高中数学_线性规划知识复习
- 格式:doc
- 大小:466.00 KB
- 文档页数:5
简单线性规划复习题及答案(1)1、设,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-+≥-020202y x y x y x ,则22y x ++的最大值为 452、设变量,x y 满足⎪⎩⎪⎨⎧≥-+≥-≤-+030201825y x y x y x ,若直线20kx y -+=经过该可行域,则k 的最大值为答案:13、若实数x 、y ,满足⎪⎩⎪⎨⎧≤+≥≥123400y x y x ,则13++=x y z 的取值范围是]7,43[.4、设y x z +=,其中y x ,满足⎪⎩⎪⎨⎧≤≤≤-≥+k y y x y x 0002,若z 的最大值为6,则z 的最小值为5、已知x 、y 满足以下条件220240330x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,则22z x y =+的取值范围是 4[,13]56、已知实数,x y 满足约束条件1010310x y x y x y +-≤⎧⎪-+≥⎨⎪--≤⎩,则22(1)(1)x y -+-的最小值为 127、已知,x y 满足约束条件1000x x y x y m -≥⎧⎪-≤⎨⎪+-≤⎩,若1y x +的最大值为2,则m 的值为 58、表示如图中阴影部分所示平面区域的不等式组是⎪⎩⎪⎨⎧≥-+≤--≤-+0623063201232y x y x y x9、若曲线y = x 2上存在点(x ,y )满足约束条件20,220,x y x y x m +-≤⎧⎪--≤⎨⎪>⎩,则实数m 的取值范围是 (,1)-∞10、已知实数y ,x 满足10103x y x y y -+≥⎧⎪+-≤⎨⎪≥-⎩,则3z x y =+的最小值为 -311、若,x y 满足约束条件10,0,40,x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩则x y的最小值为 13. 12、已知110220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩,则22(2)(1)x y ++-的最小值为___10_13、已知,x y 满足不等式0303x y x y x -≥⎧⎪+-≥⎨⎪≤⎩,则函数3z x y =+取得最大值是 1214、已知x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x ,则z =2x +4y 的最小值是-615、以原点为圆心的圆全部在区域⎪⎩⎪⎨⎧≥++≤-+≥+-0943042063y x y x y x 内,则圆面积的最大值为 π51616、已知y x z k y x x y x z y x 42,0305,,+=⎪⎩⎪⎨⎧≥++≤≥+-且满足的最小值为-6,则常数k = 0 . 17、已知,x y 满足约束条件,03440x x y y ≥⎧⎪+≥⎨⎪≥⎩则222x y x ++的最小值是 118、在平面直角坐标系中,不等式组0,0,,x y x y x a +≥⎧⎪-≥⎨⎪≤⎩(a 为常数),表示的平面区域的面积是8,则2x y +的最小值 14-19、已知集合22{(,)1}A x y x y =+=,{(,)2}B x y kx y =-≤,其中,x y R ∈.若A B ⊆,则实数k 的取值范围是⎡⎣20、若x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,kx -y +2≥0,y ≥0,且z =y -x 的最小值为-4,则k 的值为 12-21、若实数x ,y 满足不等式组201020x y x y a -≤⎧⎪-≤⎨⎪+-≥⎩,目标函数2t x y =-的最大值为2,则实数a 的值是 222、已知点(,)P x y 满足条件020x y x x y k ≥⎧⎪≤⎨⎪++≤⎩,若3z x y =+的最大值为8,则实数k = 6- .23、设实数x , y 满足的最大值是则x y y y x y x ,03204202⎪⎩⎪⎨⎧≤->-+≤-- 23.24、已知实数y x , 22222)(y x y y x +++的取值范围为 ⎥⎦⎤⎢⎣⎡+221,35.简单线性规划复习题及答案(2)1、设实数x,y 满足⎪⎩⎪⎨⎧≤-≥-+≤--0205202y y x y x 则y x x y z +=的取值范围是 10[2,]3由于yx表示可行域内的点()x y ,与原点(00),的连线的斜 率,如图2,求出可行域的顶点坐标(31)(12)A B ,,,, (42)C ,,则11232OA OB OC k k k ===,,,可见123y x ⎡⎤∈⎢⎥⎣⎦,,结合双勾函数的图象,得1023z ⎡⎤∈⎢⎥⎣⎦,,2、若实数,x y 满足不等式组22000x y x y m y ++≥⎧⎪++≤⎨⎪≥⎩,且2z y x =-的最小值等于2-,则实数m 的值等于 1-3、设实数x 、y 满足26260,0x y x y x y +≤⎧⎪+≤⎨⎪≥≥⎩,则{}max 231,22z x y x y =+-++的取值范围是 [2,9]【解析】作出可行域如图,当平行直线系231x y z +-=在直线BC 与点A 间运动时,23122x y x y +-≥++,此时[]2315,9z x y =+-∈,平行直线线22x y Z ++=在点 O 与BC 之间运动时,23122x y x y +-≤++,此时,[]222,8z x y =++∈. ∴[]2,9z ∈图23 A yxOcB 634、佛山某家电企业要将刚刚生产的100台变频空调送往市内某商场,现有4辆甲型货车和8辆乙型货车可供调配。
高二线性规划知识点线性规划是运筹学中的一种常见方法,被广泛应用于解决各种实际问题。
它的基本思想是通过数学模型来描述问题,然后利用线性规划算法寻找最优解。
在高二数学学习中,线性规划是一个重要的知识点,本文将对高二线性规划的相关概念、模型和解题步骤进行详细介绍。
一、线性规划的基本概念线性规划是在一定的约束条件下,求解线性目标函数的最优值问题。
它有以下基本要素:1. 目标函数:线性规划的目标是要优化一个线性函数,通常是最小化或最大化该函数的值。
2. 约束条件:线性规划的约束条件是一组线性不等式或等式,限制了决策变量的取值范围。
3. 决策变量:线性规划中的决策变量是需要确定的变量,它们的取值会影响目标函数的值。
4. 非负约束:线性规划中的决策变量通常要求非负,即变量的取值不能为负数。
二、线性规划的数学模型线性规划可以用数学模型来表示,通常采用标准型或者松弛型的形式。
1. 标准型:标准型是指目标函数最大化,约束条件为等式的线性规划问题。
其数学模型如下:max Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ = b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ = b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ = bₙx₁, x₂, ..., xₙ ≥ 0其中,c₁, c₂, ..., cₙ是目标函数的系数,aᵢₙ是约束条件中的系数,bᵢ是约束条件的常数项,x₁, x₂, ..., xₙ是决策变量。
2. 松弛型:松弛型是指将不等式约束条件转化为等式约束条件的线性规划问题。
其数学模型如下:max Z = c₁x₁ + c₂x₂ + ... + cₙxₙsubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ≥ 0三、线性规划的解题步骤求解线性规划问题的一般步骤如下:1. 建立数学模型:将实际问题转化为线性规划的数学模型,并确定目标函数和约束条件。
高考数学第二轮复习线性规划知识要点总结2018年高考数学第二轮复习线性规划知识点总结简单线性规划问题是高考的热点之一,也是历年高考的必修内容。
它主要以填空题的形式考查X最优解的X值问题的解。
高考命题主要集中在以下几个方面的线性规划知识点:(1)常规的线性规划问题,即线性约束下求X值的问题;(2)结合函数、平面向量等知识的X值问题;(3)求解非线性约束下的X值问题;(4)考察线性规划在解决现实生活和生产实践中的应用。
第一个(2)(3)(4)点往往是命题的xx点。
【例1】让函数f()=?3?罪恶?因为。
