江苏省淮安市2016-2017学年高一下学期期末考试数学试题 ( word版含答案)
- 格式:doc
- 大小:505.06 KB
- 文档页数:8
2015-2016学年江苏省淮安市高一(下)期末数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={0,1},B={a},A∪B={0,1,2},则实数a=.2.(5分)函数f(x)=sin(2x+)的最小正周期为.3.(5分)已知角α的终边过点P(4,﹣3),则sinα的值是.4.(5分)数据1,2,3,3,6的方差为.5.(5分)某程序框图如图所示,该程序运行后输出的k的值是.6.(5分)一个骰子(六个面分别标有1,2,3,4,5,6的玩具)连续掷2次,向上点数和为3的概率.7.(5分)已知等差数列{a n}的前n项和为S n,若a1=1,S4=10,则S6=.8.(5分)已知实数x,y满足条件,则3x+y的最大值为.9.(5分)在△ABC中,若a,b,c分别是角A,B,C所对的边,a2+b2﹣c2+ab=0,则角C=.10.(5分)已知函数y=3sin(2x+),x∈[0,]的单调增区间为[0,m],则实数m的值为.11.(5分)在△ABC中,已知,若,λ,u∈R,则λu=.12.(5分)已知函数f(x),g(x)分别是定义域为R奇函数和偶函数,且f(x)﹣g(x)=2x﹣3x+1,则f(2)+g(2)=.13.(5分)在△ABC中,若a,b,c分别是角A,B,C所对的边,已知abcosC=accosB+bccosA,则sinC•(+)的最小值为.14.(5分)已知a,b是函数f(x)=x2﹣mx+n(m>0,n>0)的两个不同的零点,且a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则m+n=.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知等比数列{a n}的前n项和为S n,且公比q>1,若a2=2,S3=7.(1)求通项公式a n及S n;(2)求a12+a22+…+a n2的值.16.(14分)某高级中学共有学生4000名,各年级男、女生人数如表:已知在全校学生中随机抽取1名,抽到高一年级女生的概率是0.15.(1)求高一女生人数x和高二学生总数;(2)现用分层抽样的方法在全校抽取200名学生,问应在高二年级抽取多少名?(3)已知y≥705,z≥705,求高二年级中男生比女生多的概率.17.(14分)已知sin(﹣α)+sinα=,cosβ=且α,β∈(0,π),(1)求α的值;(2)求cos(α+2β)的值.18.(16分)某工程队在南海海域进行填海造地工程,欲在边长为1千米的正三角形岛礁ABC的外围选择一点D(D在平面ABC内),建设一条军用飞机跑道AD,在点D测得B、C两点的视角∠BDC=60°,如图所示,记∠CBD=θ,如何设计θ,使得飞机跑道AD最长?19.(16分)已知函数f(x)=x2+(3﹣a)x+2+2a+b,a,b∈R.(1)若关于x的不等式f(x)>0的解集为{x|x<﹣4或x>2},求实数a,b 的值;(2)若关于x的不等式f(x)≤b在x∈[1,3]上有解,求实数a的取值范围;(3)若关于x的不等式f(x)<12+b的解集中恰有3个整数,求实数a的取值范围.20.(16分)数列{a n}满足:a1•a2+a2•a3+a3•a4+…+a n•a n+1=,且a1=1,a2=2,a3=3.(1)求A,B值;(2)证明:{a n}是等差数列;(3)已知b n=2an,若满足a i<m,b j<m,且存在a i,b j使得a i+b j=m成立的所有a i,b j之和记为S(m),则当n≥2,n∈N*时,求S(22)+S(23)+S(24)+…+S (2n).2015-2016学年江苏省淮安市高一(下)期末数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.不需写出解答过程,请把答案直接填写在答题卡相应位置上.1.(5分)已知集合A={0,1},B={a},A∪B={0,1,2},则实数a=2.【解答】解:∵A={0,1},B={a},A∪B={0,1,2},∴a=2,故答案为:22.(5分)函数f(x)=sin(2x+)的最小正周期为π.【解答】解:∵函数中,振幅A=1,初相φ=,且ω=2∴函数的最小正周期为T==π故答案为:π3.(5分)已知角α的终边过点P(4,﹣3),则sinα的值是﹣.【解答】解:由题意可得,x=4,y=﹣3,r=|OP|=5,∴sinα==﹣,故答案为:﹣.4.(5分)数据1,2,3,3,6的方差为.【解答】解:数据1,2,3,3,6的平均数==3,∴数据1,2,3,3,6的方差:S2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(6﹣3)2]=.故答案为:.5.(5分)某程序框图如图所示,该程序运行后输出的k的值是7.【解答】解:如图,这个循环结构是当型循环结构,第一次循环:S=100﹣20=99,k=1;第二次循环:S=99﹣2=97,k=2;第三次循环:S=97﹣22=93,k=3;第四次循环:S=93﹣23=85,k=4;第五次循环:S=85﹣24=69,k=5;第六次循环:S=69﹣25=37,k=6;第七次循环:S=37﹣26=﹣27,k=7.∵S=﹣27<0,∴输出k=7.故答案为:7.6.(5分)一个骰子(六个面分别标有1,2,3,4,5,6的玩具)连续掷2次,向上点数和为3的概率.【解答】解:一个骰子(六个面分别标有1,2,3,4,5,6的玩具)连续掷2次,基本事件总数n=6×6=36,向上点数和为3包含的基本事件有(1,2),(2,1),共有m=2个,∴向上点数和为3的概率p=.故答案为:.7.(5分)已知等差数列{a n}的前n项和为S n,若a1=1,S4=10,则S6=21.【解答】解:∵等差数列{a n}的前n项和为S n,a1=1,S4=10,∴,解得d=1,∴=21.故答案为:21.8.(5分)已知实数x,y满足条件,则3x+y的最大值为4.【解答】解:作出不等式对应的平面区域如图,设z=3x+y,得y=﹣3x+z,平移直线y=﹣3x+z,由图象可知当直线y=﹣3x+z,经过点A时,直线y=﹣3x+z 的截距最大,此时z最大.由得.即A(1,1),此时z的最大值为z=3×1+1=4,故答案为:4;9.(5分)在△ABC中,若a,b,c分别是角A,B,C所对的边,a2+b2﹣c2+ab=0,则角C=.【解答】解:△ABC中,若a,b,c分别是角A,B,C所对的边,a2+b2﹣c2+ab=0,则cosC==﹣,∴C=,故答案为:.10.(5分)已知函数y=3sin(2x+),x∈[0,]的单调增区间为[0,m],则实数m的值为.【解答】解:当x∈[0,]时,2x∈[0,π],2x+∈[,],由函数y=3sin(2x+),x∈[0,]的单调增区间为[0,m],所以2m+=,解得m=.故答案为:.11.(5分)在△ABC中,已知,若,λ,u∈R,则λu=﹣2.【解答】解:由题意可知D在CB的延长线上,=+,∵=+,,∴=,∴=+2=+2(﹣),=2﹣,∴μ=2,λ=﹣1,λu=﹣2,故答案为:﹣2.12.(5分)已知函数f(x),g(x)分别是定义域为R奇函数和偶函数,且f(x)﹣g(x)=2x﹣3x+1,则f(2)+g(2)=.【解答】解:∵函数f(x),g(x)分别是定义域为R奇函数和偶函数,且f(x)﹣g(x)=2x﹣3x+1,∴f(﹣2)﹣g(﹣2)=2﹣2﹣3×(﹣2)+1=+6+1=,即﹣f(2)﹣g(2)=,则f(2)+g(2)=﹣,故答案为:;13.(5分)在△ABC中,若a,b,c分别是角A,B,C所对的边,已知abcosC=accosB+bccosA,则sinC•(+)的最小值为.【解答】解:在△ABC中,∵已知abcosC=accosB+bccosA,∴由余弦定理可得=+,即3c2=a2+b2≥2ab,即c2≥ab,当且仅当a=b时,取等号.则sinC•(+)=+===≥,即sinC•(+)的最小值为,故答案为:.14.(5分)已知a,b是函数f(x)=x2﹣mx+n(m>0,n>0)的两个不同的零点,且a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则m+n=26.【解答】解:∵a,b是函数f(x)=x2﹣mx+n(m>0,n>0)的两个不同的零点,∴a+b=m,ab=n,且△=m2﹣4n>0;不妨设a<b,由于a,b,﹣4这三个数可适当排序后成等差数列,也可适当排序后成等比数列,∴﹣4,a,b或b,a,﹣4成等差数列,a,﹣4,b或b,﹣4,a成等比数列,∴b﹣4=2a,ab=(﹣4)2,解得a=2,b=8.