高中数学必修5常考题型:简单的线性规划问题
- 格式:docx
- 大小:20.75 KB
- 文档页数:9
2019-2020年高中数学必修5简单的线性规划问题(I)教学目标(1)巩固图解法求线性目标函数的最大、最小值的方法;(2)会用画网格的方法求解整数线性规划问题.教学重点、难点用画网格的方法求解整数线性规划问题.教学过程一.数学运用例1.设满足约束条件组1320101x y z y z x y ++=⎧⎪+≥⎪⎨≤≤⎪⎪≤≤⎩,求的最大值和最小值。
解:由知,代入不等式组消去得210101y x x y -≥⎧⎪≤≤⎨⎪≤≤⎩,代入目标函数得,作直线:,作一组平行线:平行于,由图象知,当往左上方移动时,随之增大,当往右下方移动时,随之减小,所以,当经过时,max 202146u =-⨯+⨯+=, 当经过时,min 212144u =-⨯+⨯+=,所以,,.例2.已知满足不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩,求使取最大值的整数.解:不等式组的解集为三直线:,:,:所围成的三角形内部(不含边界),设与,与,与交点分别为,则坐标分别为,,,作一组平行线:平行于:, 当往右上方移动时,随之增大,∴当过点时最大为,但不是整数解, 又由知可取,当时,代入原不等式组得, ∴; 当时,得或, ∴或; 当时,, ∴, 故的最大整数解为或.说明:最优整数解常有两种处理方法,一种是通过打出网格求整点,关键是作图要准确;另一种是本题采用的方法,先确定区域内点的横坐标范围,确定的所有整数值,再代回原不等式组,得出的一元一次不等式组,再确定的所有相应整数值,即先固定,再用制约.例3.(1)已知,求的取值范围;(2)设,且,,求的取值范围。
解:(1)不等式组表示的平面区域如图所示,作直线:,作一组平行线:,由图知由向右下方平移时,随之增大,反之减小,∴当经过点时取最小值,当经过点时取最大值,由和分别得,,∴,,所以,.(2),,,由(1)知,.例4(备用题).已知的三边长满足,,求的取值范围。
简单的线性规划问题【知识概述】线性规划是不等式应用的一个典型,也是数形结合思想所体现的一个重要侧面.近年的考试中,通常考查二元一次不等式组表示的平面区域的图形形状以及目标函数的最大值或最小值,或求函数的最优解等问题.通过这节课的学习,希望同学们能够掌握线性规划的方法,解决考试中出现的各种问题.解决线性规划的数学问题我们要注意一下几点1.所谓线性规划就是在线性约束条件下求线性目标函数的最值问题;2.解决线性规划问题需要经历两个基本的解题环节(1)作出平面区域;(直线定”界”,特“点”定侧);(2)求目标函数的最值.(3)求目标函数z=ax+by最值的两种类型:①0b>时,截距最大(小),z的值最大(小);②0b>时,截距最大(小),z的值最小(大);【学前诊断】1.[难度] 易满足线性约束条件23,23,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩的目标函数z x y=+的最大值是()A.1B.32C.2D.32.[难度] 易设变量,x y满足约束条件0,0,220,xx yx y≥⎧⎪-≥⎨⎪--≤⎩则32z x y=-的最大值为( )A.0B.2C.4D.63. [难度] 中设1m >,在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为( )A.(1,1 B.(1)+∞ C .(1,3) D .(3,)+∞【经典例题】例1. 设变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =+的最大值为( )A.5B.4C.1D.8例2. 若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为( )A.4B.3C.2D.1例3. 设,x y 满足约束条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)z abx y a b =+>>的最小值为8,则a b +的最小值为____________.例4. 在约束条件下0,0,,24,x y x y s x y ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是( )A.[]6,15B.[]7,15 C.[]6,8 D.[]7,8例5. 设不等式组1230x x y y x ≥⎧⎪-+≥⎨⎪≥⎩,所表示平面区域是1,Ω平面区域2Ω与1Ω关于直线3490x y --=对称,对于1Ω中任意一点A 与2Ω中的任意一点B ,AB 的最小值等于( )A.285B.4C.125D.2例6.对于实数,x y ,若11,21,x y -≤-≤则21x y -+的最大值为_________.例7.在约束条件22240x y x y +++≤下,函数32z x y =+的最大值是___________.例8. 已知函数2()2(,)f x x ax b a b =++∈R ,且函数()y f x =在区间()0,1与()1,2内各有一个零点,则22(3)z a b =++的取值范围是( ).A.2⎫⎪⎪⎝⎭B.1,42⎛⎫ ⎪⎝⎭C.()1,2D.()1,4 例9. 奇函数()f x 在R 上是减函数,若,s t 满足不等式22(2)(2)f s s f t t -≤--,则当14s ≤≤时,t s的取值范围是( ). A.1,14⎡⎫-⎪⎢⎣⎭ B.1,14⎡⎤-⎢⎥⎣⎦ C.1,12⎡⎫-⎪⎢⎣⎭ D.1,12⎡⎤-⎢⎥⎣⎦例10. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.车间加工一箱原料需耗费工时10小时可加工出7千克A 产品,每千克 A 产品获利40元.