations reached.-1 Algorithm terminated by the output function.-2 Bounds are inconsistent.-4 Line search cannot sufficiently decrease the residual alongthecurrent search direction.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT]=LSQCURVEFIT(FUN,X0,XDATA,YDATA ,...)returns a structure OUTPUT with the number of iterations taken inOUTPUT.iterations, the number of function evaluations inOUTPUT.funcCount,the algorithm used in OUTPUT.algorithm, the number of CG iterations (ifused) in OUTPUT.cgiterations, the first-order optimality (if used)inOUTPUT.firstorderopt, and the exit message in OUTPUT.message.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA]=LSQCURVEFIT(FUN,X0,XDAT A,YDATA,...)returns the set of Lagrangian multipliers, LAMBDA, at the solution:LAMBDA.lower for LB and LAMBDA.upper for UB.[X,RESNORM,RESIDUAL,EXITFLAG,OUTPUT,LAMBDA,JACOBIAN]=LSQCURVEFIT(FU N,X0,XDATA,YDATA,...)returns the Jacobian of FUN at X.ExamplesFUN can be specified using @:xdata = [5;4;6]; % example xdataydata = 3*sin([5;4;6])+6; % example ydatax = lsqcurvefit(@myfun, [2 7], xdata, ydata)where myfun is a MATLAB function such as:function F = myfun(x,xdata)F = x(1)*sin(xdata)+x(2);FUN can also be an anonymous function:x = lsqcurvefit(@(x,xdata) x(1)*sin(xdata)+x(2),[2 7],xdata,ydata)If FUN is parameterized, you can use anonymous functions to capture theproblem-dependent parameters. Suppose you want to solve the curve-fittingproblem given in the function myfun, which is parameterized by its secondargument c. Here myfun is an M-file function such asfunction F = myfun(x,xdata,c)F = x(1)*exp(c*xdata)+x(2);To solve the curve-fitting problem for a specific value of c, first assignthe value to c. Then create a two-argument anonymous function that capturesthat value of c and calls myfun with three arguments. Finally, pass thisanonymous function to LSQCURVEFIT:xdata = [3; 1; 4]; % example xdataydata = 6*exp(-1.5*xdata)+3; % example ydatac = -1.5; % define parameterx = lsqcurvefit(@(x,xdata) myfun(x,xdata,c),[5;1],xdata,ydata) See also optimset, lsqnonlin, fsolve, @, inline.Reference page in Help browserdoc lsqcurvefit>>第二题:1 三次线性拟合clear allx=0:0.5:5;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,3);b=polyval(a,x);plot(x,y,'*',x,b),aa =1.0121 -6.1033 5.1933 -2.4782② 二次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for i=1:length(y)y1(i)=y1(i)+rand;enda=polyfit(x,y1,2);b=polyval(a,x);plot(x,y,'*',x,b),aa =23.9982 -232.0179 367.9756③ 四次线性拟合clear allx=0:0.5:20;y=x.