∴m=10,n=16,满足△≥0;则m+n=26.故答案为:26.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知等比数列{a n}的前n项和为S n,且公比q>1,若a2=2,S3=7.(1)求通项公式a n及S n;(2)求a12+a22+…+a n2的值.【解答】解:(1)∵a2=2.S3=7,由,解得,又∵q>1,∴q=2,故a1=1,所以.(2)∵,∴,∴.16.(14分)某高级中学共有学生4000名,各年级男、女生人数如表:已知在全校学生中随机抽取1名,抽到高一年级女生的概率是0.15.(1)求高一女生人数x和高二学生总数;(2)现用分层抽样的方法在全校抽取200名学生,问应在高二年级抽取多少名?(3)已知y≥705,z≥705,求高二年级中男生比女生多的概率.【解答】解:(1)因为,所以x=600.…(4分)高二年级人数为y+z=4000﹣(600+680+642+658)=1420人.…(6分)(2)现用分层抽样的方法在全校抽取200名学生,应在高二年级抽取的人数为:名.…(10分)(3)由(2)知y+z=1420,且y≥705,z≥705,y,z∈N,则女生、男生数的可能组合为:共有11种,其中男生比女生多的共有5种,…(12分)则男生比女生多的概率.…(14分)17.(14分)已知sin(﹣α)+sinα=,cosβ=且α,β∈(0,π),(1)求α的值;(2)求cos(α+2β)的值.【解答】(本题满分为14分)解:(1)因为:,…(4分)因为:α∈(0,π),所以:,所以:,所以:.…(8分)(2)因为:,所以:,所以:,所以:.…(14分)18.(16分)某工程队在南海海域进行填海造地工程,欲在边长为1千米的正三角形岛礁ABC的外围选择一点D(D在平面ABC内),建设一条军用飞机跑道AD,在点D测得B、C两点的视角∠BDC=60°,如图所示,记∠CBD=θ,如何设计θ,使得飞机跑道AD最长?【解答】解:在△BCD中,BC=1,∠BDC=60°,∠CBD=θ,由正弦定理知,所以,…(4分)在△ABD中,AB=1,∠ABD=60°+θ,由余弦定理知AD2=AB2+BD2﹣2AB•BD•cos (60°+θ),…(8分)AD2===…(14分)当2θ﹣30°=90°,θ=60°时,跑道AD最长.…(16分)19.(16分)已知函数f(x)=x2+(3﹣a)x+2+2a+b,a,b∈R.(1)若关于x的不等式f(x)>0的解集为{x|x<﹣4或x>2},求实数a,b 的值;(2)若关于x的不等式f(x)≤b在x∈[1,3]上有解,求实数a的取值范围;(3)若关于x的不等式f(x)<12+b的解集中恰有3个整数,求实数a的取值范围.【解答】解:(1)因为函数f(x)=x2+(3﹣a)x+2+2a+b,a,b∈R,又f(x)>0的解集为{x|x<﹣4或x>2},所以﹣4,2方程x2+(3﹣a)x+2+2a+b=0的两根,由,解得a=1,b=﹣12;…(3分)(2)因为函数f(x)=x2+(3﹣a)x+2+2a+b,a,b∈R,由f(x)≤b在x∈[1,3]上有解,知x2+(3﹣a)x+2+2a≤0在x∈[1,3]上有解,令g(x)=x2+(3﹣a)x+2+2a,则在x∈[1,3]上,g(x)min≤0;①,即得a≤﹣6;…(5分)②,即;有,解得a∈∅;…(7分)③,即,解得a≥20;…(9分)综上,由①②③知,实数a的取值范围是a≤﹣6或a≥20.…(10分)【注:由x2+(3﹣a)x+2+2a≤0得(x﹣2)a≥x2+3x+2,然后分离出a,进行求解,则参照给分】(3)由f(x)<12+b得x2+(3﹣a)x+2a﹣10<0,令h(x)=x2+(3﹣a)x+2a ﹣10,则h(x)=(x﹣2)[x﹣(a﹣5)],知h(2)=0,故h(x)<0解集中的3个整数只能是3,4,5或﹣1,0,1;…(11分)①若解集中的3个整数是3,4,5,则5<a﹣5≤6,得10<a≤11;…(13分)②解集中的3个整数是﹣1,0,1;则﹣2≤a﹣5<﹣1,得3≤a<4;…(15分)综上,由①②知,实数a的取值范围为3≤a<4或10<a≤11.…(16分)20.(16分)数列{a n}满足:a1•a2+a2•a3+a3•a4+…+a n•a n+1=,且a1=1,a2=2,a3=3.(1)求A,B值;(2)证明:{a n}是等差数列;(3)已知b n=2an,若满足a i<m,b j<m,且存在a i,b j使得a i+b j=m成立的所有a i,b j之和记为S(m),则当n≥2,n∈N*时,求S(22)+S(23)+S(24)+…+S (2n).【解答】(1)解:∵,∴A=1,B=3.(2)证明:∵,∴,两式相减得a n a n+1=n(n+1)(n≥2),则a n+1a n+2=(n+1)(n+2),两式相除得,∴n为偶数时,,n为奇数时,,∴a n=n(n≥4),又a1=1,a2=2,a3=3,∴a n=n,∴数列{a n}成等差数列.(3)解:∵a n=n,∴,当时,∵为偶数,则,∴使得成立的所有a i,b j之和S(2n)=(n﹣1)•2n,令T=S(22)+S(23)+S(24)+…+S(2n),则T=22+2×23+3×24+4×25+…+(n﹣1)×2n,(1)2T=23+2×24+3×25+…+(n﹣2)×2n+(n﹣1)×2n+1,(2)(1)﹣(2):﹣T=22+23+24+…+2n﹣(n﹣1)×2n+1==﹣4﹣(n﹣2)•2n+1,∴T=S(22)+S(23)+S(24)+…+S(2n)=(n﹣2)•2n+1+4.。
2016-2017学年某某省某某市高一(下)期末数学试卷一、一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡卡的相应位置填涂.1.直线x+=0的倾斜角为()A.60° B.90° C.120°D.不存在2.函数y=2sin(x﹣)的一条对称轴是()A.x=B.x=C.x=D.x=2π3.已知直线l过点P(2,﹣1),且与直线2x+y﹣l=0互相垂直,则直线l的方程为()A.x﹣2y=0 B.x﹣2y﹣4=0 C.2x+y﹣3=0 D.2x﹣y﹣5=04.sin 110° cos40°﹣cos70°•sin40°=()A.B.C.﹣ D.﹣5.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45° C.60° D.90°6.要得到函数y=sin2x+cos2x﹣的图象,只需将y=sinx图象上所有的点()A.横坐标变为原来的一半,纵坐标不变,再向左平移个单位B.横坐标变为原来的两倍,纵坐标不变,再向左平移个单位C.向左平移个单位,再将所得各点的横坐标变为原来的两倍,纵坐标不变D.向左平移个单位,再将所得各点的横坐标变为原来的一半,纵坐标不变7.如图,在△ABC中,∠BAC=90°,AB=AC=2,E是边BC的中点,D是边AC上一动点,则•的取值X围是()A.[0,2] B.[﹣2,0] C.[0,2] D.[﹣2,0]8.已知α,β为两个不同平面,m,n为两条不同直线,以下说法正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m∥n,n⊂α,则m∥αC.若α丄β,α∩β=m,n⊥m,n∥α,则n⊥βD.若m丄n,m∥α,则n⊥α9.已知A﹣BCD为正四面体,则其侧面与底面所成角的余弦值为()A.B.C.2 D.10.某几何体的三视图如图所示,则该几何体的表面积为()A. +6 B. +7 C.π+12 D.2π+611.己知圆C:x2+y2=4,直线l:x+y=b(b∈R),若圆C上到直线l的距离为1的点的个数为S,则S的可能取值共有()A.2种B.3种C.4种D.5种12.f(x)为定义在R上的奇函数,其图象关于直线x=对称,且当x∈[0,]时,f (x)=tan x,则方程5πf(x)﹣4x=0解的个数是()A.7 B.5 C.4 D.3二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置13.已知向量的夹角为,且||=3,||=,则||=.14.已知角α的终边过点P(3,4),则=.15.圆C1:x2+y2﹣9=0与圆C2:x2+y2﹣6x+8y+9=0的公共弦的长为.16.南北朝时代的伟大科学家祖暅提出体积计算原理:“幂势既同,则积不容异“意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.图1中阴影部分是由曲线y=、直线x=4以及x轴所围成的平面图形Ω,将图形Ω绕y轴旋转一周,得几何体Γ.根据祖暅原理,从下列阴影部分的平面图形绕y轴旋转一周所得的旋转体中选一个求得Γ的体积为三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或演算步骤.17.