乙车间加工一箱原料需耗费工时6小时可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70多箱原料的加工,每天甲、乙车间耗费工时总和不得超过480小时,甲、乙两车间每天获利最大的生产计划为(A )甲车间加工原料10箱,乙车间加工原料60箱(B )甲车间加工原料15箱,乙车间加工原料55箱(C )甲车间加工原料18箱,乙车间加工原料50箱(D )甲车间加工原料40箱,乙车间加工原料30箱【本课总结】线性规划是不等式和直线与方程的综合应用,是数形结合的和谐载体,也是高考中的重要考点,近几年的高考题中考查的频率较高,一般以考查基本知识和方法为主,属于基础类题,难度一般不高.1. 解决线性规划问题有一定的程序性:第一步:确定由二元一次不等式表示的平面区域;第二步:令z=0画直线0:0l ax by +=;第三步:平移直线0l 寻找使直线a z y x b b=-+截距取最值(最大或最小)的位置(最优解).第四步:将最优解坐标代入线性目标函数z ax by =+求出最值2. 解决线性规划问题要特别关注线性目标函数z ax by =+中b 的符号,若b >0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最大(小)值,若b <0,则使函数a z y x b b=-+的截距取最大(小)值的点,可使目标函数z ax by =+取最小(大)值, b <0的情况是很多同学容易出现的盲点.3. 线性规划问题要重视数形结合思想的运用,善于将代数问题和几何问题相互转化,由线性规划问题引申的其它数形结合题目也要灵活掌握,如:将平面区域条件引申为:22240x y x y +++≤表示圆面等,将目标函数引申为:2224z x y x y =+++表示动点到定点的距离的最值问题;21y z x +=-表示动点与定点连线的斜率的最值问题等. 4. 线性规划问题首先作出可行域,若为封闭区域(即几条直线围成的区域)则一般在区域顶点处取得最大或最小值5. 线性规划中易错点提示(1)忽视平面区域是否包括边界.一般最优解都处于平面区域的边界顶点处,若平面区域不包含边界,则可能不存在最值.(2)忽视对线性目标函数z ax by =+中b 的符号的区分.(3)代数问题向其几何意义的转化困难.【活学活用】1. [难度] 中若不等式组⎪⎪⎩⎪⎪⎨⎧≤+≥≤+≥-ay x y y x y x 0220表示的平面区域是一个三角形,则a 的取值范围是( ) A.4,3⎡⎫+∞⎪⎢⎣⎭ B.(]0,1 C.41,3⎡⎤⎢⎥⎣⎦ D.(]40,1,3⎡⎫+∞⎪⎢⎣⎭2. [难度] 中 设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A .4B .11C .12D .143. [难度] 中 已知变量x 、y 满足约束条件 20,1,70,x y y x x x y -+≤⎧⎪≥⎨⎪+-≤⎩则的取值范围是( ) A .9,65⎡⎤⎢⎥⎣⎦ B .9,5⎛⎤-∞ ⎥⎝⎦∪[)6,+∞ C .(],3-∞∪[)6,+∞ D .[3,6]。
26.简单的线性规划问题(一)教学目标 班级______ 姓名____________1.了解线性规划的基本概念.2.掌握简单的线性规划问题的一般解法.教学过程一、线性规划的相关概念.1.线性规划的相关概念.(1)约束条件:关于变量x ,y 的不等式组.(2)线性约束条件:关于x ,y 的一次不等式组.(3)目标函数:要求最值的关于x ,y 的函数解析式.(4)线性目标函数:关于x ,y 的一次解析式.(5)可行解:满足线性约束条件的解),(y x . (6)可行域:由所有可行解组成的集合.(7)最优解:使目标函数取最值的可行解.(8)线性规划问题:在线性约束条件下求线性目标函数的最值问题.2.注意事项.(1)线性约束条件必须是关于x ,y 的二元一次不等式(或等式).(2)在线性约束条件下,最优解可能不唯一.(3)最优解一定是可行解,但可行解不一定是最优解.(4)线性规划问题不一定存在可行解.二、线性规划问题.1.用线性规划求最值的一般步骤:(1)画可行域;(2)分析几何意义;(3)找最优解,求最值.2.常用几何公式:(1)截距:直线b kx y +=(斜截式)与y 轴交点的纵坐标,即当0=x 时,y 的值b .(2)斜率:2121x x y y k --=,表示),(11y x ,),(22y x 两点连线的斜率. (3)两点间的距离:221221)()(y y x x d -+-=,表示),(11y x ,),(22y x 两点间的距离. (4)点到直线的距离:2200||B A C By Ax d +++=,点),(00y x 到直线0=++C By Ax 的距离.三、例题分析:1.用线性规划求最值.32≤+y x ,例1:设变量x ,y 的线性约束条件为 32≤+y x ,求分别目标函数y x z +=1, 0≥x ,0≥y .12+=x y z ,322223+-++=y x y x z 的最大值.02≥-+y x , 作业:若实数x ,y 满足 4≤x , 求x y S -=的最小值.5≤y ,。
高中必修5线性规划简单的线性规划问题一、知识梳理1. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划.二、疑难知识导析1.对于不含边界的区域,要将边界画成虚线.2.确定二元一次不等式所表示的平面区域有多种方法,常用的一种方法是“选点法”:任选一个不在直线上的点,检验它的坐标是否满足所给的不等式,若适合,则该点所在的一侧即为不等式所表示的平面区域;否则,直线的另一侧为所求的平面区域.若直线不过原点,通常选择原点代入检验.3. 平移直线y=-kx+P时,直线必须经过可行域.4.对于有实际背景的线性规划问题,可行域通常是位于第一象限内的一个凸多边形区域,此时变动直线的最佳位置一般通过这个凸多边形的顶点.5.简单线性规划问题就是求线性目标函数在线性约束条件下的最优解,无论此类题目是以什么实际问题提出,其求解的格式与步骤是不变的:(1)寻找线性约束条件,线性目标函数;(2)由二元一次不等式表示的平面区域做出可行域;(3)在可行域内求目标函数的最优解.积储知识:一. 1.点P(x0,y0)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax0+By0+C=02. 