^3-6*x.^2+5*x-3;y1=y;for j=1:length(y)y1(j)=y1(j)+rand;enda=polyfit(x,y1,4);b=polyval(a,x);plot(x,y,'*',x,b),aa =-0.0001 1.0038 -6.0561 5.2890 -2.8249 >>第三题:1 拟合曲线为:f(x)=定义函数:function f=fun(a,x)f=a(1)-(a(1)-a(2))*exp(-a(3)*x);主程序:clear allclcx=[0.5 1 2 3 4 5 7 9];y=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];a0=[1 1 1];a=lsqcurvefit('fun',a0,x,y);y1=a(1)-(a(1)-a(2))*exp(-a(3)*x);plot(x,y,'r*',x,y1,'b')V1=a(2)tei=1/a(3)Optimization terminated: relative function value changing by less than OPTIONS.TolFun.。
最小二乘法曲线拟合原理最小二乘法曲线拟合是一个重要的数值分析方法,它是通过最小二乘法对样本点与直线或曲线之间的关系进行拟合和分析,从而估算出一个函数的一组参数。
最小二乘法曲线拟合是一种经典的数值分析方法,可以用来拟合函数和曲线,估算出参数,预测数据,分析函数,优化模型,甚至可以分析复杂多变量函数。
最小二乘法曲线拟合的核心方法是使用最小二乘法把拟合的曲线拟合到观察到的数据,通过求解方程的最小二乘法,把一系列的观察数据点拟合为最小二乘法曲线,计算出拟合曲线的最佳系数,满足拟合效果的最佳拟合曲线。
最小二乘法曲线拟合的核心目标是通过计算拟合曲线的最小均方误差(SSE)、平均均方误差(MSE)、最大均方误差(MAXE)等方法,使拟合曲线与观察数据点之间的差距最小,从而求解出最佳拟合曲线系数。
最小二乘法曲线拟合具有很强的解析性,可以用数学计算方法快速求解,可以满足各种不同应用场景的需求,因而被广泛应用于科学研究、工程设计、市场分析等领域。
最小二乘法曲线拟合最常见的应用场景有:根据观察数据拟合和估计函数的参数;分析函数的性质;优化模型的能力;预测数据等等。
当应用最小二乘法拟合函数时,首先需要把观察数据用直线或曲线拟合,然后使用极小化残差平方和的方法,来求解参数,这是一个典型的最优化问题,利用一般最优化算法来求解,如梯度下降算法、牛顿法等。
此外,在应用最小二乘法曲线拟合的过程中,还可以考虑几种情况,比如样本数据受到误差的影响,具有某种偏差性;偏差是否服从正态分布;样本数据的分布是否同分布;拟合曲线的拟合是否收敛,参数计算是否准确等等。
总之,最小二乘法曲线拟合是一种重要的数值分析方法,可以用来拟合函数和曲线、估算参数、预测数据、优化模型等。
在应用最小二乘法曲线拟合时,需要考虑一些影响因素,比如样本数据受到误差的影响、偏差是否服从正态分布等,因此,它是一种有效的数值分析方法。
Excel拟合曲线用的最小二乘法1. 介绍Excel作为一款常用的办公软件,被广泛应用于数据分析和处理,而拟合曲线是数据分析中常用的方法之一。
拟合曲线用的最小二乘法是一种常见的拟合方法,通过最小化数据点与拟合曲线之间的距离来找到最佳拟合曲线,从而对数据进行预测和分析。
在本文中,我将从深度和广度的角度来探讨Excel拟合曲线用的最小二乘法,带你深入探索这一主题。
2. 最小二乘法的原理在Excel中进行曲线拟合时,最小二乘法是一种常用的拟合方法。
其原理是通过最小化残差平方和来找到最佳拟合曲线。
残差是指每个数据点到拟合曲线的垂直距离,最小二乘法通过调整拟合曲线的参数,使得残差平方和最小化,从而得到最佳拟合曲线。
在Excel中,可以利用内置函数或插件来实现最小二乘法的曲线拟合,对于不同类型的曲线拟合,可以选择不同的拟合函数进行拟合。
3. Excel中的拟合曲线在Excel中进行拟合曲线时,首先需要将数据导入Excel,然后利用内置的数据分析工具或者插件来进行曲线拟合。
通过选择拟合函数、调整参数等操作,可以得到拟合曲线的相关信息,如拟合优度、参数估计值等。
可以根据拟合曲线的结果来对数据进行预测和分析,从而得到对应的结论和见解。
4. 个人观点与理解对于Excel拟合曲线用的最小二乘法,我认为这是一种简单而有效的数据分析方法。
它能够快速对数据进行拟合,并得到拟合曲线的相关信息,对于数据的预测和分析具有一定的帮助。
然而,也需要注意到拟合曲线并不一定能够准确描述数据的真实情况,需要结合实际背景和专业知识进行分析和判断。
在使用最小二乘法进行曲线拟合时,需要注意数据的可靠性和拟合结果的可信度,以避免出现不准确的结论和偏差的情况。
5. 总结通过本文的探讨,我们对Excel拟合曲线用的最小二乘法有了更深入的了解。
最小二乘法的原理、Excel中的实际操作以及个人观点与理解都得到了充分的展示和探讨。
在实际应用中,需要结合具体情况和专业知识来灵活运用最小二乘法进行曲线拟合,从而得到准确的分析和预测结果。
最小二乘拟合法公式最小二乘拟合法是一种常用的数学方法,用于找到一条直线或曲线来近似拟合给定的数据点集。
该方法通过最小化数据点到拟合线的距离的平方和,来确定最佳拟合线的参数。
最小二乘拟合法的公式可以表示为:y = a + bx其中,y是因变量,x是自变量,a和b是拟合线的参数。