其中角的顶点与坐标原点重合,开始边与X轴的非负半轴重合,结束边经过该点?P(x,y)?0呢?(1)如果点p的坐标是12,32,求f()的值;(2)如果点P(x,y)是平面区域:xyy1,y1。
在最后一个移动点上,尝试确定角度的取值范围,求函数f()的小值和大值。
分析第一个问题(1),我们只需要用到三角函数的定义。
在问题(2)中,只要先画出平面面积,然后根据画出的平面面积确定角度的范围,再转化为求f()=a?罪恶?b?因为。
类型函数的x值。
解(1)可以从点p的坐标和三角函数的定义得到?罪恶?=32,因为。
=12。
所以f()=3?罪恶?因为。
=?332 12=2。
(2)做一个如图所示的平面区域(即三角形区域ABC),其中a (1,0),b (1,1),C(0,1)?所以0?2,F()=又是3?罪恶?因为。
=2?罪恶?6,然后呢。
2?3,所以呢。
2,那是=?3,f()得到x的值,x的值等于2;什么时候?6,即当=0时,f()取x的小值,x的小值等于1。
评论本题X的亮点在于将线性规划中的基本内容平面区域有机合成,以解题的形式对三角函数进行求值,这在过去几年中是很少见的。
高中必修5线性规划最快的方法简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
(一) 知识内容1.二元一次不等式表示的区域对于直线(A 〉0)当B >0时, 表示直线上方区域; 表示直线的下方区域。
当B <0时, 表示直线下方区域; 表示直线的上方区域。
2.线性规划(1)不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件。
z =Ax +By 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =Ax +By 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数。
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示。
(2)一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.(3)那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域。
在上述问题中,可行域就是阴影部分表示的三角形区域。
其中可行解()和()分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。
线性目标函数的最值常在可行域的顶点处取得;而求最优整数解必须首先要看它们是否在可行(二)主要方法:用图解法解决简单的线性规划问题的基本步骤:1。
首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域)。
2.设z =0,画出直线l 0.3.观察、分析,平移直线l 0,从而找到最优解。
4。
最后求得目标函数的最大值及最小值.(三)典例分析:1。
二元一次不等式(组)表示的平面区域【例1】 画出下列不等式(或组)表示的平面区域⑴⑵求不等式表示的平面区域的面积。
2.区域弧长、面积问题【例2】 若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是( )A .B .C .D .【例3】 若,,且当时,恒有,则以,为坐标点所形成的平面区域的面积等于 .例题精讲高考要求板块一:线性规划【例4】已知钝角的最长边为,其余两边的长为、,则集合所表示的平面图形面积等于()A.B.C.D.【例5】如图,在平面直角坐标系中,是一个与轴的正半轴、轴的正半轴分别相切于点、的定圆所围成的区域(含边界),、、、是该圆的四等分点.若点、点满足且,则称优于.如果中的点满足:不存在中的其它点优于,那么所有这样的点组成的集合是劣弧()A.B.C.D.【例6】已知是由不等式组所确定的平面区域,则圆在区域内的弧长为( )A. B.C.D.3.线性规划【例7】设变量,满足约束条件:.则目标函数的最小值为()A.6 B.7 C.8 D.23【变式】已知实数、满足,则的最大值是( )A.B.C.D.【例8】已知点的坐标满足条件,点为坐标原点,那么的最小值等于______,最大值等于______.【例9】设变量,满足约束条件,则函数的最大值为()A.B.C.D.【例10】若实数满足,则的最小值为.4。
初学讲义之高中数学二十五线性规划一、直线分割平面1.1 直线的两边学习线性规划前,先要补充学习一块坐标几何的内容如上图所示,中间的黑色线直线的函数为:y=x,写成方程为x-y=0由于直线是向两头无限延伸的,可以认为它把整个平面分为3个部分:直线本身(黑)、左(红)、右(蓝)可以叫左右,也可以叫上下,都一样。
其实平面上任何一条直线都可以把平面分成这三部分。
现在我们简单了解一下两边的情况。
1.2 直线的平移在学习一次函数时,已经学过函数的平移,这里直接用结论对直线y=x,如果把它变成y=(x-a),就是向右平移a个单位(若a<0就是向左)如果把它变成y=x+b,就是向上平移b个单位(若b<0就是向下)对上面的两个平移,如果我们令a=-b,那么平移后得到的函数是相同的,都是y=x+b也就是说当a=-b时,向右平移a和向上平移b的结果是相同的现在具体令a=-b=2,我们来分别平移:如上图,黑色直线为y=x,红色直线为y=x-2首先按照向右平移,也就是橙色的箭头,变成y=(x-2)原来的(0,0)就被平移到了(2,0),类似的,直线上的其他点(x_{0},y_{0})都平移到了 (x_{0}+2,y_{0})再来向上(下)平移,也就是粉色的箭头,变成y=x+(-2)原来的(0,0)就被平移到了(0,-2),类似的,直线上的其他点(x_{0},y_{0})都平移到了 (x_{0},y_{0}-2)虽然翻译的方向不同,但结果是一样的。
上面是用一次函数表示直线,下面用方程来表现会更加直观:原直线:x-y=0新直线:x-y-a=0当a>0时,直线向右(或下)平移当a<0时,直线向左(或上)平移直线向右(或下)前进的过程中,扫过了全部的半个平面直线向左(或上)前进的过程中,扫过了全部的另外半个平面1.3 确定在哪边我们对新直线方程x-y-a=0变个形:a=x-y也就是说,直线右边(或下边)的所有点,都是a>0的,也就是x-y>0直线左边(或上边)的所有点,都是a<0的,也就是x-y<0因此直线x-y=0将平面分为3个部分,这3部分的点分别满足:x-y=0x-y>0x-y<0分别对应直线上(黑色),直线右边或下边(蓝色),直线左边或上边(红色)对任何直线都是如此1.4 举例再举2个其他的例子:例1:2x+3y-6=0它也把直线分为3个部分为了找到对应关系,随便代入某个点即可,比如在直线左侧的最简单的(0,0):2*0+3*0-6=-6<0因此对该直线,符合2x+3y-6<0的点在左侧(或下侧),符合2x+3y-6>0的点在右侧(或上侧)例2:-2x+3y+6=0代入在左侧的(0,0):-2*0+3*0+6=6>0因此对该直线,符合-2x+3y+6>0的点在左侧(或上侧),符合-2x+3y+6<0的点在右侧(或右侧)要注意的是从上面两个例子可以看出:1、对每条直线,“>和<“与“右还是左(下还是上)”的对应关系需要单独确定2、“上下”和“左右”通常也没有对应关系,只是为了方便的叫法1.5 围出一个多边形现在我们在一个坐标系内同时画上上面三条直线:x-y=0(红)2x+3y-6=0(绿)-2x+3y+6=0(蓝)这三条直线把平面分为好几个部分(懒得数了),中间围出一个三角形(阴影部分)那么这个阴影部分该如何表示呢?很简单,随便取个点,分别代入3条边试出不等号即可为方便运算,就取(2,0)吧,0越多越好,整数越多越好:代入x-y:2-0=2>0代入2x+3y-6:2*2+3*0-6=-2<0代入-2x+3y+6:-2*2+3*0+6=2>0因此阴影部分的点可以用下面这个不等式组来表示:x-y>02x+3y-6<0-2x+3y+6>0(此处左边应有大括号{,由于输入法原因无法实现)1.5.2 再加条直线再加条直线看看:x-y=0(红)2x+3y-6=0(绿)-2x+3y+6=0(蓝)x+y+2=0(黄)这下围出了四边形,也有三角形,和其他开放的图形如果想要知道此时阴影部分四边形点的特征,再加上第四条黄色的直线的不等式即可:还是代入(2,0):2+0+2=4>0因此中间阴影四边形中点的坐标符合:x-y>02x+3y-6<0-2x+3y+6>0x+y+2>0如果您想包含边界,只需将大于号和小于号更改为大于或等于号和小于或等于号。
高一线性规划问题知识点在高中数学课程中,线性规划是一个非常重要的概念。