点P(x0,y0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax0+By0+C>0;当B<0时,Ax0+By0+C<03. 点P(x0,y0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax0+By0+C<0;当B<0时,Ax0+By0+C>0注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同, (2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)(Ax2+By2+C)>02.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的两侧,则有(Ax1+By1+C)( Ax2+By2+C)<0二.二元一次不等式表示平面区域:①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域.不.包括边界;②二元一次不等式Ax+By+C≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线.三、判断二元一次不等式表示哪一侧平面区域的方法:方法一:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。
高中简单线性规划基础题型总结熊明军简单线性规划属于操作性知识,是高考必考知识点,历年不变,必有一选择或填空题。
下面结合例题,总结高中简单线性规划问题的基础题型,方便同学们快速掌握相关内容。
线性规划问题的基础题型,可根据目标函数的特点,将其分为三类: 类型一(直线):by ax z +=【理论】点到直线的距离。
【步骤】①作出可行域;②作出直线by ax +=0;③判断可行域顶点到直线by ax +=0的距离:()max max ,z y x P d ⇒⇒和()min min ,'z y x P d ⇒⇒【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求y x z 2-=的最值。
【解析】分三步走:①作出可行域:②作出直线y x 20-=:③判断直线y x 20-=到可行域顶点C B A 、、间的距离:平移、目测或代点都能判断,得()()11231,3,max max =⨯-=⇒⇒=z B l B d d ;()()119279,7,min min -=⨯-=⇒⇒=z C l C d d 。
类型二(圆):()()22b y a x z -+-= 【理论】两点之间的距离。
【步骤】①作出可行域;②作出圆()()222b y a x d -+-=;③判断可行域上的点到圆心()b a ,的距离(即半径r ):()max max max ,z y x P d r ⇒⇒=和()min min min ,'z y x P d r ⇒⇒=【例题】已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求()()2211-+-=y x z 的最值。
【解析】分三步走:①作出可行域:②作出圆()()22211-+-=y x d :r d =且半径r 由小到大逐渐作圆。
③判断圆心()1,1到可行域上点间的距离,也就是与可行域有交点的圆中半径r 的大小:目测或用圆规作圆都能判断,得()()()()10019179,7,22max max max =-+-=⇒⇒==z C D C d d r ;()()211411,2222min min min min =⎪⎪⎭⎫ ⎝⎛+-+==⇒==d z l D d d r AB . 类型三(斜率):m n x a b y m a m n x m a b y a n mx b ay z --⨯=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=--= 【理论】两点确定的直线的斜率。
简单的线性规划问题【知识梳理】线性规划的有关概念题型一、求线性目标函数的最值【例1】 设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.⎣⎡⎦⎤-32,6 B.⎣⎡⎦⎤-32,-1 C .[-1,6]D .⎣⎡⎦⎤-6,32 [解析] 约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1所表示的平面区域如图阴影部分,直线y =3x -z 斜率为3.由图象知当直线y =3x -z 经过A (2,0)时,z 取最大值6,当直线y =3x -z 经过B ⎝⎛⎭⎫12,3时,z 取最小值-32,∴z =3x -y 的取值范围为⎣⎡⎦⎤-32,6,故选A. [答案] A 【类题通法】解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点.【对点训练】1.设z =2x +y ,变量x 、y 满足条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,求z 的最大值和最小值.[解] 作出不等式组表示的平面区域,即可行域,如图所示.把z =2x +y 变形为y =-2x +z ,则得到斜率为-2,在y 轴上的截距为z ,且随z 变化的一组平行直线.由图可以看出,当直线z =2x +y 经过可行域上的点A 时,截距z 最大,经过点B 时,截距z 最小.解方程组⎩⎪⎨⎪⎧x -4y +3=0,3x +5y -25=0,得A 点坐标为(5,2),解方程组⎩⎪⎨⎪⎧x =1,x -4y +3=0,得B 点坐标为(1,1),∴z 最大值=2×5+2=12,z 最小值=2×1+1=3.题型二、求非线性目标函数的最值【例2】 设x ,y 满足条件⎩⎪⎨⎪⎧x -y +5≥0,x +y ≥0,x ≤3.(1)求u =x 2+y 2的最大值与最小值; (2)求v =yx -5的最大值与最小值.[解] 画出满足条件的可行域如图所示,(1)x 2+y 2=u 表示一组同心圆(圆心为原点O ),且对同一圆上的点x 2+y 2的值都相等,由图可知:当(x ,y )在可行域内取值时,当且仅当圆O 过C 点时,u 最大,过(0,0)时,u 最小.