已知点 O(0,0),A(2,1),B(﹣2,4),向量=+λ.(I )若点M在第二象限,某某数λ的取值X围(II)若λ=1,判断四边形OAMB的形状,并加以证明.18.己知O为坐标原点,倾斜角为的直线l与x,y轴的正半轴分别相交于点A,B,△AOB的面积为8.(I )求直线l的方程;(II)直线l′过点O且与l平行,点P在l′上,求|PA|+|PB|的最小值.19.已知向量=(cos,2sin﹣cos),=(﹣1,1),f(x)=(I )求函数f(x)的单调递增区间;(II)若f(2α)=,求的值.20.如图,已知AB是⊙O的直径,C是⊙O上异于A,B的点,VC垂直于⊙O所在的平面,且AB=4,VC=3.(Ⅰ)若点D在△VCB内,且DO∥面VAC,作出点D的轨迹,说明作法及理由;(Ⅱ)求三棱锥V﹣ABC体积的最大值,并求取到最大值时,直线AB与平面VAC所成角的大小.21.己知圆C过点(,1),且与直线x=﹣2相切于点(﹣2,0),P是圆C上一动点,A,B为圆C与y轴的两个交点(点A在B上方),直线PA,PB分别与直线y=﹣3相交于点 M,N.(1 )求圆C的方程:(II)求证:在x轴上必存在一个定点Q,使的值为常数,并求出这个常数.22.某工厂有甲、乙两生产车间,其污水瞬时排放量y(单位:m3/h )关于时间t(单位:h)的关系均近似地满足函数y=Asin(ωt+φ)+b(A>0,ω>0,0<φ<π),其图象如下:(Ⅰ)根据图象求函数解析式;(II)由于受工厂污水处理能力的影响,环保部门要求该厂两车间任意时刻的污水排放量之和不超过5m3/h,若甲车间先投产,为满足环保要求,乙车间比甲车间至少需推迟多少小时投产?2016-2017学年某某省某某市高一(下)期末数学试卷参考答案与试题解析一、一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡卡的相应位置填涂.1.直线x+=0的倾斜角为()A.60° B.90° C.120°D.不存在【考点】I2:直线的倾斜角.【分析】利用直线的倾斜角与斜率的关系即可得出.【解答】解:∵直线x+=0的斜率不存在,∴倾斜角为,即为90°.故选:B.2.函数y=2sin(x﹣)的一条对称轴是()A.x=B.x=C.x=D.x=2π【考点】H6:正弦函数的对称性.【分析】由题意利用正弦函数的图象的对称性,求出函数y=2sin(x﹣)的一条对称轴.【解答】解:对于函数y=2sin(x﹣),令x﹣=kπ+,求得x=kπ+,k∈Z,可得它的图象的对称轴为x=kπ+,k∈Z,令k=0,可得它的一条对称轴是x=,故选:C.3.已知直线l过点P(2,﹣1),且与直线2x+y﹣l=0互相垂直,则直线l的方程为()A.x﹣2y=0 B.x﹣2y﹣4=0 C.2x+y﹣3=0 D.2x﹣y﹣5=0【考点】IJ:直线的一般式方程与直线的垂直关系.【分析】根据题意设出直线l的方程,把点P(2,﹣1)代入方程求出直线l的方程.【解答】解:根据直线l与直线2x+y﹣l=0互相垂直,设直线l为x﹣2y+m=0,又l过点P(2,﹣1),∴2﹣2×(﹣1)+m=0,解得m=﹣4,∴直线l的方程为x﹣2y﹣4=0.故选:B.4.sin 110° cos40°﹣cos70°•sin40°=()A.B.C.﹣ D.﹣【考点】GQ:两角和与差的正弦函数.【分析】利用诱导公式以及两角和的正弦函数化简求解即可.【解答】解:sin 110° cos40°﹣cos70°•sin40°=sin 70° cos40°﹣cos70°•sin40°=sin (70°﹣40°)=sin30°=.故选:A.5.如图是正方体的平面展开图,则在这个正方体中,AM与BN所成角的大小为()A.0°B.45° C.60° D.90°【考点】LM:异面直线及其所成的角.【分析】把正方体的平面展开图还原成正方体ADNE﹣CMFB,由此能求出AM与BN所成角的大小.【解答】解:如图,把正方体的平面展开图还原成正方体ADNE﹣CMFB,∵CD∥BN,CD⊥AM,∴AM⊥BN,∴在这个正方体中,AM与BN所成角的大小为90°.故选:D.6.要得到函数y=sin2x+cos2x﹣的图象,只需将y=sinx图象上所有的点()A.横坐标变为原来的一半,纵坐标不变,再向左平移个单位B.横坐标变为原来的两倍,纵坐标不变,再向左平移个单位C.向左平移个单位,再将所得各点的横坐标变为原来的两倍,纵坐标不变D.向左平移个单位,再将所得各点的横坐标变为原来的一半,纵坐标不变【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【分析】利用三角恒等变换化简原函数的解析式,再利用函数y=Asin(ωx+φ)的图象变换规律,求得平移后所得函数的解析式.【解答】解:∵函数y=sin2x+cos2x﹣=sin2x+cos2x=sin(2x+),故只需将y=sinx图象上所有的点向左平移个单位,可得y=sin(x+)的图象;再将所得各点的横坐标变为原来的一半,纵坐标不变,可得y=sin(2x+)的图象,故选:D.7.如图,在△ABC中,∠BAC=90°,AB=AC=2,E是边BC的中点,D是边AC上一动点,则•的取值X围是()A.[0,2] B.[﹣2,0] C.[0,2] D.[﹣2,0]【考点】9R:平面向量数量积的运算.【分析】根据题意建立平面直角坐标系,利用坐标表示向量、,再求出数量积•的取值X围.【解答】解:根据题意,建立平面直角坐标系如图所示;则A(0,0),B(2,0),C(0,2),E(1,1),设D(0,y),则0≤y≤2;∴=(1,1),=(﹣2,y),∴•=1×(﹣2)+y=y﹣2;由y∈[0,2],得y﹣2∈[﹣2,0],∴的取值X围是[﹣2,0].故选:B.8.已知α,β为两个不同平面,m,n为两条不同直线,以下说法正确的是()A.若α∥β,m⊂α,n⊂β,则m∥nB.若m∥n,n⊂α,则m∥αC.若α丄β,α∩β=m,n⊥m,n∥α,则n⊥βD.若m丄n,m∥α,则n⊥α【考点】LO:空间中直线与直线之间的位置关系;LP:空间中直线与平面之间的位置关系.【分析】利用面面平行,面面垂直以及线面平行线面垂直的性质定理和判定定理对选项分析选择.【解答】解:对于A,若α∥β,m⊂α,n⊂β,则m∥n或者异面;故A错误;对于B,若m∥n,n⊂α,则m∥α或者m⊂α;故B 错误;对于C,若α丄β,α∩β=m,n⊥m,n∥α,根据面面垂直的性质以及线面平行的性质定理可判断n⊥β;故C正确;对于D,若m丄n,m∥α,则n与α位置关系不确定;故D错误;故选C.9.已知A﹣BCD为正四面体,则其侧面与底面所成角的余弦值为()A.B.C.2 D.【考点】MT:二面角的平面角及求法.【分析】由已知中正四面体的所有面都是等边三角形,取CD的中点E,连接AE,BE,由等腰三角形“三线合一”的性质,易得∠AEB即为侧面与底面所成二面角的平面角,解三角形ABE即可得到正四面体侧面与底面所成二面角的余弦值.【解答】解:不妨设正四面体为A﹣BCD,取CD的中点E,连接AE,BE,设四面体的棱长为2,则AE=BE=且AE⊥CD,BE⊥CD,则∠AEB即为侧面与底面所成二面角的平面角.在△ABE中,cos∠AEB=,故正四面体侧面与底面所成二面角的余弦值是.故选A.10.某几何体的三视图如图所示,则该几何体的表面积为()A. +6 B. +7 C.π+12 D.2π+6【考点】L!:由三视图求面积、体积.【分析】根据三视图,可得该几何体是由长方体和半圆柱组合而成,根据数据即可计算.【解答】解:根据三视图,可得该几何体是由长方体和半圆柱组合而成,长方体的棱长分别为1,2,1;圆柱的底面半径为1,高为1,则该几何体的表面积为s=(1+1+2)×1+1×2×2+2×2+=π+12故选:C11.己知圆C:x2+y2=4,直线l:x+y=b(b∈R),若圆C上到直线l的距离为1的点的个数为S,则S的可能取值共有()A.2种B.3种C.4种D.5种【考点】J8:直线与圆相交的性质.【分析】设圆心O到直线的距离为d,结合图形可得:圆C上到直线l的距离为1的点的个数为0,1,2,3,4,则S的可能取值共有5种.【解答】解:设圆心O到直线的距离为d,结合图形可得:当d>3时,若圆C上到直线l的距离为1的点的个数为0,当d=3时,若圆C上到直线l的距离为1的点的个数为1,当1<d<3时,若圆C上到直线l的距离为1的点的个数为2,当d=1时,若圆C上到直线l的距离为1的点的个数为3,当d<1时,若圆C上到直线l的距离为1的点的个数为4,∴圆C上到直线l的距离为1的点的个数为S,则S的可能取值共有5种.故选:D12.f(x)为定义在R上的奇函数,其图象关于直线x=对称,且当x∈[0,]时,f (x)=tan x,则方程5πf(x)﹣4x=0解的个数是()A.7 B.5 C.4 D.3【考点】54:根的存在性及根的个数判断.