线性规划是运筹学的一个分支,旨在通过确定一组变量的取值,使得一个线性目标函数在一系列线性约束条件下达到最大或最小值。
它在实际生活中有很多应用,比如生产计划、资源分配等。
一、线性规划的基本概念线性规划的目标是找到使得目标函数取得最大或最小值的一组变量取值。
目标函数通常是一个线性函数,即它的各项之间不存在乘法关系。
约束条件也是一组线性不等式或等式,它们定义了变量取值的限制条件。
二、线性规划的解法方法解决线性规划问题的方法有很多,但其中最常用的是单纯形法。
单纯形法是通过逐步改进当前解,逐渐接近最优解的过程。
具体来说,单纯形法的基本思想是找到一个基础可行解,然后在基础可行解的基础上不断寻找更优解。
这个过程通过计算目标函数在可行解的基础上的变化量来完成。
三、线性规划的矩阵表示在线性规划中,我们可以用矩阵来表示目标函数和约束条件。
设目标函数为 f(x),约束条件为 AX=b,其中 x 是一个 m 维列向量,A 是一个 m × n 的矩阵,b 是一个 m 维列向量。
这样,线性规划问题可以表示为:min/max f(x)subject to AX=bx≥0四、线性规划问题的求解步骤解决线性规划问题的一般步骤如下:1. 确定目标函数和约束条件;2. 将目标函数和约束条件转化为矩阵表示;3. 通过单纯形法求解线性规划问题;4. 分析最优解。
五、线性规划问题的实际应用线性规划问题在实际生活中有着广泛的应用。
比如,在生产计划中,我们可以通过线性规划来确定产量和资源的最优配置,从而实现生产成本的最小化或产品质量的最大化。
在运输领域,线性规划可以帮助我们确定货物的最优配送方案,以减少运输成本。
此外,线性规划还可以应用于金融、市场营销、决策分析等领域。
六、线性规划问题的拓展线性规划问题的应用不仅限于线性目标函数和约束条件。
有时候,目标函数和约束条件可能是非线性的。
高三线性规划知识点线性规划是高中数学中的一个重要知识点,它在实际生活中有着广泛的应用。
本文将全面介绍高三线性规划的相关知识,包括定义、基本概念、解题步骤以及一些典型例题。
一、线性规划的定义线性规划是一种数学模型,用于求解一个线性函数在一组线性约束条件下的最优值。
在实际生活中,我们常常需要在一定的条件下寻找最优解,例如:生产成本最小、收益最大、资源利用最佳等等。
线性规划通过建立数学模型,帮助我们找到最优解。
二、线性规划的基本概念1. 目标函数:线性规划的目标通常是最大化或最小化一个线性函数。
这个函数被称为目标函数,记作Z。
2. 线性约束条件:线性规划的约束条件是一组线性不等式或等式,限制了变量的取值范围。
3. 变量:线性规划的变量是我们要求解的未知数,可以用任意字母表示。
4. 可行解:满足所有约束条件的解称为可行解。
可行解的集合称为可行域。
5. 最优解:在所有可行解中,使目标函数取到最大值或最小值的解称为最优解。
三、线性规划的解题步骤1. 建立数学模型:根据问题的描述,将目标函数和约束条件用代数式表示出来。
2. 确定可行域:将约束条件化为不等式形式,并将它们表示在坐标系中,找出它们的交集,确定可行域的范围。
3. 确定最优解:在可行域内寻找目标函数的极值点,得出最优解。
4. 检验最优解:将最优解代入原问题中,检验是否满足所有约束条件。
四、典型例题例题1:某工厂生产甲、乙两种产品,甲产品每吨利润为1000元,乙产品每吨利润为1200元。
已知生产一吨甲产品需要材料A 30千克,材料B 10千克;生产一吨乙产品需要材料A 20千克,材料B 40千克。
工厂每天可以使用材料A 600千克,材料B 200千克。
问如何安排生产,使得利润最大化?解:首先,我们定义两个变量x和y,分别表示甲、乙产品的生产量(吨)。
目标函数Z表示利润的最大值,即Z=1000x+1200y。
约束条件如下:30x+20y ≤ 60010x+40y ≤ 200x,y ≥ 0我们可以将该问题转化为图形解法,将约束条件绘制在坐标系中,确定可行域的范围。
简单线性规划1.简单线性规划【概念】线性规划主要用于解决生活、生产中的资源利用、人力调配、生产安排等问题,它是一种重要的数学模型.简单的线性规划指的是目标函数含两个自变量的线性规划,其最优解可以用数形结合方法求出.我们高中阶段接触的主要是由三个二元一次不等式组限制的可行域,然后在这个可行域上面求某函数的最值或者是斜率的最值.【例题解析】푥+2푦≤8例:若目标函数z=x+y 中变量x,y 满足约束条件{0≤푥≤4.0≤푦≤3(1)试确定可行域的面积;(2)求出该线性规划问题中所有的最优解.解:(1)作出可行域如图:对应得区域为直角三角形ABC,其中B(4,3),A(2,3),C(4,2),则可行域的面积S =12퐵퐶⋅퐴퐵=12×1×2=1.(2)由z=x+y,得y=﹣x+z,则平移直线y=﹣x+z,则由图象可知当直线经过点A(2,3)时,直线y=﹣x+z 得截距最小,此时z 最小为z=2+3=5,当直线经过点B(4,3)时,直线y=﹣x+z 得截距最大,此时z 最大为z=4+3=7,1/ 5故该线性规划问题中所有的最优解为(4,3),(2,3)这是高中阶段接触最多的关于线性规划的题型,解这种题一律先画图,把每条直线在同一个坐标系中表示出来,然后确定所表示的可行域,也即范围;最后通过目标函数的平移去找到它的最值.【典型例题分析】题型一:二元一次不等式(组)表示的平面区域典例 1:若不等式组所表示的平面区域被直线y=kx+分为面积相等的两部分,则k 的值是()7343A.3B.7C.3D.44 4分析:画出平面区域,显然点(0,)在已知的平面区域内,直线系过定点(0,),结合图形寻找直线平分平33面区域面积的条件即可.解答:不等式组表示的平面区域如图所示.由于直线y=kx +44过定点(0,).因此只有直线过AB 中点时,直线y=kx +3343能平分平面区域.15因为A(1,1),B(0,4),所以AB 中点D(,).22当y=kx +4155过点(,)时,3222=푘2+43,所以k =73.答案:A.点评:二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,则测试点常选取原点.题型二:求线性目标函数的最值2/ 5典例 2:设x,y 满足约束条件:,求z=x+y 的最大值与最小值.分析:作可行域后,通过平移直线l0:x+y=0 来寻找最优解,求出目标函数的最值.解答:先作可行域,如图所示中△ABC 的区域,且求得A(5,2)、B(1,1)、C(1,),作出直线l0:x+y=0,再将直线l0 平移,当l0 的平行线l1 过点B 时,可使z=x+y 达到最小值;当l0 的平行线l2 过点A 时,可使z=x+y达到最大值.故z min=2,z max=7.点评:(1)线性目标函数的最大(小)值一般在可行域的顶点处取得,也可能在边界处取得.(2)求线性目标函数的最优解,要注意分析线性目标函数所表示的几何意义,明确和直线的纵截距的关系.题型三:实际生活中的线性规划问题典例 3:某农户计划种植黄瓜和韭菜,种植面积不超过 50 亩,投入资金不超过 54 万元,假设种植黄瓜和韭菜的产量、成本和售价如下表:年产量/亩年种植成本/亩每吨售价黄瓜 4 吨 1.2 万元0.55 万元韭菜 6 吨0.9 万元0.3 万元为使一年的种植总利润(总利润=总销售收入﹣总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为()A.50,0 B.30,20 C.20,30 D.0,50分析:根据线性规划解决实际问题,要先用字母表示变量,找出各量的关系列出约束条件,设出目标函数,转化为线性规划问题.3/ 5푥+푦≤50解析设种植黄瓜x 亩,韭菜y 亩,则由题意可知{1.2푥+0.9푦≤54푥,푦∈푁+求目标函数z=x+0.9y 的最大值,根据题意画可行域如图阴影所示.当目标函数线l 向右平移,移至点A(30,20)处时,目标函数取得最大值,即当黄瓜种植 30 亩,韭菜种植 20 亩时,种植总利润最大.故答案为:B点评:线性规划的实际应用问题,需要通过审题理解题意,找出各量之间的关系,最好是列成表格,找出线性约束条件,写出所研究的目标函数,转化为简单的线性规划问题,再按如下步骤完成:(1)作图﹣﹣画出约束条件所确定的平面区域和目标函数所表示的平行直线系中过原点的那一条l;(2)平移﹣﹣将l 平行移动,以确定最优解的对应点A 的位置;(3)求值﹣﹣解方程组求出A 点坐标(即最优解),代入目标函数,即可求出最值.题型四:求非线性目标函数的最值푦典例 4:(1)设实数x,y 满足,则푥的最大值为.