又C (3,8),所以u 最大值=73,u 最小值=0.(2)v =yx -5表示可行域内的点P (x ,y )到定点D (5,0)的斜率,由图可知,k BD 最大,k CD 最小,又C (3,8),B (3,-3),所以v 最大值=-33-5=32,v 最小值=83-5=-4.【类题通法】非线性目标函数最值问题的求解方法(1)非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果.(2)常见代数式的几何意义主要有: ①x 2+y 2表示点(x ,y )与原点(0,0)的距离;(x -a )2+(y -b )2表示点(x ,y )与点(a ,b )的距离.②yx 表示点(x ,y )与原点(0,0)连线的斜率;y -b x -a表示点(x ,y )与点(a ,b )连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.【对点训练】2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0.则yx的最大值是________,最小值是________.[解析] 由约束条件作出可行域(如图所示),目标函数z =yx 表示坐标(x ,y )与原点(0,0)连线的斜率.由图可知,点C 与O 连线斜率最大;B 与O 连线斜率最小,又B 点坐标为(52,92),C 点坐标为(1,6),所以k OB=95,k OC =6. 故y x 的最大值为6,最小值为95. [答案] 6 95题型三、已知目标函数的最值求参数【例3】 若实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -2≤0,y -1≤0,x +2y -a ≥0,目标函数t =x -2y 的最大值为2,则实数a 的值是________. [解析] 如右图,由⎩⎪⎨⎪⎧x =2,x +2y -a =0. 得⎩⎪⎨⎪⎧x =2,y =a -22,代入x -2y =2中,解得a =2. [答案] 2 【类题通法】求约束条件或目标函数中的参数的取值范围问题解答此类问题必须明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想、方法求解.同时要搞清目标函数的几何意义.【对点训练】3.已知x ,y 满足⎩⎪⎨⎪⎧x -y +5≥0,x ≤3,x +y +k ≥0.且z =2x +4y 的最小值为-6,则常数k =( )A .2B .9C .310D .0[解析] 选D 由题意知,当直线z =2x +4y 经过直线x =3与x +y +k =0的交点(3,-3-k )时,z 最小,所以-6=2×3+4×(-3-k ),解得k =0.题型四、简单的线性规划问题的实际应用【例4】 某公司计划在甲、乙两个电视台做总时间不超过300 分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?[解] 设公司在甲电视台和乙电视台做广告的时间分别为x 分钟和y 分钟,总收益为z 元,由题意得⎩⎪⎨⎪⎧x +y ≤300,500x +200y ≤90 000,x ≥0,y ≥0.目标函数为z =3 000x +2 000y .二元一次不等式组等价于⎩⎪⎨⎪⎧x +y ≤300,5x +2y ≤900,x ≥0,y ≥0.作出二元一次不等式组所表示的平面区域,即可行域,如图.作直线l :3 000x +2 000y =0, 即3x +2y =0.平移直线l ,从图中可知,当直线l 过M 点时,目标函数取得最大值.联立⎩⎪⎨⎪⎧x +y =300,5x +2y =900,解得x =100,y =200.∴点M 的坐标为(100,200).∴z 最大值=3 000x +2 000y =700 000(元).因此,该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大,最大收益是70万元.【类题通法】利用线性规划解决实际问题的步骤是:①设出未知数(当数据较多时,可以列表格来分析数据);②列出约束条件,确立目标函数;③作出可行域;④利用图解法求出最优解;⑤得出结论.【对点训练】4.铁矿石A 和B 的含铁率a ,冶炼每万吨铁矿石的CO 2的排放量b 及每万吨铁矿石的价格c 如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求CO 2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元).解析:可设需购买A 矿石x 万吨,B 矿石y 万吨,则根据题意得到约束条件为:⎩⎪⎨⎪⎧x ≥0,y ≥0,0.5x +0.7y ≥1.9,x +0.5y ≤2,目标函数为z =3x +6y ,当目标函数经过(1,2)点时目标函数取最小值,最小值为:z 最小值=3×1+6×2=15.答案:15【练习反馈】1.z =x -y 在⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x +y ≤1的线性约束条件下,取得最大值的可行解为( )A .(0,1)B .(-1,-1)C .(1,0)D .⎝⎛⎭⎫12,12解析:选C 可以验证这四个点均是可行解,当x =0,y =1时,z =-1;当x =-1,y =-1时,z =0;当x =1,y =0时,z =1;当x =12,y =12时,z =0.排除选项A ,B ,D ,故选C.2.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤1,x -y ≤1,x +1≥0,则z =x +2y 的最小值为( )A .3B .1C .-5D .-6解析:选C 由约束条件作出可行域如图:由z =x +2y 得y =-12x +z 2,z2的几何意义为直线在y 轴上的截距,当直线y =-12x +z2过直线x =-1和x -y =1的交点A (-1,-2)时,z 最小,最小值为-5,故选C.3.