【分析】利用已知条件画出y=f(x)与y=的图象,即可得到方程解的个数.【解答】解:f(x)为定义在R上的奇函数,其图象关于直线x=对称,且当x∈[0,]时,f(x)=tan x,方程5πf(x)﹣4x=0解的个数,就是f(x)=解的个数,在坐标系中画出y=f(x)与y=的图象,如图:两个函数的图象有5个交点,所以方程5πf(x)﹣4x=0解的个数是:5.故选:B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置13.已知向量的夹角为,且||=3,||=,则||= 2 .【考点】9R:平面向量数量积的运算.【分析】根据题意,设||=t,(t>0),由向量数量积的运算公式可得|+|2=(+)2=9+t2+2•=9+t2+3t=19,化简可得t2+3t﹣10=0,解可得t的值,即可得答案.【解答】解:根据题意,设||=t,(t>0)若||=3,||=,向量的夹角为,则有|+|2=(+)2=9+t2+2•=9+t2+3t=19,即t2+3t﹣10=0,解可得t=2或t=﹣5(舍),则||=2;故答案为:2.14.已知角α的终边过点P(3,4),则= ﹣.【考点】GO:运用诱导公式化简求值;G9:任意角的三角函数的定义.【分析】由题意可得x,y,r,由任意角的三角函数的定义可得sinα,利用诱导公式化简所求求得结果.【解答】解:∵由题意可得x=3,y=4,r=5,由任意角的三角函数的定义可得sinα==,∴=﹣sinα=﹣.故答案为:﹣.15.圆C1:x2+y2﹣9=0与圆C2:x2+y2﹣6x+8y+9=0的公共弦的长为.【考点】JA:圆与圆的位置关系及其判定.【分析】两圆方程相减求出公共弦所在直线的解析式,求出第一个圆心到求出直线的距离,再由第一个圆的半径,利用勾股定理及垂径定理即可求出公共弦长.【解答】解:圆C1:x2+y2﹣9=0与圆C2:x2+y2﹣6x+8y+9=0得:6x﹣8y﹣18=0,即3x﹣4y ﹣9=0∵圆心(0,0)到直线3x﹣4y﹣9=0的距离d==,r=3,则公共弦长为2=2=.故答案为:.16.南北朝时代的伟大科学家祖暅提出体积计算原理:“幂势既同,则积不容异“意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.图1中阴影部分是由曲线y=、直线x=4以及x轴所围成的平面图形Ω,将图形Ω绕y轴旋转一周,得几何体Γ.根据祖暅原理,从下列阴影部分的平面图形绕y轴旋转一周所得的旋转体中选一个求得Γ的体积为32π【考点】F4:进行简单的合情推理.【分析】由题意可得旋转体夹在两相距为8的平行平面之间,用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,求出所得截面的面积相等,利用祖暅原理知,两个几何体体积相等.【解答】解:如图,两图形绕y轴旋转所得的旋转体夹在两相距为8的平行平面之间,用任意一个与y轴垂直的平面截这两个旋转体,设截面与原点距离为|y|,所得截面面积S=π(42﹣4|y|),S1=π(42﹣y2)﹣π[4﹣(2﹣|y|)2]=π(42﹣4|y|)∴S1=S,由祖暅原理知,两个几何体体积相等,∵Γ1=××(43﹣23﹣23)=×48=32π,∴Γ=32π.故答案为:32π.三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或演算步骤.17.已知点 O(0,0),A(2,1),B(﹣2,4),向量=+λ.(I )若点M在第二象限,某某数λ的取值X围(II)若λ=1,判断四边形OAMB的形状,并加以证明.【考点】9H:平面向量的基本定理及其意义.【分析】(Ⅰ)设M(x,y),由=+λ得(x,y)=(2,1)+λ(﹣2,4),即M(2﹣2λ,1+4λ)又,⇒λ>1(Ⅱ)当λ=1时,O(0,0),A(2,1),M(0,5),B(﹣2,4)可得OB∥AM且OB=AM,又,OB⊥OA,OA∴≠OB,四边形OAMB是矩形.【解答】解:(Ⅰ)设M(x,y),由已知得,由=+λ得(x,y)=(2,1)+λ(﹣2,4)⇒x=2﹣2λ,y=1+4λ即M(2﹣2λ,1+4λ)又∵点M在第二象限,∴,⇒λ>1;(Ⅱ)当λ=1时,O(0,0),A(2,1),M(0,5),B(﹣2,4)∴,OB∥AM且OB=AM∴四边形OAMB是平行四边形.又,∴OB⊥OA∵,OB=2,四边形OAMB是矩形.18.己知O为坐标原点,倾斜角为的直线l与x,y轴的正半轴分别相交于点A,B,△AOB的面积为8.(I )求直线l的方程;(II)直线l′过点O且与l平行,点P在l′上,求|PA|+|PB|的最小值.【考点】IG:直线的一般式方程.(I)由题意可得:直线l的斜率k=tan=﹣,设直线l的方程为:y=﹣x+b.可【分析】得直线l与坐标轴的正半轴交点为A,B(0,b),其中b>0.可得S△OAB=b ×b=8,解得b即可得出.(II)由(I)可得:A(4,0),B(0,4).直线l′的方程为:y=﹣x.设点A关于直线l′的对称点A′(m,n),则,解得A′(﹣2,﹣2).|PA|+|PB|=|PA′|+|PB′|,当A′,B,P三点共线时,|PA|+|PB|取得最小值.即可得出.【解答】解:(I)由题意可得:直线l的斜率k=tan=﹣,设直线l的方程为:y=﹣x+b.可得直线l与坐标轴的正半轴交点为A,B(0,b),其中b>0.∴S△OAB=b×b=8,解得b=4.∴直线l的方程为:y=﹣x+4.(II)由(I)可得:A(4,0),B(0,4).直线l′的方程为:y=﹣x.设点A关于直线l′的对称点A′(m,n),则,解得,∴A′(﹣2,﹣2).∵|PA|+|PB|=|PA′|+|PB′|,∴当A′,B,P三点共线时,|PA|+|PB|取得最小值.∴(|PA|+|PB|)min=|A′B|=4.19.已知向量=(cos,2sin﹣cos),=(﹣1,1),f(x)=(I )求函数f(x)的单调递增区间;(II)若f(2α)=,求的值.【考点】GI:三角函数的化简求值;GL:三角函数中的恒等变换应用;H5:正弦函数的单调性.【分析】(I )根据向量的乘积运算求出f(x)的解析式,化简,根据三角函数性质即可求函数f(x)的单调递增区间(II)根据f(x)的解析式把x=2a带入,即f(2α)=,切化弦即可得答案.【解答】解:(I )向量=(cos,2sin﹣cos),=(﹣1,1),f(x)==2sin﹣cos﹣cos=2(sin﹣cos)=2sin()由2kπ≤≤,k∈Z.解得:4kπ≤x≤4kπ,k∈Z.∴函数f(x)的单调递增区间为[4kπ,4kπ],k∈Z.(II)由(I )可得f(x)=2sin()∵f(2α)=,即2sin()=∴sin()=,那么===(cosα﹣sinα)2=2sin2()=2×=.20.如图,已知AB是⊙O的直径,C是⊙O上异于A,B的点,VC垂直于⊙O所在的平面,且AB=4,VC=3.(Ⅰ)若点D在△VCB内,且DO∥面VAC,作出点D的轨迹,说明作法及理由;(Ⅱ)求三棱锥V﹣ABC体积的最大值,并求取到最大值时,直线AB与平面VAC所成角的大小.【考点】MI:直线与平面所成的角;J3:轨迹方程.【分析】(Ⅰ)取VB,CB的中点,分别记为E,F,连结E,F,由E,F分别为VB、CB的中点,得EF∥VC,从而DO∥面VAC,由此得到D点轨迹是EF.(Ⅱ)设d为点C到直线AB的距离,由VC⊥面ABC,得到d=2,即C是的中点时,(V V﹣)max=4,此时VC⊥BC,AC⊥BC,从而BC⊥面VAC,进而∠CAB是直线AB与面VAC所成的ABC角,由此能求出三棱锥V﹣ABC体积取到最大值时,直线AB与平面VAC所成角为45°.【解答】解:(Ⅰ)取VB,CB的中点,分别记为E,F,连结E,F,则线段EF即为点D的轨迹,如图所示.理由如下:∵E,F分别为VB、CB的中点,∴EF∥VC,又EF⊄面VAC,VC⊂面VAC,又D∈EF,OD⊂面EOF,∴DO∥面VAC,∴D点轨迹是EF.(Ⅱ)设d为点C到直线AB的距离,∵VC⊥面ABC,∴==,∵d∈(0,2],∴当d=2,即C是的中点时,(V V﹣ABC)max=4,∵VC⊥面ABC,BC⊂面ABC,∴VC⊥BC,∵AB是⊙O的直径,点C在⊙O上,∴AC⊥BC,∵AC∩VC=C,∴BC⊥面VAC,∴AC是AB在面VAC上的射影,∴∠CAB是直线AB与面VAC所成的角,∵C是的中点,∴CA=CB,∴∠CAB=45°,∴三棱锥V﹣ABC体积取到最大值时,直线AB与平面VAC所成角为45°.21.己知圆C过点(,1),且与直线x=﹣2相切于点(﹣2,0),P是圆C上一动点,A,B为圆C与y轴的两个交点(点A在B上方),直线PA,PB分别与直线y=﹣3相交于点 M,N.