→(2)已知O 是坐标原点,点A(1,0),若点M(x,y)为平面区域上的一个动点,则|푂퐴+→푂푀|的最小值是.分析:与二元一次不等式(组)表示的平面区域有关的非线性目标函数的最值问题的求解一般要结合给定代数式的几何意义来完成.푦3解答:(1)푥表示点(x,y)与原点(0,0)连线的斜率,在点(1,)处取到最大值.24/ 5→(2)依题意得,푂퐴+→→푂푀=(x+1,y),|푂퐴+→푂푀| =(푥+1)2+푦2可视为点(x,y)与点(﹣1,0)间的距离,在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,在该平面区域内的点中,由点(﹣1,0)向→直线x+y=2 引垂线的垂足位于该平面区域内,且与点(﹣1,0)的距离最小,因此|푂퐴+→푂푀|的最小值是|―1+0―2|2=322.332故答案为:(1)(2).22点评:常见代数式的几何意义有(1)푥2+푦2表示点(x,y)与原点(0,0)的距离;(2)(푥―푎)2+(푦―푏)2表示点(x,y)与点(a,b)之间的距离;푦(3)푥表示点(x,y)与原点(0,0)连线的斜率;푦―푏(4)푥―푎表示点(x,y)与点(a,b)连线的斜率.【解题方法点拨】1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式标准化.푧푧2.在通过求直线的截距푏的最值间接求出z 的最值时,要注意:当b>0 时,截距푏取最大值时,z 也取最大值;截푧푧푧距푏取最小值时,z 也取最小值;当b<0 时,截距푏取最小值时,z 取最大值.푏取最大值时,z 取最小值;截距5/ 5。
高中数学线性规划知识点汇总一、知识梳理1 目标函数:P=2x+y是一个含有两个变量x和y的函数,称为目标函数。
2 可行域:约束条件表示的平面区域称为可行域。
3 整点:坐标为整数的点叫做整点。
4 线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题。
只含有两个变量的简单线性规划问题可用图解法来解决。
5 整数线性规划:要求量整数的线性规划称为整数线性规划。
线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科,主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定和条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务。
1 对于不含边界的区域,要将边界画成虚线。
2 确定二元一次不等式所表示的平面区域有种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一端为所求的平面区域。
若直线不过原点,通常选择原点代入检验。
3 平移直线y=-kx+P时,直线必须经过可行域。
4 对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点。
5 简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等于表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解。
积储知识:一、1.占P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+ y0+C=02.点P(x0,y0)在直线Ax+By+C=0上方(左上或右下),则当B>0时,Ax0+ y0+C >0;当B<0时,Ax0+ y0+C<03.点P(x0+,y0)D在直线Ax0+ y0+C=0下方(左下或右下),当B>0时,Ax0+ y0+C<0;当B>0时,Ax0+ y0+C>0注意:(1)在直线Ax+ By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+ By+C=0,所得实数的符号都相同。
线性规划知识点总结线性规划是一种数学优化方法,用于在给定的约束条件下,寻找一个线性模型的最优解。
它在各个领域都有广泛的应用,包括经济学、管理学、工程学等。
一、线性规划的基本概念1. 目标函数:线性规划的目标是最大化或最小化一个线性函数,称为目标函数。
通常表示为Z = c1x1 + c2x2 + ... + cnxn。
2. 决策变量:表示问题中需要决策的变量,通常用x1, x2, ..., xn表示。
3. 约束条件:线性规划问题必须满足一定的约束条件,这些约束条件可以是等式或不等式。
例如,Ax ≤ b 或 Ax = b。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使目标函数达到最大或最小值的解称为最优解。
二、线性规划的解法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制约束条件的图形,然后找到目标函数的等高线,最后确定最优解的位置。
2. 单纯形法:对于多维线性规划问题,可以使用单纯形法进行求解。
单纯形法是一种迭代算法,通过不断移动到更优的解来寻找最优解。
3. 整数规划:当问题的决策变量需要取整数值时,称为整数规划。
整数规划问题的求解相对更复杂,可以使用分支定界法等方法进行求解。
三、线性规划的应用1. 生产计划:线性规划可以用于优化生产计划,例如确定每个产品的生产数量,以最大化利润或最小化成本。
2. 运输问题:线性规划可以用于解决运输问题,例如确定货物从不同地点到达目的地的最佳路径和运输量。
3. 投资组合:线性规划可以用于优化投资组合,例如确定不同资产的投资比例,以最大化收益或最小化风险。
4. 供应链管理:线性规划可以用于优化供应链管理,例如确定不同供应商的采购量和价格,以最小化总成本。
5. 能源优化:线性规划可以用于能源优化,例如确定不同能源来源的使用量,以最大化能源效率。
四、线性规划的局限性1. 线性假设:线性规划基于线性假设,即目标函数和约束条件都是线性的。
线性规划复习题1.在平面直角坐标系中,不等式组(a为常数)表示的平面区域的面积是9,那么实数a的值为( )A. 3+2 B.-3+2 C.-5 D. 12.在如图所示的坐标平面的可行域内(阴影部分且包括边界),目标函数z=x+ay取得最小值的最优解有无数个,则a的一个可能值为( )A.-3 B. 3 C.-1 D. 13.设变量x,y满足约束条件则目标函数z=2x+3y的最小值为( )A. 6 B. 7 C. 8 D. 234.在平面直角坐标系中,点在直线的右上方,则的取值范围是()A.(1,4) B.(-1,4) C.(-∞,4) D.(4,+∞)5.设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为12,则+的最小值为 ( )A. B. C. D. 46.设不等式组表示的平面区域为D.若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是( )A. (1,3] B. [2,3] C. (1,2] D. [3,+∞)7.已知平面区域D由以A(1,3)、B(5,2)、C(3,1)为顶点的三角形内部和边界组成.若在区域D上有无穷多个点(x,y)可使目标函数z=x+my取得最小值,则m=________.8.记不等式组所表示的平面区域为D,若直线y=a(x+1)与D有公共点,则a 的取值范围是________.9.营养学家指出,成人良好的日常饮食应该至少提供0.075 kg的碳水化合物,0.06kg的蛋白质,0.06 kg的脂肪,1 kg食物A含有0.105 kg碳水化合物,0.07kg蛋白质,0.14 kg脂肪,花费28元;而1 kg食物B含有0.105 kg碳水化合物,0.14kg蛋白质,0.07kg脂肪,花费21元.为了满足营养专家指出的日常饮食要求,同时使花费最低,需要同时食用食物A和食物B多少kg?将已知数据列成下表:10.两类药片有效成分如下表所示,若要求至少提供12毫克阿司匹林,70毫克小苏打,28毫克可待因,问两类药片最小总数是多少?怎样搭配价格最低?11.变量x、y满足(1)设z=,求z的最小值;(2)设z=x2+y2,求z的取值范围;(3)设z=x2+y2+6x-4y+13,求z的取值范围.12.甲、乙、丙三种食物的维生素A、B含量及成本如下表:某食物营养研究所想用x千克甲种食物,y千克乙种食物,z千克丙种食物配成100千克的混合食物,并使混合食物至少含56 000单位维生素A和63000单位维生素B.(1)用x、y表示混合食物成本C;(2)确定x、y、z的值,使成本最低.13.