已知实数x 、y 满足⎩⎪⎨⎪⎧y ≤2x ,y ≥-2x ,x ≤3,则目标函数z =x -2y 的最小值是________.解析:不等式组表示的平面区域如下图中阴影部分所示.目标函数可化为y =12x -12z ,作直线y =12x 及其平行线,知当此直线经过点A 时,-12z 的值最大,即z 的值最小.又A 点坐标为(3,6),所以z 的最小值为3-2×6=-9.答案:-94.已知点P (x ,y )的坐标满足条件⎩⎪⎨⎪⎧x +y ≤4,y ≥x ,x ≥1,点O 为坐标原点,那么|PO |的最小值等于________,最大值等于________.解析:点P (x ,y )满足的可行域为△ABC 区域,A (1,1),C (1,3).由图可得,|PO |最小值=|AO |=2;|PO |最大值=|CO |=10.答案:2105.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥32x -3y ≤3,求z =x +2y 的最小值.解:作出不等式组⎩⎪⎨⎪⎧x +y ≥32x -3y ≤3的可行域,如图所示.画出直线l 0:x +2y =0,平移直线l 0到直线l 的位置,使l 过可行域内某点,且可行域内其他点都在l 的不包含直线l 0的另外一侧,该点到直线l 0的距离最小,则这一点使z =x +2y 取最小值.显然,点A 满足上述条件,解⎩⎪⎨⎪⎧x +y =32x -3y =3得点A ⎝⎛⎭⎫125,35, ∴z 最小值=125+2×35=185.。
2一.学习目标:会从实际情境中抽象出二元一次不等式组,了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
二.知识要点:阅读导学92P三.基础检测:导学案.51,92--P四.典型例题:(一)。
平面区域的确定与应用例1设.不等式组⎪⎩⎪⎨⎧≥≥+-≥x y y x x ,0321所表示的平面区域为,1M 平面区域2M 与1M 关于直线0943:=--y x l 对称,对于1M 中的任意点A 与2M 中的任意点B ,则AB 的最小值为___________(二)简单的线性规划问题例2.已知,0520402⎪⎩⎪⎨⎧≤--≥-+≥+-y x y x y x 求:《第44讲简单的线性规划问题(1)42-+=y x z 的最大值;(2)251022+-+=y y x z 的最小值;(3)112++=x y z 的取值范围。
五.当堂练习:1.点()1,3与()6,4-在直线023=+-a y x 的两侧,则a 的取值范围是( )7.-<a A 或,24>a 247.<<-a B 7.-=a C 或24=a .D 以上都不是。
2(教材习题改编)已知实数y x .满足⎪⎩⎪⎨⎧≤-≤≥0,21y x y x 则此不等式组表示的平面区域 的面积是( )21.A 41.B 1.C 81.D 3.定义符合条件⎪⎩⎪⎨⎧∈≤≤≤≤,,,0,3N y x a y x y x 的有序数对()y x ,为“和谐格点”,则当3=a 时,“和谐格点”的个数是___________4.已知不等式组⎪⎩⎪⎨⎧≤≤≤≤,2,2,20y x y x 确定区域为,D 若()y x M ,为D 上的动点,点()1,2A , 求=z →→∙OA OM 的最大值。
六.课堂归纳小结:2二.学习目标:会从实际情境中抽象出二元一次不等式组,了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组,会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决。
简单线性规划问题的实际应用1. 某服装制造商有10 m2的棉布料,10 m2的羊毛料和6 m2的丝绸料,做一条裤子需要1 m2的棉布料,2 m2的羊毛料和1 m2的丝绸料,做一条裙子需要1 m2的棉布料,1 m2的羊毛料和1m2的丝绸料,做一条裤子的纯收益是20元,一条裙子的纯收益是40元,为了使收益达到最大,若生产裤子x条,裙子y条,利润为z,则生产这两种服装所满足的数学关系式与目标函数分别为( )A.Error!z=20x+40yB.Error!z=20x+40yC.Error!z=20x+40yD.Error!z=40x+20y2.某校今年计划招聘女教师a名,男教师b名,若a,b满足不等式组Error!设这所学校今年计划招聘教师最多x名,则x=________.3.铁矿石A和B的含铁率a,冶炼每万吨铁矿石的CO2的排放量b及每万吨铁矿石的价格c如下表:a b(万吨)c(百万元)A50%13B70%0.56某冶炼厂至少要生产1.9(万吨)铁,若要求CO2的排放量不超过2(万吨),则购买铁矿石的最少费用为________(百万元).4.某人承担一项业务,需做文字标牌4个,绘画标牌5个.现有两种规格的原料,甲种规格每张3 m2,可做文字标牌1个,绘画标牌2个;乙种规格每张2 m2,可做文字标牌2个,绘画标牌1个,求两种规格的原料各用多少张,才能使得总用料面积最小.5.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:[来源学*科*网Z*X*X*K]连续剧播放时长(分钟)广告播放时长(分钟)收视人次(万)甲70560乙60525已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x,y表示每周计划播出的甲、乙两套连续剧的次数.(1)用x,y列出满足题目条件的数学关系式,并画出相应的平面区域;(2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多?6.某研究所计划利用“神十一”宇宙飞船进行新产品搭载实验,计划搭载新产品A,B,要根据该产品的研制成本、产品质量、搭载实验费用和预计产生收益来决定具体安排,通过调查,搭载每件产品有关数据如表:产品A(件)产品B(件)研制成本、搭载费用之和(万元)2030计划最大投资金额300万元产品质量(千克)105最大搭载质量110千克预计收益(万元)8060试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?7.