最小二乘拟合法的目标是找到最佳的参数a和b,使得拟合线与数据点的距离的平方和最小。
为了求解最小二乘拟合法的参数,需要先计算数据点的均值。
然后,通过计算协方差和方差来得到参数a和b的估计值。
在计算过程中,需要使用以下公式:b = Σ((xi - x_mean) * (yi - y_mean)) / Σ((xi - x_mean)^2)a = y_mean -b * x_mean其中,xi和yi是数据点的坐标,x_mean和y_mean是数据点的均值。
最小二乘拟合法的步骤如下:1. 输入数据点集,包括自变量x和因变量y。
2. 计算x和y的均值。
3. 根据公式计算b的值。
4. 根据公式计算a的值。
5. 得到拟合线的参数a和b。
6. 可以使用拟合线的参数来预测新的数据点。
最小二乘拟合法是一种广泛应用于各个领域的数学方法。
它可以用于拟合直线、曲线和多项式等形式的函数。
在实际应用中,最小二乘拟合法可以用于解决各种问题。
例如,在经济学中,可以使用最小二乘拟合法来拟合经济模型和预测经济趋势。
在物理学中,可以使用最小二乘拟合法来拟合实验数据和研究物理现象。
在工程学中,可以使用最小二乘拟合法来拟合曲线和评估工程设计。
最小二乘拟合法在实际应用中具有很高的准确性和可靠性。
通过最小化数据点到拟合线的距离的平方和,可以得到最佳的拟合结果。
然而,需要注意的是,最小二乘拟合法只能得到最佳拟合结果,而不能保证拟合线与所有数据点完全吻合。
最小二乘拟合法是一种常用的数学方法,用于找到一条直线或曲线来近似拟合给定的数据点集。
通过最小化数据点到拟合线的距离的平方和,可以确定最佳的拟合线的参数。
一、曲线拟合是什么?曲线拟合也就是求一条曲线,使数据点均在离此曲线的上方或下方不远处, 它既能反映数据的总体分布,又不至于出现局部较大的波动, 能反映被逼近函数的特性,使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到最小。
设函数y=f(x)在m个互异点的观测数据为求一个简单的近似函数φ(x),使之“最好”地逼近f(x),而不必满足插值原则。
这时没必要取φ(xi) = yi, 而要使i=φ(xi)yi 总体上尽可能地小。
这种构造近似函数的方法称为曲线拟合,称函数y=φ(x)为经验公式或拟合曲线。
如下为一个曲线拟合示意图。
清楚什么是曲线拟合之后,我们还需要了解一个概念——残差。
曲线拟合不要求近似曲线严格过所有的数据点,但使求得的逼近函数与已知函数从总体上来说其偏差按某种方法度量达到总体上尽可能地小。
若令(1-1)则为残向量(残差)。
“使(1-1)尽可能地小”有不同的准则(1)残差最大值最小(2)残差绝对值和最小(绝对值的计算比较麻烦)(3)残差平方和最小(即最小二乘原则。
计算比较方便,对异常值非常敏感,并且得到的估计量具有优良特性。
)二、最小二乘法是什么?个人粗俗理解:按照最小二乘原则选取拟合曲线的方法,称为最小二乘法。
百度百科:最小二乘法(又称最小平方法)是一种数学优化技术。
它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。
最小二乘法还可用于曲线拟合。
其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
三、求解最小二乘法(包含数学推导过程)我们以最简单的线性模型来解释最小二乘法。
什么是线性模型呢?监督学习中,如果预测的变量是离散的,我们称其为分类(如决策树,支持向量机等),如果预测的变量是连续的,我们称其为回归。
回归分析中,n个自变量,且因变量和自变量之间是线性关系,则称为一/多元线性回归分析。
python曲线拟合的最小二乘法最小二乘法是一种常用的曲线拟合方法。
它的核心思想是寻找一条曲线,使得曲线上的点到实际数据点的距离之和最小。
在Python中,可以使用scipy库中的optimize.curve_fit函数来实现最小二乘法的曲线拟合。
该函数接受两个参数:要拟合的函数和实际数据点。
首先,需要定义一个函数,表示要拟合的曲线形式。
然后,通过curve_fit函数传入该函数和实际数据点,即可得到最小二乘法的曲线拟合结果。
以下是一个简单的示例代码:```pythonimport numpy as npfrom scipy import optimizeimport matplotlib.pyplot as plt# 定义要拟合的曲线形式def func(x, a, b, c):return a * np.exp(-b * x) + c# 实际数据点xdata = np.array([0, 1, 2, 3, 4, 5])ydata = np.array([1, 2, 3, 4, 5, 6])# 曲线拟合params, params_covariance = optimize.curve_fit(func, xdata, ydata)# 拟合结果a, b, c = paramsprint("拟合参数:a =", a, ", b =", b, ", c =", c)# 画出拟合曲线和实际数据点plt.plot(xdata, ydata, 'bo', label='实际数据点')plt.plot(xdata, func(xdata, a, b, c), 'r-', label='拟合曲线') plt.xlabel('x')plt.ylabel('y')plt.legend()plt.show()```在这个示例代码中,我们定义了一个指数形式的曲线函数func,并使用实际数据点进行拟合。