某家具厂有方木料90 m3,五合板600m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?参考答案1.【答案】D【解析】区域如下图,易求得A(-2,2),B(a,a+4),C(a,-a).S△ABC=|BC|·|a+2|=(a+2)2=9,由题意得a=1.2.【答案】A【解析】-==,∴a=-3.3.【答案】B【解析】作出可行域如下图所示.由图可知,z=2x+3y经过点A(2,1)时,z有最小值,z的最小值为7.4.【答案】D【解析】取原点(0,0),因为,且原点在直线的左下方,所以不等式表示的区域在直线的左下方.5.【答案】A【解析】不等式表示的平面区域如图所示阴影部分,当直线ax+by =z(a>0,b>0)过直线x-y+2=0与直线3x-y-6=0的交点(4,6)时,目标函数z=ax+by(a>0,b>0)取得最大值12,即4a+6b=12,即2a+3b=6,而+=(+)·=+(+)≥+2=(当且仅当a=b=时取等号).6.【答案】A【解析】作出不等式组表示的平面区域D,如下图阴影部分所示.由得交点A(2,9).对于y=a x的图象,当0<a<1时,没有点在区域D上.当a>1,y=a x恰好经过A点时,由a2=9,得a=3.要满足题意,需满足a2≤9,解得1<a≤3. 7.【答案】1【解析】如下图所示,目标函数可化为若m>0,则z的最小值对应截距的最小值,可知m=1,满足题意;若m<0,则z的最小值对应截距的最大值,m=-1及-2均不合题意.8.【答案】【解析】直线y=a(x+1)恒过定点P(-1,0)且斜率为a,作出可行域后数形结合可解.不等式组所表示的平面区域D为如图所示阴影部分(含边界),且A(1,1),B(0,4),C.直线y=a(x+1)恒过定点P(-1,0)且斜率为a.由斜率公式可知k AP=,k BP=4.若直线y=a(x+1)与区域D有公共点,数形结合可得≤a≤4.9.【答案】每天食用食物A kg,食物Bkg,能够满足日常饮食要求,又使花费最低,最低成本为16元.【解析】设每天食用xkg食物A,y kg食物B,总成本为z,那么⇒目标函数为z=28x+21y. 作出二元一次不等式组所表示的平面区域,把目标函数z=28x+21y变形为y=-x+,它表示斜率为-且随z变化的一族平行直线.是直线在y轴上的截距,当截距最小时,z的值最小.如图可见,当直线z=28x+21y经过可行域上的点M时,截距最小,即z最小.解方程组得M点的坐标为. 所以z min=28x+21y=16.10.【答案】设A,B两种药品分别为x片和y片,则有两类药片的总数为z=x+y,两类药片的价格和为k=0.1x+0.2y.如下图所示,作直线l:x+y=0,将直线l向右上方平移至l1位置时,直线经过可行域上一点A,且与原点最近.解方程组得交点A坐标为.由于A不是整点,因此不是z的最优解,结合图形可知,经过可行域内整点且与原点距离最近的直线是x+y=11,经过的整点是(1,10),(2,9),(3,8),因此z的最小值为11.药片最小总数为11片.同理可得,当x=3,y=8时,k取最小值1.9,因此当A类药品3片、B类药品8片时,药品价格最低.11.【答案】由约束条件作出(x,y)的可行域如下图所示.由解得A.由解得C(1,1).由解得B(5,2).(1)∵z==.∴z的值即是可行域中的点与原点O连线的斜率.观察图形可知z min=k OB=.(2)z=x2+y2的几何意义是可行域上的点到原点O的距离的平方.结合图形可知,可行域上的点到原点的距离中,d min=|OC|=,d max=|OB|=.即2≤z≤29.(3)z=x2+y2+6x-4y+13=(x+3)2+(y-2)2的几何意义是可行域上的点到点(-3,2)的距离的平方.结合图形可知,可行域上的点到(-3,2)的距离中,d min=1-(-3)=4,d max==8.所以16≤z≤64.【解析】12.【答案】x=50千克,z=30千克时成本最低.【解析】(1)依题意x、y、z满足x+y+z=100z=100-x-y.∴成本C=11x+9y+4z=7x+5y+400(元).(2)依题意∵z=100-x-y,∴作出不等式组所对应的可行域,如下图所示.联立⟹交点A(50,20).作直线7x+5y+400=C,则易知该直线截距越小,C越小,所以该直线过A(50,20)时,直线在y轴截距最小,从而C最小,此时7×50+5×20+400=C=850元.∴x=50千克,z=30千克时成本最低.13.【答案】由题意可画表格如下:(1)设只生产书桌x张,可获得利润z元,则⇒⇒0≤x≤300,所以当x=300时,z max=80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元.(2)设只生产书橱y个,可获得利润z元,则⇒⇒0≤y≤450,所以当y=450时,z max=120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元.(3)设生产书桌x张,书橱y个,利润总额为z元,则⇒z=80x+120y.在直角坐标平面内作出上面不等式组所表示的平面区域,即可行域.作直线l:80x+120y=0,即直线l:2x+3y=0.把直线l向右上方平移至l1的位置时,直线经过可行域上的点M,此时z=80x+120y取得最大值.由解得点M的坐标为(100,400).所以当x=100,y=400时,z max=80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。
高考线性规划知识点高考是对学生综合能力的一次全面考查,其中数学是不可避免的一项内容。
而线性规划作为数学中的一个重要章节,也广泛出现在高考中。
本文将围绕高考线性规划知识点展开讨论。
一、线性规划的定义和基本思想线性规划是一种数学优化方法,用于在一组线性约束条件下,求解一个线性目标函数的最大值或最小值。
其基本思想是将求解问题转化为求解函数的最值问题。
二、线性规划的基本要素1. 决策变量:表示问题中需要决策的量或者参数,常用字母表示。
2. 目标函数:表示问题的优化目标,通常是一个线性函数。
3. 约束条件:表示问题的限制条件,常常是一组线性不等式或等式。
4. 可行解集:满足所有约束条件的解的集合。
5. 最优解:在可行解集中使得目标函数取得最大或最小值的解。
三、线性规划的图形解法对于线性规划问题,我们可以通过图形解法快速找到最优解。
具体步骤如下:1. 根据约束条件,将可行解集用直线或者线段表示出来;2. 根据目标函数的方向,确定最优解在可行解集中的位置;3. 在可行解集与目标函数的交点中,寻找最优解。
四、单纯形法除了图形解法外,线性规划还可以通过单纯形法求解。
单纯形法是一种基于表格的算法,通过迭代计算不断逼近最优解。
具体步骤如下:1. 构造初始单纯形表格,包括决策变量、目标函数系数、约束条件等;2. 计算单纯形表格中的各个元素;3. 判断是否达到最优解,若未达到则进行下一次迭代;4. 重复上述步骤,直到获得最优解。
五、常见题型及解题方法在高考中,线性规划题目的形式多样,其中常见题型包括:1. 单纯形表格的构造与迭代计算;2. 最大最小值的求解;3. 边界条件下的最优解;4. 多目标线性规划等。
针对不同题型,我们需要选择合适的解题方法。
对于单纯形表格,按照步骤计算即可。
对于最大最小值的求解,可以使用图形解法或者单纯形法。
对于边界条件下的最优解,需要利用线性规划的基本性质进行推导。
对于多目标线性规划,可以通过目标函数的线性组合转化为单一目标的线性规划等。