某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:原料A B C肥料 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨.在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.8.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时.生产一件产品A的利润为2 100元,生产一件产品B的利润为900 元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为________元.9.某公司计划用不超过50万元的资金投资A,B两个项目,根据市场调查与项目论证,A,B项目的最大利润分别为投资的80%和40%,而最大的亏损额为投资的40%和10%,若要求资金的亏损额不超过8万元,且使利润最大,投资者应投资A项目________万元,投资B项目___ _____万元.10.投资人制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损,一投资人打算投资甲、乙两项目.根据预测,甲、乙项目可能的最大盈利率分别为50%和40%,可能的最大亏损率分别为30%和20%.投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过2.4万元.设甲、乙两个项目投资额分别为x,y万元.(1)写出x,y满足的约束条件;(2)求可能盈利的最大值(单位:万元).11.某学校用800元购买A,B两种教学用品,A种用品每件100元,B种用品每件160元,两种用品至少各买一件,要使剩下的钱最少,A,B两种用品应各买的件数为( ) A.2,4 B.3,3C.4,2 D.不确定来源:Z#xx#]12.一小商贩准备用50元钱在一批发市场购买甲、乙两种小商品,甲每件4元,乙每件7元,甲商品每件卖出去后可赚1元,乙每件卖出去后可赚1.8元.若要使赚的钱最多,那么该商贩购买甲、乙两种商品的件数应分别为( )A.甲7件,乙3件 B.甲9件,乙2件C.甲4件,乙5件 D.甲2件,乙6件13. 某运输公司每天至少要运送180 t货物,公司有8辆载重为6 t的A型卡车和4辆载重为10 t的B型卡车,且有10名驾驶员.A型卡车每天可往返4次,B型卡车每天可往返3次,每辆A 型卡车每天花费320元,每辆B型卡车每天花费504元,如何合理调用车辆,才能使公司每天花费最少?参考答案简单线性规划问题的实际应用1. 解析:选A 由题意知A正确.2. 解析:画出不等式组所表示的可行域如图中阴影部分所示,作直线l:b+a=0,平移直线l,再由a,b∈N,可知当a=6,b=7时,招聘的教师最多,此时x=a+b=13.答案:133. 解析:设购买铁矿石A,B分别为x,y万吨,购买铁矿石的费用为z(百万元),则Error!目标函数z=3x+6y.由Error!得Error!记P(1,2),画出可行域,如图所示.当目标函数z=3x+6y过点P(1,2)时,z取到最小值,且最小值为z min=3×1+6×2=15.答案:154.解:设需要甲种原料x张,乙种原料y张,则可做文字标牌(x+2y)个,绘画标牌(2x+y)个,由题意可得Error!,所用原料的总面积为z=3x+2y,作出可行域如图.在一组平行直线3x+2y=z中,经过可行域内的点且到原点距离最近的直线.过直线2x+y=5和直线x+2y=4的交点(2,1),∴最优解为x=2,y=1,∴使用甲种规格原料2张,乙种规格原料1张,可使总的用料面积最小.5. 解:(1)由已知,x ,y 满足的数学关系式为Error!,即Error!该二元一次不等式组所表示的平面区域为图中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-x +,这是斜率为-,随z 变化的一族平行直125z 25125线.为直线在y 轴上的截距,当取得最大值时,z 的值最大.z 25z 25又因为x ,y 满足约束条件,所以由图可知,当直线z =60x +25y 经过可行域上的点M 时,截距最大,即z 最大.解方程组Error!得点M 的坐标为(6,3).z 25所以电视台每周播出甲连续剧6次、乙连续剧3次时才能使总收视人次最多.6. [解] 设“神十一”宇宙飞船搭载产品A ,B 的件数分别为x ,y ,最大收益为z ,则目标函数为z =80x +60y ,根据题意可知,约束条件为Error!即Error!作出可行域如图阴影部分所示,作出直线l :80x +60y =0,并平移直线l ,由图可知,当直线过点M 时,z 取得最大值,解Error!得M (9,4),所以z max =80×9+60×4=960,即搭载A 产品9件,B 产品4件,可使得总预计收益最大,为960万元.7. 解:(1)由已知,x ,y 满足的数学关系式为Error!该二元一次不等式组所表示的平面区域为图①中的阴影部分.(2)设利润为z 万元,则目标函数为z =2x +3y .考虑z =2x +3y ,将它变形为y =-x +,它的图象是斜率为-,随z 变化的一族平行23z 323直线,为直线在z 3y 轴上的截距,当取最大值时,z 的值最大.根据x ,y 满足的约束条件,由图②可知,z 3当直线z =2x +3y 经过可行域上的点M 时,截距最大,即z 最大.z 3解方程组Error!得点M 的坐标为(20,24),所以z max =2×20+3×24=112.答:生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元.8. 解析:设生产A 产品x 件,B 产品y 件,由已知可得约束条件为Error!即Error!目标函数为z =2 100x +900y ,由约束条件作出不等式组表示的可行域如图中阴影部分.作直线2100x +900y =0,即7x +3y =0,当直线经过点M 时,z 取得最大值,联立Error!解得M (60,100).