(1 )求圆C的方程:(II)求证:在x轴上必存在一个定点Q,使的值为常数,并求出这个常数.【考点】9R:平面向量数量积的运算;J1:圆的标准方程.【分析】(Ⅰ)根据题意得出圆C的圆心在x轴上,设出圆C的标准方程,求出圆心与半径即可;(II)【解法一】由题意设出直线AP的方程,根据AP⊥BP写出直线BP的方程,求出M、N的坐标,设点Q的坐标,利用坐标表示、和数量积•,计算•为常数时,在x轴上存在一定点Q.【解法二】由题意设出点P的坐标,根据点P在圆C上,结合直线AP的方程求出点M、N的坐标;设出点Q的坐标,利用坐标表示出、,计算数量积•为常数时,在x轴上存在一定点Q.【解答】解:(Ⅰ)∵圆C与直线x=﹣2相切于点(﹣2,0),∴圆C的圆心在x轴上,设圆C的标准方程为(x﹣a)2+y2=r2(r>0),则,解得a=0,r=2;∴圆C的方程为x2+y2=4;(II)【解法一】证明:由(Ⅰ)得A(0,2),B(0,﹣2),又由已知可得直线AP的斜率存在且不为0,设直线AP的方程为y=kx+2(k≠0),∵AB是圆C的直径,∴AP⊥BP,∴直线BP的方程为y=﹣x﹣2,联立,解得;∴M(﹣,﹣3);同理可求N(k,﹣3);如图所示,设Q(t,0),则=(﹣﹣t,﹣3),=(k﹣t,﹣3);∴•=(﹣﹣t)(k﹣t)+(﹣3)×(﹣3)=t2+4+(﹣k)t,当t=0时,•=4为常数,与k无关,即在x轴上存在一定点Q(0,0),使的值为常数4.【解法二】证明:由(Ⅰ)得A(0,2),B(0,﹣2),设P(x0,y0),由已知得,点P在圆C上,且异于点A、B,∴x0≠0,y0≠2,且+=4;∴直线AP的方程为y=x+2,当y=﹣3时,x=﹣,∴点M的坐标为(﹣,﹣3),同理:点N的坐标为(﹣,﹣3);设Q(t,0),则=(﹣﹣t,﹣3),=(﹣﹣t,﹣3),∴•=(﹣﹣t)(﹣﹣t)+9=t2+(+)t+•+9=t2+(+)t+4;当t=0时,•=4为常数,与k无关,即在x轴上存在一定点Q(0,0),使的值为常数4.22.某工厂有甲、乙两生产车间,其污水瞬时排放量y(单位:m3/h )关于时间t(单位:h)的关系均近似地满足函数y=Asin(ωt+φ)+b(A>0,ω>0,0<φ<π),其图象如下:(Ⅰ)根据图象求函数解析式;(II)由于受工厂污水处理能力的影响,环保部门要求该厂两车间任意时刻的污水排放量之和不超过5m3/h,若甲车间先投产,为满足环保要求,乙车间比甲车间至少需推迟多少小时投产?【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)由图可得A,b,利用周期公式可求ω,将t=0,y=3,代入y=sin(t+φ)+2,结合X围0<φ<π,可求φ从而可求函数解析式.(II)设乙车间至少比甲车间推迟m小时投产,据题意得cos[(t+m)]+2+cos(t)+2≤5,化简可得﹣≤cos(m)≤,由m∈(0,6),可得X围2≤m≤4,即可得解.【解答】(本题满分为12分)解:(Ⅰ)由图可得:A=(3﹣1)=1,…1分b=(3+1)=2,…2分∵=6,∴ω=,…3分∴将t=0,y=3,代入y=sin(t+φ)+2,可得:sinφ=1,又∵0<φ<π,∴φ=,…5分∴y=sin(t+)+2=cos(t)+2,∴所求函数的解析式为y=cos(t)+2,(t≥0),…6分(注:解析式写成y=sin(t+)+2,或未写t≥0不扣分)(II)设乙车间至少比甲车间推迟m小时投产,…7分根据题意可得:cos[(t+m)]+2+cos(t)+2≤5,…8分∴cos(t)cos(m)﹣sin(t)sin(m)+cos(t)≤1,∴[1+cos(m)]cos(t)﹣sin(t)sin(m)≤1,∴≤1,∴≤1,可得:2|cos(m)|≤1,…11分∴﹣≤cos(m)≤,由m∈(0,6),可得:≤m≤,∴2≤m≤4,∴为满足环保要求,乙车间比甲车间至少需推迟2小时投产…12分。
淮安市淮海中学2013-2014学年度高一年级下学期期末学业质量调查测试数 学 试 卷 命题人:肖海峰 2014.7本试卷满分共160分;考试时间120分钟。
一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上. 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则A B ⋂= ▲ . 2.不等式01<-xx 的解集是 ▲ . 3.若角α的终边经过点(3,2)P ,则tan α的值为 ▲ .4.设抽测的树木的底部周长均在区间[80,130]上,株树木中,有 ▲ 株树木的底部周长小于100cm.5.右图是一个算法流程图,则输出的n 的值是 ▲ .6. 从1,2,3,6这4个数中一次随机地取2个数,则所取27.已知e 1,e 2是夹角为2π3的两个单位向量,a =e 1-2e 2,b =k e 1+e 2.若a ·b =0,则实数k 的值为 ▲ .8.若不等式042≥+-ax x 对任意的)3,0(∈x 都成立,则实数a 的取值范围是 ▲ .9.记等差数列}{n a 的前n 项和为n S .若),N ,2(0211*+-∈≥=-+m m a a a m m m 且,5812=-m S则=m ▲ .10. 若函数()||(2)f x x x =⋅+在区间(,21)a a +上单调递减,则实数a 的取值范围是 ▲ . 11.若,54)6cos(=+πα则)62sin(πα-的值是 ▲ . 12.等比数列{}n a 的公比12q =,前5项的和为3164.令12log n n b a =,数列11{}n n b b +的前n 项和为n T ,若n T c <对*n N ∈恒成立,则实数c 的最小值为 ▲ .13.定义在R 上的函数()f x 满足:(2)()1f x f x +⋅=当[1,1)x ∈-时,2()l o g (4),f x x =-则(2014)f = ▲ . 14.已知,11121,0,0=+++>>b b a b a 则b a +的最小值是 ▲ .100 80 90 110 (第4题)二、解答题:本大题共6小题,共90分.,解答时应写出文字说明、证明 过程或演算步骤. 15.(本小题满分14分)已知函数()2sin cos f x x x x =+,x R ∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间⎥⎦⎤⎢⎣⎡4,0π上的值域. 16.(本题满分14分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,且满足2cos cos cos b A c A a C =+. (1)求角A 的大小;(2)若b c +=,ABC ∆的面积S =,求a 的长.17.(本小题满分15分)如图,在△ABC 中,,1,4==AC AB ∠︒=60BAC . (1)求BC 的长和sin ACB ∠的值;(2)延长AB 到AC M ,到,N 连结.MN 若四边形BMNC 的面积为,33 求CN BM ·的最大值.18(本小题满分15分)已知函数()af x x b x=++,不等式()0xf x <的解集为(1,3). (1)求实数,a b 的值.(2)若关于x 的方程(2)20xxf k k --⋅-=有两个不相等的实数根,求实数k 的取值范围.19.(本题满分16分)如图,ABCD 是长方形海域,其中10AB =海里,AD =飞机在该海域失事,两艘海事搜救船在A 处同时出发,沿直线、AQ 向前联合搜索,且4PAQ π∠=(其中P 、Q 分别在边BC 、CD 上),搜索区域为平面四边形APCQ 围成的海平面.设PAB θ∠=,搜索区域的面积为S .(1)试建立S 与tan θ的关系式,并指出tan θ的取值范围; (2)求S 的最大值,并指出此时θ的值.20.(本小题满分16分)QPDCBANABC(第17题图)在数列}{n a 中,n S 为其前n 项和.已知).N (214*∈+=n S a n n (1)求数列}{n a 的通项公式; (2)是否存在正整数M ,使得当M n >时,···741a a a …7823·a a n >-恒成立?若存在,求出M 的 最小值;若不存在,请说明理由;(3)是否存在等差数列}{n b ,使得对任意的,N *∈n 都有+++--23121···n n n a b a b a b …122··121--=++-na b a b n n n ?若存在,试求出}{n b 的通项公式;若不存在,请说明理由.参考答案参考答案:1.{-1,3}2.(0,1)3.244.23 5.5 6. 13 7. 548. 4a ≤ 9.15 10. 1(1,]2-- 11. 257- 12. 12 21.13 14. 2315.