简单的线性规划及实际应用高考要求1了解二元一次不等式表示平面区域2了解线性规划的意义并会简单的应用知识点归纳1 二元一次不等式表示平面区域:在平面直角坐标系中,已知直线Ax+By+C=0,坐标平面内的点P( x0, y0)B> 0 时,① Ax0+By0+C> 0,则点 P(x0,y0)在直线的上方;② Ax0+By0+C<0,则点 P( x0,y0)在直线的下方对于任意的二元一次不等式 Ax+By+C>0(或< 0),无论 B 为正值还是负值,我们都可以把 y 项的系数变形为正数当 B> 0 时,① Ax+By+C>0 表示直线 Ax+By+C=0 上方的区域;② Ax+By+C< 0 表示直线Ax+By+C=0 下方的区域2 线性规划 :求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题满足线性约束条件的解(x,y)叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可以归结为线性规划问题线性规划问题一般用图解法,其步骤如下:( 1)根据题意,设出变量x、 y;( 2)找出线性约束条件;( 3)确定线性目标函数z=f( x,y);( 4)画出可行域(即各约束条件所示区域的公共区域);( 5)利用线性目标函数作平行直线系f( x, y) =t(t 为参数);(6)观察图形,找到直线 f(x, y) =t 在可行域上使 t 取得欲求最值的位置,以确定最优解,给出答案题型讲解例 1 求不等式| x - 1| +| y - 1|≤ 2 表示的平面区域的面积分析:依据条件画出所表达的区域,再根据区域的特点求其面积解:| x - 1| +| y - 1|≤ 2 可化为x 1 x 1 x 1x 1 y 1 或 y 1 或 y 1或 y 1x y 4xy 2x y 2xy 0其平面区域如图∴面积 S= 1×4× 4=82点评:画平面区域时作图要尽量准确,要注意边界 例 2某人上午 7 时,乘摩托艇以匀速 v n mi le/h ( 4≤ v ≤ 20)从 A 港出发到距 50 n mi le的 B 港去,然后乘汽车以匀速w km/h (30≤ w ≤ 100)自 B 港向距 300 km 的 C 市驶去 应该在同一天下午 4 至 9 点到达 C 市 设乘汽车、摩托艇去所需要的时间分别是x h 、 y h( 1)作图表示满足上述条件的x 、y 范围;( 2)如果已知所需的经费 p=100+3×( 5- x ) +2×( 8- y )(元),那么 v 、w 分别是多少时走得最经济 ?此时需花费多少元 ?分析:由 p=100+3 ×( 5-x ) +2 ×( 8- y )可知影响花费的是 3x+2y 的取值范围解:( 1)依题意得 v=50, w=300, 4≤v ≤ 20, 30≤ w ≤100yx∴ 3≤ x ≤ 10, 5 ≤ y ≤25①22y由于乘汽车、 摩托艇所需的时间和 x+y 应在149至14个小时之间,9即 9≤x+y ≤ 14②因此,满足①②的点( x ,y )的存在范围是2.5图中阴影部分(包括边界)o 39 10 14 x( 2)∵ p=100+3 ·( 5- x )+2·( 8-y ),∴ 3x+2y=131- p设 131- p=k ,那么当 k 最大时, p 最小 在通过图中的阴影部分区域(包括边界)且斜率为- 3的直线 3x+2y=k 中,使 k 值最大的直线必通过点(10,4),即当 x=10,y=4 时, p 最小2此时, v=12 5, w=30 , p 的最小值为 93 元点评:线性规划问题首先要根据实际问题列出表达约束条件的不等式然后分析要求量的几何意义例 3 某矿山车队有 4 辆载重量为 10 t 的甲型卡车和 7 辆载重量为 6 t 的乙型卡车,有9 名驾驶员 此车队每天至少要运 360 t 矿石至冶炼厂 已知甲型卡车每辆每天可往返 6 次,乙型卡车每辆每天可往返 8次 甲型卡车每辆每天的成本费为252 元,乙型卡车每辆每天的成本费为 160 元 问每天派出甲型车与乙型车各多少辆,车队所花成本费最低?分析:弄清题意,明确与运输成本有关的变量的各型车的辆数,找出它们的约束条件,列出目标函数,用图解法求其整数最优解解:设每天派出甲型车x 辆、乙型车 y 辆,车队所花成本费为z 元,那么x y 9y106x 6 8 y 360x4, x N7y7, y Nz=252x+160y,作出不等式组所表示的平面区域,如图作出直线l 0:252x+160y=0,把直线 l 移,使其经过可行域上的整点,且使在距最小观察图形,可见当直线5x+4y=30即可行域,x+y=9向右上方平o4xy 轴上的截252x+160y=t 经过点( 2, 5)时,满足上述要求此时, z=252 x+160 y 取得最小值,即x=2, y=5 时, z min=252× 2+160 ×5=1304答:每天派出甲型车 2 辆,乙型车 5 辆,车队所用成本费最低点评:用图解法解线性规划题时,求整数最优解是个难点,对作图精度要求较高,平行直线系 f(x, y) =t 的斜率要画准,可行域内的整点要找准,最好使用“网点法”先作出可行域中的各整点4 x y6例 4设z2x y ,式中变量x, y 满足条件2 x y4求 z 的最大值和最小值解:由已知,变量x, y 满足的每个不等式都表示一个平面区域,因此①所表示的区域为如图中的四边形ABCD当 z2x y 过点C时,z 取最小值,当 z 2 x y 过点 A 时,z取最大值即当 x3, y1时, z min7 ,当 x 5, y 1时, z max11例 5某糖果公司得一条流水线不论生产与否每天都要支付3000 元的固定费用,它生产 1 千克糖果的成本是 10 元,而销售价是每千克 15 元,试问:每天应生产并销售多少糖果,才能使收支平衡,即它的盈亏平衡点是多少?解:设生产x 千克的糖果的成本函数为y( x) 3000 10x ,销售 x 千克的糖果的收益函数为 R(x)15x ,在同一坐标系中画出它们的图像,交点的横坐标就是反映盈亏平衡的产销量,令 y( x) R( x) ,得 3000 10x 15x得 x600. ,即每天必须生产并销售600 千克糖果,这条流水线才能做到盈亏平衡,从图中可以看出,当x600 时,R( x) y( x),表示有盈利,反之则表示亏本例6某人有楼房一幢,室内面积共180m2,拟分隔成两类房间作为旅游客房,大房间每间面积为18,可住游客 5 名,每名游客每天住宿费为40 元,小房间每间面积为15,可住游客 3 名,每名游客每天住宿费为50 元,装修大房间每间需要1000 元,装修小房间每间需要 600 元,如果他们只能筹 8000 元用于装修,且游客能住满客房,它应隔出大房间和小房间各多少间,能获最大利益?解:设应隔出大房间x 间和小房间y 间,则18 x15 y180 且 1000 x600 y8000,x, y Ny目标函数为z 5 40x 350 y ,10作出约束条件可行域:5根据目标函数z 200x150 y ,作出一组平行线200x150 y to5x 当此线经过直线18x15 y 180和直线 1000 x 600 y8000的交点 C(20,60) ,77此直线方程为 200x150y 13000,7由于 ( 20,60) 不是整数,所以经过整点(3,8)时,才是他们的最优解,同时经过整点(0,12) 7 7也是最优解即应隔大房间 3 间,小房间8 间,或者隔大房间0 间,小房间12 间,所获利益最大如果考虑到不同客人的需要,应隔大房间 3 间,小房间8 间小结:简单的线性规划在实际生产生活中应用非常广泛,主要解决的问题是:在资源的限制下,如何使用资源来完成最多的生产任务;或是给定一项任务,如何合理安排和规划,能以最少的资源来完成如常见的任务安排问题、配料问题、下料问题、布局问题、库存问题,通常解法是将实际问题转化为数学模型,归结为线性规划,使用图解法解决图解法解决线性规划问题时,根据约束条件画出可行域是关键的一步一般地,可行域可以是封闭的多边形,也可以是一侧开放的非封闭平面区域第二是画好线性目标函数对应的平行直线系,特别是其斜率与可行域边界直线斜率的大小关系要判断准确通常最优解在可行域的顶点(即边界线的交点)处取得,但最优整数解不一定是顶点坐标的近似值它应是目标函数所对应的直线平移进入可行域最先或最后经过的那一整点的坐标学生练习1下列命题中正确的是A 点( 0,0)在区域x+y≥ 0 内B 点( 0, 0)在区域x+y+1<0 内C 点( 1, 0)在区域 y>2x 内D 点( 0, 1)在区域 x- y+1>0 内解析:将( 0, 0)代入 x+y≥ 0,成立答案: A2 设动点坐标( x, y)满足(x-y+1)(x+y- 4)≥ 0,x≥3,则x2+y2的最小值为A 5B10C 17D 10 2解析:数形结合可知当x=3, y=1 时, x2+y2的最小值为 10答案: D3 不等式组 2 x-y+1≥ 0,x- 2y-1≤0, x+y≤1表示的平面区域为A 在第一象限内的一个无界区域B 等腰三角形及其内部C 不包含第一象限内的点的一个有界区域D 正三角形及其内部答案: B4 点(- 2, t)在直线2x- 3y+6=0 的上方,则 t 的取值范围是 ______解析:(- 2,t)在 2x-3y+6=0 的上方,则2×(- 2)- 3t+6<0,解得 t>2答案: t>2 33x0,5 不等式组y0,表示的平面区域内的整点(横坐标和纵坐标都是整数的点)共有4x 3 y12____________个解析:( 1,1),( 1,2),( 2,1),共 3 个答案: 36 ( x-1)2+( y- 