则z max =2 100×60+900×100=216 000(元).答案:216 0009. 解析:设投资者对A ,B 两个项目的投资分别为x ,y 万元,则由题意得约束条件为Error!即Error!投资者获得的利润设为z ,则有z =0.8x +0.4y .作出可行域如图所示,由图可知,当直线经过点B 时,z 取得最大值.解Error!得B (10,40).所以,当x =10,y =40时,获得最大利润,最大利润为24万元.答案:10 4010. 解:(1)x ,y 满足约束条件为Error!(2)设目标函数z =0.5x +0.4y ,上述不等式组表示的平面区域如图中阴影部分所示,平移直线l 0:0.5x +0.4y =0,当经过点M 时,z =0.5x +0.4y 取得最大值.解方程组Error!得x =4,y =6.此时z max =0.5×4+0.4×6=4.4(万元).来源学科网Z,X,X,K]11. 解析:选B 设买A 种用品x 件,B 种用品y 件,剩下的钱为z 元,则Error!求z =800-100x -160y 取得最小值时的整数解(x ,y ),用图解法求得整数解为(3,3).12. 解析:选D 设甲商品x 件,乙商品y 件,所赚钱数为z ,则目标函数为z =x +1.8y ,约束条件为Error!作出可行域如图所示,由z =x +1.8y ,得y =-x +,斜率为->-,所以,由图可知直线过点A 时,595z 95947(0,507)z 取得最大值.又x ,y ∈N ,所以点A 不是最优解.点(0,7),(2,6),(9,2)都在可行域内,逐一验证可得,当x=2,y=6时,z取得最大值,故选D.13. 解:设每天调用A型卡车x辆,B型卡车y辆,每天花费z元.则Error!即Error!目标函数z=320x+504y.作出可行域,如图中阴影部分所示.当直线320x+504y=z经过直线4x+5y=30与x轴的交点(7.5,0)时,z有最小值.又(7.5,0)不是整点,由分析知,经过可行域内的整点,且与原点距离最近的直线是直线320x+504y =2 560,经过的整点是(8,0),它是最优解.所以要使公司每天花费最少,每天应调用A型卡车8辆,B型卡车0辆.。
线性规划常见题型及解法一、求线性目标函数的取值范围例1、若x、y满足约束条件222xyx y≤⎧⎪≤⎨⎪+≥⎩,则z=x+2y的取值范围是()A、[2,6]B、[2,5]C、[3,6]D、(3,5]二、求可行域的面积例2、不等式组260302x yx yy+-≥⎧⎪+-≤⎨⎪≤⎩表示的平面区域的面积为()A、4B、1C、5D、无穷大三、求可行域中整点个数例3、满足|x|+|y|≤2的点(x,y)中整点(横纵坐标都是整数)有()A、9个B、10个C、13个D、14个四、求线性目标函数中参数的取值范围例4、已知x、y满足以下约束条件5503x yx yx+≥⎧⎪-+≤⎨⎪≤⎩,使z=x+ay(a>0)取得最小值的最优解有无数个,则a的值为()A、-3B、3C、-1D、1五、求非线性目标函数的最值例5、已知x、y满足以下约束条件220240330x yx yx y+-≥⎧⎪-+≥⎨⎪--≤⎩,则z=x2+y2的最大值和最小值分别是()A、13,1B、13,2C、13,45D、5六、求约束条件中参数的取值范围例6、已知|2x -y +m|<3表示的平面区域包含点(0,0)和(-1,1),则m 的取值范围是 ( )A 、(-3,6)B 、(0,6)C 、(0,3)D 、(-3,3)七、比值问题 当目标函数形如y a z x b-=-时,可把z 看作是动点(,)P x y 与定点(,)Q b a 连线的斜率,这样目标函数的最值就转化为PQ 连线斜率的最值。
例 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≤0,x ≥1,x +y -7≤0,则 y x 的取值范围是( ). (A )[95,6] (B )(-∞,95]∪[6,+∞) (C )(-∞,3]∪[6,+∞)(D )[3,6]尽管人智慧有其局限,爱智慧却并不因此就属于徒劳。
智慧果实似乎是否定性:理论上——“我知道我一无所知”;实践上——“我需要我一无所需”。
简单的线性规划问题【知识梳理】线性规划的有关概念【常考题型】题型一、求线性目标函数的最值(X+2Q2,【例1】设变重X, *满足约束条件〈2x+ y<4, 则目标函数z= 3x- V的取值范围〔4*- - 1,是()3A. -6C. [-L6]D. -6,3."+2E,[解析]约束条件〈2X+V<4,y> - 1所表示的平面区域如图阴影部分,直线y= 3x- Z斜率为3 z 取最小值-3.・・z=3x-y 的取值范围为6」,故选A. [答案]A 【类题通法】解线性规划问题的关键是准确地作出可行域,正确理解z 的几何意义,对一个封闭图形而 言,最优解一般在可行域的边界上取得.在解题中也可由此快速找到最大值点或最小值点.【对点训练】X- 4y< -3,3x+5y<25,求z 的最大值和最小值.Q1,[解]作出不等式组表示的平面区域,即可行域,如图所示.把z=2x+>变形为v=-2x +乙则得到斜率为-2,在)/轴上的截距为乙旦随z 变化的一组平行直线.由图可以看出, 当直线z=2x+*经过可行域上的点/时,截距z 最大,经过点8时,截距z 最小.|x-4y+3 = 0,解方程组i3H5 =。
,得/点坐标为厚),X=l,解方程组L-4*+3 =。
,得8点坐标为("),大值 = 2x5 + 2=12, z 建小值=2x 1 + 1 = 3.(于4尸3=0=0题型二、求非线性目标函数的最值(X- y+5>0, X+VA O,x<3.⑴求"=/+必的最大值与最小值;V⑵求 >=六的最大值与最小值.X— O[解]画出满足条件的可行域如图所示,(1) /+,=。
表示一组同心圆(圆心为原点Q,旦对同一圆上的点】+必的值都相等,由图可知:当(X, M在可行域内取值时,当旦仅当圆。
过c点时,〃最大,过(0,0)时,〃最小.又Q3,8),所以u意大也=73、"缺小值=0.y(2) v^=—表示可行域内的点Rx, H到定点Q(5,0)的斜率,由图可知,蜘最大,处。