解: (1)由条件可得sin22sin(2)3y x x x π=+=+, (4)分所以该函数的最小正周期22T ππ==………………………………………………………6分 (2)⎥⎦⎤⎢⎣⎡∈4,0πx ,⎥⎦⎤⎢⎣⎡∈+∴65,332πππx ,……………………………………………………8分 当12π=x 时,函数y 取得最大值为2,当4π=x 时,函数y 取得最小值为1∴函数y的值域为[]2,1…………………………………………………………………………14分2)2(;3;13)1.(17==ABC S BC V19.解:(1)在Rt APB ∆中,10tan BP θ=, 11010tan 50tan 2ABP S θθ∆=⨯⨯= 在Rt ADQ ∆中,)4DQ πθ=-,1)100tan()244ADQ S ππθθ∆=⨯⨯-=-∴50tan 100tan()4S πθθ=---1tan 50tan 1001tan θθθ-=--⨯+ …5分其中0tan 10tan()42θπθ≤≤⎧⎪⎨≤-≤⎪⎩,解得:3tan 1θ-≤≤(注:观察图形的极端位置,计算出tan θ的范围也可得分.)∴1tan 50tan 1001tan S θθθ-=--⨯+,3tan 1θ-≤≤ (8)分(2)∵tan 0θ>,1tan 450(tan 2)50(tan 13)1tan tan 1S θθθθθ-=-+⨯=-++-++3)50≤--=- ……………13分当且仅当4tan 1tan 1θθ+=+时取等号,亦即tan 1θ=时,max 50S =-∵(0,)2πθ∈ 4πθ∴=答:当4πθ=时,S 有最大值50-. ……………15分..)3(;8)2(;2)1.(202n b a n n n ==-。
四川省成都外国语学校2016-2017学年高一下期期末考试数学(理)试题 Word版含答案1.直线 $xcos\theta+ysin\theta+a=0$ 和 $xsin\theta-ycos\theta+b=0$ 的位置关系是()A。
平行 B。
垂直 C。
重合 D。
与 $a,b,\theta$ 的值有关2.若 $a,b\in R$,且 $ab>0$,则下列不等式中,恒成立的是()A。
$a+b>2ab$ B。
$\frac{2}{\sqrt{2}}\sqrt{ab}\leq a+b$ C。
$a+\frac{1}{b}\geq 2$ D。
$a+\frac{1}{b}\geq 2\sqrt{ab}$3.一个空间几何体的三视图如图所示,则该几何体的体积为A。
$\frac{2\pi}{3}$ B。
$\frac{4\pi}{3}$ C。
$2\pi+\frac{2}{3}$ D。
$4\pi+\frac{2}{3}$4.在 $\triangle ABC$ 中,若 $\sin(A-B)=1+2\cos(B+C)\sin(A+C)$,则 $\triangle ABC$ 的形状一定是A。
等边三角形 B。
不含 $60^\circ$ 的等腰三角形 C。
钝角三角形 D。
直角三角形5.设 $a,b$ 是空间中不同的直线,$\alpha,\beta$ 是不同的平面,则下列说法正确的是A。
$a//b,b\perp\alpha$,则 $a\perp\alpha$ B。
$a\perp\alpha,b\perp\beta,\alpha//\beta$,则 $a//b$ C。
$a\perp\alpha,b\perp\beta,a//\beta,b//\beta$,则$\alpha//\beta$ D。
$\alpha//\beta,a\perp\alpha$,则 $a//\beta$6.设数列 $\{a_n\}$ 是首项为 $m$,公比为 $q(q\neq 1)$ 的等比数列,它的前 $n$ 项和为 $S_n$,对任意 $n\in N^*$,点$(a,S_{2n})$ 位于A。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
人教版高二第二章平面向量单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知平面上有四点O ,A ,B ,C ,向量,,OA OB OC u u u r u u u r u u u r 满足:0OA OB OC ++=u u u r u u u r u u u r r1OA OB OB OC OC OA ⋅=⋅=⋅=-u u u v u u u v u u u v u u u v u u u v u u u v,则△ABC 的周长是( )A .B .C .3D .6【来源】福建省晋江市季延中学2017-2018学年高一下学期期末考试数学试题 【答案】A2.已知向量a,b r r 满足||1=r a ,1⋅=-r ra b ,则(2)⋅-=r r r a a bA .4B .3C .2D .0【来源】2018年全国普通高等学校招生统一考试理数(全国卷II) 【答案】B3.已知两个单位向量a r 和b r 夹角为60︒,则向量a b -r r在向量a r 方向上的投影为( )A .1-B .1C .12-D .12【来源】安徽省江淮六校2019届高三上学期开学联考理科数学试题 【答案】D4.在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB =u u u rA .3144AB AC -u u ur u u u rB .1344AB AC -u u ur u u u rC .3144AB AC +u u ur u u u rD .1344AB AC +u u ur u u u r【来源】2018年全国普通高等学校招生统一考试理科数学(新课标I 卷) 【答案】A5.在ABC ∆中,已知向量AB u u u r 与AC u u u r 满足()||||AB AC BC AB AC +⊥u u u r u u u r u u u r u u ur u u u r 且•12||||AB AC AB AC =u u u r u u u ru u u r u u u r ,则ABC ∆是( ) A .三边均不相同的三角形 B .直角三角形 C .等腰非等边三角形D .等边三角形【来源】第六章平面向量及其应用6.4平面向量的应用 【答案】D6.已知菱形ABCD 的边长为a ,60ABC ∠=︒,则BD CD =u u u r u u u rg A .232a -B .234a -C .234a D .232a 【来源】2015年全国普通高等学校招生统一考试理科数学(山东卷带解析) 【答案】D7.若1,,(23)(4)a b a b a b ka b ==⊥+⊥-v v v vv v v v ,则实数k 的值为( ) A .-6B .6C .-3D .3【来源】内蒙古平煤高级中学2017-2018学年高一下学期第二章单元检测数学试题 【答案】B8.已知点()()()()1,1,1,2,2,1,3,4A B C D ---,则向量AB u u u r 在CD uuur 方向上的投影为( )A B C .D . 【来源】河北省武邑中学2018届高三上学期期末考试数学(理)试题 【答案】A9.已知向量(2,0)OB u u u r =,向量(2,2)OC u u u r =,向量)CA u u u ra a =,则向量OA u u u r 与向量OB uuu r的夹角的取值范围是( ). A .π0,4⎡⎤⎢⎥⎣⎦B .π5π,412⎡⎤⎢⎥⎣⎦C .5ππ,122⎡⎤⎢⎥⎣⎦D .π5π,1212⎡⎤⎢⎥⎣⎦【来源】天津市耀华中学2018届高三12月月考数学(文)试 【答案】D10.如图,正方形ABCD 中,M 是BC 的中点,若AC AM BD λμ=+u u u r u u u u r u u u r,则λμ+=( )A .43B .53C .158D .2【来源】2017届河北衡水中学高三上学期第二次调研数学(理)试卷(带解析) 【答案】B11.已知O 是ABC V 所在平面内的一点,A B C ∠∠∠,,所对的边分别为a b c ,,.若0aOA bOB cOC ++=u u u r u u u r u u u r,则O 是ABC V 的( )A .内心B .外心C .重心D .垂心【来源】第二章全章训练 【答案】A12.设正方形ABCD 的边长为1,则AB BC AC -+u u u r u u u r u u u r等于( )A .0BC .2D .【来源】第二章全章训练 【答案】C13.如图,在ABC V 中,BA BC =u u u r u u u r ,延长CB 到D ,使AC AD ⊥u u u r u u u r.若AD AB AC λμ=+u u u r u u u r u u u r,则λμ-的值是( )A .1B .2C .3D .4【来源】第二章全章训练 【答案】C14.