1)2=1 是| x- 1| +| y- 1|≤ 1 的__________ 条件A 充分而不必要B 必要而不充分C 充分且必要D 既不充分也不必要答案: B7( x+2y+1)(x- y+4 )≤ 0 表示的平面区域为A B C D答案: B8 画出以 A( 3,- 1)、 B(- 1, 1)、 C(1, 3)为顶点的△ ABC 的区域(包括各边),写出该区域所表示的二元一次不等式组,并求以该区域为可行域的目标函数z=3x- 2y 的最大值和最小值分析:本例含三个问题:①画指定区域;②写所画区域的代数表达式——不等式组;③求以所写不等式组为约束条件的给定目标函数的最值解:如图,连结点A、B、 C,则直线AB 、BC、 CA 所围成的区域为所求△ABC 区域直线 AB 的方程为x+2y- 1=0 , BC 及 CA 的直线方程分别为x-y+2=0 , 2x+y- 5=0在△ ABC 内取一点P( 1, 1),分别代入 x+2y- 1, x- y+2, 2x+y- 5得 x+2y -1>0 , x -y+2>0, 2x+y - 5<0因此所求区域的不等式组为x+2y - 1≥0, x - y+2≥ 0, 2x+y - 5≤ 0作平行于直线 3x -2y=0 的直线系 3x - 2y=t ( t 为参数),即平移直线 y=3x ,观察图形2可知:当直线 y= 3x - 1 t 过 A ( 3,- 1)时,纵截距-1 t 最小 此时 t 最大, t max =3× 3- 222 2× (- 1) =11;当直线 y=3x - 1 t 经过点 B (- 1, 1)时,纵截距- 1 t 最大,此时 t 有最小值为 t min =2223×(- 1)- 2× 1=-5因此,函数 z=3x - 2y 在约束条件x+2y - 1≥0, x - y+2≥ 0, 2x+y - 5≤ 0 下的最大值为 11,最小值为- 59 某校伙食长期以面粉和大米为主食,面食每100 g 含蛋白质 6 个单位,含淀粉 4 个单位,售价 0 5 元,米食每 100 g 含蛋白质 3 个单位,含淀粉 7 个单位,售价 0 4 元,学校要求给学生配制盒饭,每盒盒饭至少有 8 个单位的蛋白质和 10个单位的淀粉,问应如何配制盒饭,才既科学又费用最少 ?解:设每盒盒饭需要面食x (百克),米食 y (百克),所需费用为 S=0 5x+0 4y ,且 x 、 y 满足 6x+3y ≥ 8, 4x+7 y ≥ 10, x ≥ 0,y ≥ 0,由图可知,直线 y=- 5x+ 5 S 过 A ( 13,14 )时 , 纵421515截距5S 最小,即 S 最小2故每盒盒饭为面食13百克,米食14百克时既科学又费用最少151510 配制 A 、B 两种药剂,需要甲、乙两种原料,已知配一剂 A 种药需甲料 3 mg ,乙料 5mg ;配一剂 B 种药需甲料 5 mg ,乙料 4 mg 今有甲料 20 mg ,乙料 25 mg ,若 A 、 B 两种药 至少各配一剂,问共有多少种配制方法?解:设 A 、 B 两种药分别配 x 、y 剂( x 、 y ∈N ),则x ≥ 1,y ≥ 1, 3x+5 y ≤ 20, 5x+4y ≤ 25上述不等式组的解集是以直线x=1 ,y=1, 3x+5y=20 及 5x+4y=25 为边界所围成的区域,这个区域内的整点为(1,1)、(1,2)、( 1,3)、( 2,1)、( 2,2)、( 3,1)、( 3,2)、(4, 1)所以,在至少各配一剂的情况下,共有8 种不同的配制方法.11 某公司计划在今年内同时出售变频空调机和智能洗衣机,由于这两种产品的市场需求量非常大,有多少就能销售多少,因此该公司要根据实际情况(如资金、劳动力)确定产品的月供应量,以使得总利润达到最大 已知对这两种产品有直接限制的因素是资金和劳动力,通过调查,得到关于这两种产品的有关数据如下表:资金 单位产品所需资金(百元) 月资金供应量(百元)空调机 洗衣机成 本30 20 300劳动力(工资)5 10 110单位利润68试问:怎样确定两种货物的月供应量,才能使总利润达到最大,最大利润是多少 ?解:设空调机、洗衣机的月供应量分别是x 、 y 台,总利润是 P ,则 P=6x+8 y ,由题意有30x+20y ≤ 300, 5x+10y ≤110,x ≥ 0, y ≥0, x 、 y 均为整数由图知直线 y=- 3 x+ 1P 过 M ( 4,9)时,纵截距最大 这时 P 也取最大值 P max =6× 4+848×9=96 (百元)故当月供应量为空调机4 台,洗衣机 9 台时,可获得最大利润 9600 元12 实系数方程 f ( x )=x 2 +ax+2b=0 的一个根在(0,1)内,另一个根在( 1, 2)内,求:( 1)b 2的值域;a 1 ( 2)( a - 1) 2+(b - 2) 2 的值域;( 3) a +b -3 的值域解:由题意知f ( 0)> 0, f ( 1)< 0, f ( 2)> 0 b >0, a+b+1< 0, a+b+2> 0 如图所示A (- 3, 1)、B (- 2, 0)、C (- 1, 0)又由所要求的量的几何意义知,值域分别为(1)(1 , 1);( 2)( 8, 17);( 3)(- 5,4-4)。
盘点高考数学二轮复习线性规划知识要点简单的线性规划问题是高考的热点之一,是历年高考的必考内容,要紧以填空题的形式考查最优解的最值类问题的求解,高考的命题要紧围绕线性规划知识要点有以下几个方面:(1) 常规的线性规划问题,即求在线性约束条件下的最值问题;(2) 与函数、平面向量等知识结合的最值类问题;(3) 求在非线性约束条件下的最值问题;(4) 考查线性规划问题在解决实际生活、生产实际中的应用.而其中的第(2)(3)(4)点往往是命题的创新点。
【例1】设函数f()=?3?sin?+??cos?,其中,角的顶点与坐标原点重合,始边与x轴非负半轴重合,终边通过点?P(x,y)?,且0?。
(1) 若点P的坐标为12,32,求f()的值;(2) 若点P(x,y)为平面区域:x+y1,y1。
上的一个动点,试确定角的取值范畴,并求函数f()的最小值和最大值。
分析第(1)问只需要运用三角函数的定义即可;第(2)问中只要先画出平面区域,再依照抽画出的平面区域确定角的取值范畴,进而转化为求f()=a? sin?+b?cos?型函数的最值。
解(1) 由点P的坐标和三角函数的定义可得?sin?=32,?cos?=12。
因此f()=3?sin?+??cos?=?332+12=2。
(2) 作出平面区域(即三角形区域ABC)如图所示,其中A(1,0),B(1,1),? C(0,1)?.因此0?2,又f()=3?sin?+?cos?=2?sin?+??6,且?+2??3,我国古代的读书人,从上学之日起,就日诵不辍,一样在几年内就能识记几千个汉字,熟记几百篇文章,写出的诗文也是字斟句酌,琅琅上口,成为满腹经纶的文人。
什么缘故在现代化教学的今天,我们念了十几年书的高中毕业生甚至大学生,竟提起作文就头疼,写不出像样的文章呢?吕叔湘先生早在19 78年就尖锐地提出:“中小学语文教学成效差,中学语文毕业生语文水平低,……十几年上课总时数是9160课时,语文是2749课时,恰好是30%,十年的时刻,二千七百多课时,用来学本国语文,却是大多数只是关,岂非咄咄怪事!”寻根究底,其要紧缘故确实是腹中无物。
高三数学线性规划知识点线性规划是数学中的一个重要分支,广泛应用于经济、管理、工程等领域。
它通过建立数学模型,寻找一组最佳决策方案,以实现特定的目标。
在高三数学学习中,线性规划是一个重要的知识点,本文将介绍线性规划的基本概念、常见问题类型以及解题方法。
一、线性规划的基本概念1. 目标函数:线性规划的目标是在一组约束条件下,最大化或最小化一个线性函数,这个线性函数就是目标函数。
通常用Z表示目标函数的值。
2. 变量:目标函数中的每个变量都代表一个决策变量,这些变量的取值将影响目标函数的计算结果。
3. 约束条件:线性规划的一个重要特点是存在一组约束条件,这些约束条件限制了决策变量的取值范围。
约束条件通常是由一组线性不等式或等式表示。
4. 可行解:满足所有约束条件的解称为可行解。
5. 最优解:在所有可行解中,使得目标函数达到最大值或最小值的解称为最优解。
二、线性规划的问题类型1. 单纯形法:单纯形法是一种常用的线性规划求解方法。
它通过不断优化目标函数的值,逐步接近最优解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
2. 对偶性定理:线性规划中的对偶性定理是指对于一个标准型的线性规划问题,它与其对偶问题具有相同的最优解。