最A— O小,又03,8), 8(3, -3),-3 3 8所以/ 是大渲= 3 — 5 = 1',照小坦=3 _ 5 = 一4・【类题通法】非线性目标函数最值问题的求解方法⑴非线性目标函数最值问题,要充分理解非线性目标函数的几何意义,诸如两点间的距离(或平方),点到直线的距离,过已知两点的直线斜率等,充分利用数形结合知识解题,能起到事半功倍的效果・(2)常见代数式的几何意义主要有:①表示点(x, y)与原点(0,0)的距离;yj x-a 2+ ―表示点(X, V)与点(。
,切的距离.②f表示点(X, M与原点(0,0)连线的斜率;写表示点(X, H与点(D,可连线的斜率.这些代数式的几何意义能使所求问题得以转化,往往是解决问题的关键.X- y+2<0, XA】,则£的最大值是.2. 已知变重x, v满足约束条件【对点训练】x+ y-7<0.[解析]由约束条件作出可行域(如图所示),目标函数表示坐7N C口+2二0X区B/标(X,刀与原点(0,0)连线的斜率.由图可知,点。
与。
连线斜率最大;5 98与。
连线斜率最小,又5点坐标为员必C点坐标为(L6),所以99[答案]6 z题型三、已知目标函数的最值求参数rx-2<o,【例3]若实数x, *满足不等式组〈/-K0,lx+2y-(7>0,目标函数t=x-2y的最大值为2,则实数d的值是_____________ .[解析]如右图,x=2, 由<[x+2y- <7=0.x=2,得o-2 代入"2p=2中,解得。
=2.V=克一,[答菊2【类题通法】求约束条件或目标函数中的参数的取值范围问题解答此类问题必须明确线性目标函数的最值一般在可行域的顶点或边界取得,运用数形结合的思想、方法求解.同时要搞清目标函数的几何意义.【对点训练】X— y+5>0, x<3, x+ y+ &A0.(旦z=2*+4y的最小值为-6,则常数虹()A. 2B. 9C. 3yf]QD. 0[解析]选D由题意知,当直线z=2x+4y经过直线x=3与x+y+Zr=。
的交点(3, -3 -幻时,z 最小,所以-6 = 2x3 + 4x(-3-幻,解得虹0.题型四、简单的线性规划问题的实际应用【例4】某公司计划在甲、乙两个电视台做总时间不超过300分钟的广告,广告总费用不超过9万元,甲、乙电视台的广告收费标准分别为500元/分钟和200元/分钟,假定甲、乙两个电视台为该公司所做的每分钟广告,能给公司带来的收益分别为0.3万元和0.2万元.问该公司如何分配在甲、乙两个电视台的广告时间,才能使公司的收益最大,最大收益是多少万元?[解]设公司在甲电视台和乙电视台做广告的时间分别为X分钟和V分钟,总收益为Z元, 由题意得'*+ y<300, 500x+200y<90 000, x>0, 、Q0・目标函数为z= 3 000*+2 000/"x+ y<300,5x+2/<900, 二元一次不等式组等价于< 八 <y>o.作出二元一次不等式组所表示的平面区域,即可行域,如图.作直线/:3 000x+2 000*=0, 即 3x+2y=0.平移直线/,从图中可知,当直线/过M 点时,目标函数取得最大值.・.・点A4的坐标为(100,200).・•・ z 缺大值=3 000*+ 2 000/= 700 000(元)•因此,该公司在甲电视台做100分钟广告,在乙电视台做200分钟广告,公司的收益最大, 最大收益是70万元.【类题通法】x+ y = 300,I5x+2y= 900,解得 *=]00, y= 200.利用线性规划解决实际问题的步骤是:①设出未知数(当数据较多时,可以列表格来分析数据);②列出约束条件,确立目标函数;③作出可行域;④利用图解法求出最优解;⑤得出结论.【对点训练】4 .铁矿石/和8的含铁率冶炼每万吨铁矿石的C。
△的排放量Z?及每万吨铁矿石的价格c如下表:某冶炼厂至少要生产1.9(万吨)铁,若要求CO△的排放量不超过2(万吨),则购买铁矿石的最少费用为(百万元).解析:可设需购买/矿石x万吨,3矿石V万吨,则根据题意得到约束条件为:5",0.5x+0.7y>1.9,目标函数为z=3x+6y,当目标函数经过(1,2)点时目标函数取最小值,最小值为:z是小值= 3x1 + 6x2 = 15.答案:15【练习反馈】2*- y+l>0, x-2y- 1 <0, x+y<l的线性约束条件下,取得最大值的可行解为(A. (0,1)B・(一1, -1)C・(1,0) D.解析:选C 可以验证这四个点均是可行解,当x=0f v= 1时,z= - 1;当x= - 1, y=-】时,z=0;当x=l, >=0 时,z=l;当x=;, *=;时,z=0.排除选项A, B, D,故选C.r^+ i,2.已知变量x, v满足约束条件则z=x+2v的最小值为() lx+ 1 >0,A. 3B. 1C. -5D. -6解析:选c由约束条件作出可行域如图:1 Z Z由z=x+2y得y= -]火+云]的几何意义为直线在V轴上的截1 z距,当直线y= "2%+2过直线乂=一 1和x—v= 1的交点4( 一、一2)时,z最小,最小值为-5,故选C.3. 已知实数/、*满足2*,贝ij目标函数z=x-2y的最U<3,小值.解析:不等式组表示的平面区域如下图中阴影部分所示.目标函数可化为:乙作直线及其平行线,知当此直线经过点 /时,-的值最大,即z的值最小.又/点坐标为(3,6),所以z的最小值为3-2x6=-9.答案:-9x+y<4,{点O为坐标原点,那么| PO\的最小值Q1 ,等于,最大值等于解析:点RX,刃满足的可行域为MBC区域,4(1,1),。
1,3).由图可得,|户。
|景小值资料. ...=|4。
|=滋;\PO\景大值= |。
|=廖x+ y>3解:作出不等式组的可行域,如图所示.I2x-3y<3r+y=3 j画出直线G : x+2*=0,平移直线6到直线/的位置,使/过可行 域内某点,旦可行域内其他点都在/的不包含直线6的另外一侧,该' 点到直线4的距离最小,则这一点使z=x+2y 取最小值.'显然,点4满足上述条件,(x+y=3(]2 3)解[2“3y=3得点4京亦12 3 18・."缺小值=亏+ 2乂吕=亏・5 .已知x, v 满足约束条件[一+ y>32x — 3v<3求z=*+2*的最小值.。