设单位向量1e u r 、2e u u r 的夹角为23π,122a e e =+u r r u u r ,1223b e e =-r u r u r ,则b r 在a r 方向上的投影为( )A B C D 【来源】智能测评与辅导[文]-平面向量及复数 【答案】A15.若O 为平面内任意一点,且()()20OB OC OA AB AC +-⋅-=u u u v u u u v u u u v u u u v u u u v ,则△ABC 是( )A .直角三角形或等腰三角形B .等腰直角三角形C .等腰三角形但不一定是直角三角形D .直角三角形但不一定是等腰三角形【来源】2018年高考数学理科训练试题:专题(20) 平面向量的数量积及其应用 【答案】C16.给出下面四个命题:①0AB BA u u u v u u u v u v+=; ②C AC AB B u u u v u u u v u u u v +=;③AC BC AB =u u u v u u u v u u u v -;④00AB u u u v⋅=.其中正确的个数为 A .1个B .2个C .3个D .4个【来源】20102011学年山东省威海市高一下学期期末模块考试数学 【答案】B17.在ABC ∆中,若222sin sin sin A B C >+,则ABC ∆的形状是( ) A .锐角三角形B .直角三角形C .钝角三角形D .不能确定【来源】2016-2017陕西西藏民族学院附中高二文12月考数学试卷(带解析) 【答案】C18.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r,那么( ) A .AO OD =u u u r u u u rB .2AO OD =u u u r u u u rC .3AO OD =u u u r u u u rD .2AO OD =u u u r u u u r【来源】2007年普通高等学校招生全国统一考试理科数学卷(北京) 【答案】A19.在ABC ∆中,设222AC AB AM BC -=⋅u u u r u u u r u u u u r u u u r,则动点M 的轨迹必通过ABC ∆的( ) A .垂心B .内心C .重心D . 外心【来源】黑龙江省哈尔滨市哈尔滨师范大学附属中学2018-2019学年高一下学期第一次月考数学试题 【答案】D20.设a ,b 都是非零向量,下列四个条件中,使a ba b=成立的充分条件是( )A .a =-bB .a ∥bC .a =2bD .a ∥b 且|a|=|b|【来源】福建省2018届数学基地校高三毕业班总复习 平面向量、复数 形成性测试卷(文科)数学试卷 【答案】C21.已知四点()4,2A -,()6,4B -,()12,6C ,()2,12D ,给出下面四个结论:①AB CD ∥;②AB CD ⊥;③AC BD P ;④AC BD ⊥.其中正确结论的序号为( ) A .①③B .①④C .②③D .②④【来源】高二人教版必修2 第二章 1.3 两条直线的位置关系 【答案】B22.已知△ABC 是正三角形,若a=AC uuu r -λAB u u u r 与向量AC uuu r的夹角大于90°,则实数λ的取值范围是( ) A .λ<12B .λ<2C .λ>12D .λ>2【来源】2018-2019学年高中数学人教A 版必修四第二章平面向量单元测试 【答案】D23.如图,过点0(1)M ,的直线与函数()sin π02y x x =≤≤的图象交于A ,B 两点,则()OM OA OB ⋅+u u u u r u u u r u u u r等于( )A .1B .2C .3D .4【来源】2014-2015学年福建省南安第一中学高一下学期期中考试数学试卷(带解析) 【答案】B24.设a,b 为非零向量,|b|=2|a|,两组向量x 1,x 2,x 3,x 4和y 1,y 2,y 3,y 4均由2个a 和2个b 排列而成.若x 1·y 1+x 2·y 2+x 3·y 3+x 4·y 4所有可能取值中的最小值为4|a|2,则a 与b 的夹角为( ) A .2π3B .π3C .π6D .0【来源】2018-2019学年高中数学人教A 版必修四第二章平面向量单元测试 【答案】B25.如图,在直角梯形 ABCD 中,AB ∥DC ,AD ⊥DC ,AD=DC=2AB ,E 为AD 的中点,若CA CE DB λμ=+u u u v u u u v u u u v,则λ+μ的值为( )A .65B .85C .2D .83【来源】湖南省澧县一中2018届高三一轮复习理科数学《平面向量》单元检测试题 【答案】B26.已知点(4,3)A 和点(1,2)B ,点O 为坐标原点,则()OA tOB t R +∈u u u v u u u v的最小值为( )A .B .5C .3D 【来源】四川省2017-2018年度高三“联测促改”活动理科数学试题 【答案】D二、填空题27.已知向量AB u u u r与AC u u u r 的夹角为120︒,且32AB AC ==u u u r u u u r ,,若AP AB AC λ=+u u u r u u u r u u u r ,且AP BC ⊥u u u r u u u r则实数λ的值为__________.【来源】2013年全国普通高等学校招生统一考试理科数学(山东卷带解析) 【答案】71228.(理)在直角坐标系x 、y 中,已知点A(0,1)和点B(-3,4),若点C 在∠AOB 的平分线上,且|OC u u u r |=2,求OC u u u r的坐标为_____________________.【来源】内蒙古平煤高级中学2017-2018学年高一下学期第二章单元检测数学试题【答案】(55-29.已知向量=a b ,则a 与b 夹角的大小为_________. 【来源】北京四中2018-2019学年第一学期高三期中考试数学(文科)试卷 【答案】30.o30.ABC ∆是边长为2的等边三角形,已知向量a b r r ,满足22AB a AC a b ==+u u u r r u u u r r r,,则下列结论中正确的是____.(写出所有正确结论的序号)①a r 为单位向量;②b r 为单位向量;③a b ⊥r r;④b BC r u u u r ∥;⑤()4a b BC +⊥r r u u u r .【来源】第二章全章训练 【答案】①④⑤31.正三角形ABC 中,D 是BC 上的点,若3,1AB BD ==,则AB BD ⋅=u u u r u u u r____________.【来源】上海市华师附天山中学2018-2019学年高二上学期学期向量单元测验卷 【答案】32-32.已知()()124,7,1,0P P --,点P 在线段12PP 的延长线上,且123PP PP =u u u r u u u r ,则点P 坐标为____________.【来源】上海市华师附天山中学2018-2019学年高二上学期学期向量单元测验卷【答案】17,22⎛⎫- ⎪⎝⎭33.在ABC V 中,()2,4,8AB AC AB AC AB ==+⋅=u u u r u u u r u u u r,则ABC V 面积等于____________.【来源】上海市华师附天山中学2018-2019学年高二上学期学期向量单元测验卷【答案】34.设F 为抛物线x 2=8y 的焦点,点A ,B ,C 在此抛物线上,若FA FB FC 0++=u u u r u u u r u u u r,则FA FB FC ++u u u r u u u r u u u r=______.【来源】2012届河南省郑州盛同学校高三上学期第一次月考文科数学 【答案】635.如图,在四边形ABCD 中,AB ⊥BC ,AB=6,BC=8,△ACD 是等边三角形,则AC BD ⋅u u u v u u u v的值为_______________.【来源】湖南省澧县一中2018届高三一轮复习理科数学《平面向量》单元检测试题 【答案】14.36.在矩形ABCD 中,AB =2,BC =1,E 为BC 的中点,若F 为该矩形内(含边界)任意一点,则AE ⃑⃑⃑⃑⃑ ⋅AF ⃑⃑⃑⃑⃑ 的最大值为__________. 【来源】2012届安徽省舒城中学高三第一学期期中考试理科数学 【答案】9237.在△ABC 中,CA=2CB=2,1CA CB u u u v u u u v⋅=-,O 是△ABC 的外心, 若CO uuu r =x CA u u u r +yu u rCB ,则x+y=_______________________.【来源】湖南省澧县一中2018届高三一轮复习理科数学《平面向量》单元检测试题 【答案】136.38.已知向量若向量a,b 的夹角为π3,则实数m 的值为_____. 【来源】2018-2019学年高中数学人教A 版必修四第二章平面向量单元测试【答案】39.在四边形ABCD 中,AB ⃑⃑⃑⃑⃑ =DC ⃑⃑⃑⃑⃑ =(1,1),且BA ⃑⃑⃑⃑⃑ |BA ⃑⃑⃑⃑⃑ |+BC ⃑⃑⃑⃑⃑ |BC ⃑⃑⃑⃑⃑ |=√3BD ⃑⃑⃑⃑⃑⃑ |BD⃑⃑⃑⃑⃑⃑ |,则四边形ABCD 的面积为 .【来源】2015高考数学(理)一轮配套特训:4-3平面向量的数量积及应用(带解析) 【答案】√3三、解答题40.在平面直角坐标系xoy 中,点(1,2),(2,3),(2,1)A B C ----。