3. 整数线性规划:当决策变量要求为整数时,这就是一个整数线性规划问题。
整数线性规划的求解更加困难,常常需要借助于分支定界等特殊算法。
4. 网络流线性规划:网络流线性规划是线性规划与图论相结合的一种问题类型。
它通常用于解决最小费用流、最大流等网络优化问题。
三、线性规划的解题方法1. 图形法:对于二维线性规划问题,可以使用图形法进行求解。
首先绘制出约束条件所构成的区域,然后绘制目标函数的等高线,并找到最优解所在的点。
2. 单纯形法:对于高维的线性规划问题,可以使用单纯形法进行求解。
单纯形法通过迭代计算一系列基础可行解,直到找到最优解为止。
3. 对偶问题:通过建立原始问题与对偶问题之间的关系,可以将原始问题的求解转化为对偶问题的求解。
高中必修5线性规划最快的方法简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析线性规划是一门研究如何使用最少的人力、物力和财力去最优地完成科学研究、工业设计、经济管理中实际问题的专门学科.主要在以下两类问题中得到应用:一是在人力、物力、财务等资源一定的条件下,如何使用它们来完成最多的任务;二是给一项任务,如何合理安排和规划,能以最少的人力、物力、资金等资源来完成该项任务.1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
方法二:利用规律:1.Ax+By+C>0,当B>0时表示直线Ax+By+C=0上方(左上或右上),当B<0时表示直线Ax+By+C=0下方(左下或右下);2.Ax+By+C<0,当B>0时表示直线Ax+By+C=0下方(左下或右下)当B<0时表示直线Ax+By+C=0上方(左上或右上)。
四、线性规划的有关概念:①线性约束条件: ②线性目标函数:③线性规划问题: ④可行解、可行域和最优解:典型例题一--------画区域1. 用不等式表示以)4,1(A ,)0,3(-B ,)2,2(--C 为顶点的三角形内部的平面区域.分析:首先要将三点中的任意两点所确定的直线方程写出,然后结合图形考虑三角形内部区域应怎样表示。
解:直线AB 的斜率为:1)3(104=---=AB k ,其方程为3+=x y . 可求得直线BC 的方程为62--=x y .直线AC 的方程为22+=x y .ABC ∆的内部在不等式03>+-y x 所表示平面区域内,同时在不等式062>++y x 所表示的平面区域内,同时又在不等式022<+-y x 所表示的平面区域内(如图).所以已知三角形内部的平面区域可由不等式组⎪⎩⎪⎨⎧<+->++>+-022,062,03y x y x y x 表示.说明:用不等式组可以用来平面内的一定区域,注意三角形区域内部不包括边界线.2 画出332≤<-y x 表示的区域,并求所有的正整数解),(y x .解:原不等式等价于⎩⎨⎧≤->.3,32y x y 而求正整数解则意味着x ,y 还有限制条件,即求⎪⎪⎩⎪⎪⎨⎧≤->∈∈>>.3,32,,,0,0y x y z y z x y x . 依照二元一次不等式表示的平面区域,知332≤<-y x 表示的区域如下图:对于332≤<-y x 的正整数解,容易求得,在其区域内的整数解为)1,1(、)2,1(、)3,1(、)2,2(、)3,2(.3设0≥x ,0≥y ,0≥z ;z y x p 23++-=,z y x q 42+-=,1=++z y x ,用图表示出点),(q p 的范围.分析:题目中的p ,q 与x ,y ,z 是线性关系.可借助于x ,y ,z 的范围确定),(q p 的范围.解:由⎪⎩⎪⎨⎧=++=+--=--,1,42,23z y x q z y x p z y x 得⎪⎪⎪⎩⎪⎪⎪⎨⎧++=+-=-+=),345(271),3514(271),68(271q p z p q y p q x0 A B C x y (2,4)(1,2)-(1,0)(图1) 由0≥x ,0≥y ,0≥z 得⎪⎩⎪⎨⎧≥++≥+-≤--,0543,01453,086q p q p q p 画出不等式组所示平面区域如图所示.说明:题目的条件隐蔽,应考虑到已有的x ,y ,z 的取值范围.借助于三元一次方程组分别求出x ,y ,z ,从而求出p ,q 所满足的不等式组找出),(q p 的范围.4、已知x,y,a,b 满足条件:0,0,0,0≥≥≥≥b a y x ,2x+y+a=6,x+2y+b=6(1)试画出(y x ,)的存在的范围; (2)求y x 32+的最大值。
典型例题二------画区域,求面积例3 求不等式组⎪⎩⎪⎨⎧+-≤-+≥111x y x y 所表示的平面区域的面积. 分析:关键是能够将不等式组所表示的平面区域作出来,判断其形状进而求出其面积.而要将平面区域作出来的关键又是能够对不等式组中的两个不等式进行化简和变形,如何变形?需对绝对值加以讨论.解:不等式11-+≥x y 可化为)1(-≥≥x x y 或)1(2-<--≥x x y ;不等式1+-≤x y 可化为)0(1≥+-≤x x y 或)0(1<+≤x x y .在平面直角坐标系内作出四条射线:)1(-≥=x x y AB :,)1(2-<--=x x y AC : )0(1≥+-=x x y DE :,)0(1<+=x x y DF :则不等式组所表示的平面区域如图,由于AB 与AC 、DE 与DF 互相垂直,所以平面区域是一个矩形. 根据两条平行线之间的距离公式可得矩形的两条边的长度分别为22和223.所以其面积为23. 典型例题三------求最值 一、与直线的截距有关的最值问题 z Ax By C =++1.如图1所示,已知ABC 中的三顶点(2,4),(1,2),(1,0)A B C -, 点(,)P x y 在ABC 内部及边界运动,请你探究并讨论以下问题:①z x y =+在 点A 处有最大值 6 ,在边界BC 处有最小值 1 ;②z x y =-在 点C 处有最大值 1 ,在 点B 处有最小值3-2若x 、y 满足条件⎪⎩⎪⎨⎧≤+-≥+-≤-+.0104010230122y x y x y x ,,求y x z 2+=的最大值和最小值. 分析:画出可行域,平移直线找最优解.解:作出约束条件所表示的平面区域,即可行域,如图所示.作直线z y x l =+2:,即z x y 2121+-=,它表示斜率为21-,纵截距为2z 的平行直线系,当它在可行域内滑动时,由图可知,直线l 过点A 时,z 取得最大值,当l 过点B 时,z 取得最小值. 0 A B C xy (2,4)(1,2)-(1,0)6x y +=1x y +=( 图2 ) 0 A B C xy (2,4)(1,2)-(1,0)1x y -=3x y -=-0 A B C x y (2,4)(1,2)-(1,0)(图1) ∴ 18822max =⨯+=z ∴ 2222min =⨯+-=z注:z Ax By =+可化为A z y x B B =-+表示与直线A y x B =-平行的一组平行线,其中z B为截距,特别注意:斜率范围及截距符号。
即注意平移直线的倾斜度和平移方向。
变式:设x,y 满足约束条件分别求:(1)z=6x+10y ,(2)z=2x-y,(3)z=2x-y ,的最大值,最小值。
二、与直线的斜率有关的最值问题00y y z x x -=-表示定点P (x 0,y 0)与可行域内的动点M(x,y)连线的斜率. 例2 设实数x y ,满足20240230x y x y y --⎧⎪+-⎨⎪-⎩≤,≥,≤,,则y z x =的最大值是__________. 解析:画出不等式组所确定的三角形区域ABC ,00y y z x x -==-表示两点(00)()O P x y ,,,确定的直线的斜率,要求z 的最大值,即求可行域内的点与原点连线的斜率的最大值.可以看出直线OP 的斜率最大,故P 为240x y +-=与230y -=的交点, 即A 点.∴312P ⎛⎫⎪⎝⎭,.故答案为32. 3.如图1所示,已知ABC 中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 在ABC 内部及边界运动,请你探究并讨论以下问题:若目标函数是1y z x -=或231y z x +=+,你知道其几何意义吗?你能否借助其几何意义求得min z 和max z ?三、与距离有关的最值问题2222220000()()()()z z x x y y z x x y y x y Ax By C =-+-=-+-=++++或或(配方)的结构表示定点Q (x 0,y 0)到可行域内的动点N(x,y)的距离的平方或距离。