2016-2017学年某某省某某市高一(下)期末数学试卷(理科)一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.93.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.805.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.246.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.1627.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣39.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.2010.数列{a n}满足,则a n=()A.B.C.D.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为.14.若数列{a n}满足,则a2017=.15.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4=.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc(1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.2016-2017学年某某省某某市安平中学高一(下)期末数学试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.【考点】83:等差数列.【分析】根据等差数列的定义,对所给的各个数列进行判断,从而得出结论.【解答】解:A,6,6,6,6,6常数列,公差为0;B,﹣2,﹣1,0,1,2公差为1;C,5,8,11,14公差为3;D,数列0,1,3,6,10的第二项减去第一项等于1,第三项减去第二项等于2,故此数列不是等差数列.故选:D.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.9【考点】8F:等差数列的性质.【分析】由等差中项的性质,利用已知条件,能求出m,n,由此能求出m和n的等差中项.【解答】解:∵m和2n的等差中项是4,2m和n的等差中项是5,∴,解得m=4,n=2,∴m和n的等差中项===3.故选:B.3.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°【考点】HR:余弦定理.【分析】由已知及余弦定理可求cosA的值,结合X围A∈(0°,180°),利用特殊角的三角函数值即可得解A的值.【解答】解:在△A BC中,∵a2=b2+c2﹣bc,∴可得:b2+c2﹣a2=bc,∴cosA===,∵A∈(0°,180°),故选:A.4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.80【考点】85:等差数列的前n项和.【分析】由等差数列的通项公式,可得首项,再由等差数列的求和公式,计算即可得到所求和.【解答】解:等差数列{a n}中,a2=2,d=2,a1+d=2,解得a1=0,则S10=10a1+×10×9d=0+45×2=90.故选:C.5.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.24【考点】88:等比数列的通项公式.【分析】推导出a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,由等比数列通项公式列出方程组,求出,由此能求出S3.【解答】解:∵{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,∴a3a4=a2a5=﹣8,∴a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,∴,解得,∴S3===12.6.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.162【考点】81:数列的概念及简单表示法.【分析】0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.即可得出.【解答】解:由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.则此数列第20项=2×102=200.故选:B.7.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到S n=2n2+n.分n=1和n ≥2求出数列{a n}的通项,验证n=1时满足,所以数列{a n}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+a n=n(2n+1)=S n,即S n=2n2+n.当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.当n=1时也成立,∴a n=4n﹣1;∵b n==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣3【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】利用余弦定理列出关系式,再利用完全平方公式变形,把已知等式及cosB的值代入求出ac的值,原式利用平面向量的数量积运算法则变形,将各自的值代入计算即可求出值.【解答】解:∵在△ABC中,b2=ac,且a+c=3,cosB=,∴由余弦定理得:cosB=====,即ac=2,则•=﹣cacosB=﹣.故选:B.9.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.20【考点】HU:解三角形的实际应用.【分析】根据题意画出图象确定∠BAC、∠ABC的值,进而可得到∠ACB的值,根据正弦定理可得到BC的值.【解答】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理可得BC=×sin30°=10.故选:A.10.数列{a n}满足,则a n=()A.B.C.D.【考点】8H:数列递推式.【分析】利用数列递推关系即可得出.【解答】解:∵,∴n≥2时,a1+3a2+…+3n﹣2a n﹣1=,∴3n﹣1a n=,可得a n=.n=1时,a1=,上式也成立.则a n=.故选:B.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【考点】HX:解三角形.【分析】结合三角形的内角和公式可得A+B=π﹣C,A+C=π﹣B,代入已知sin(A+B﹣C)=sin (A﹣B+C)化简可得,sin2C=sin2B,由于0<2B<π,0<2C<π从而可得2B=2C或2B+2C=π,从而可求【解答】解:∵A+B=π﹣C,A+C=π﹣B,∴sin(A+B﹣C)=sin(π﹣2C)=sin2Csin(A﹣B+C)=sin(π﹣2B)=sin2B,则sin2B=sin2C,B=C或2B=π﹣2C,即.所以△ABC为等腰或直角三角形.故选C12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°【考点】HR:余弦定理.【分析】先根据正弦定理把2R(sin2A﹣sin2C)=(a﹣b)sinB中的角转换成边可得a,b和c的关系式,再代入余弦定理求得cosC的值,进而可得C的值.【解答】解:△ABC中,由2R(sin2A﹣sin2C)=(a﹣b)sinB,根据正弦定理得a2﹣c2=(a﹣b)b=ab﹣b2,∴cosC==,∴角C的大小为30°,故选A.二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为120°.【考点】HR:余弦定理.【分析】直接利用余弦定理求出7所对的角的余弦值,求出角的大小,利用三角形的内角和,求解最大角与最小角之和.【解答】解:根据三角形中大角对大边,小角对小边的原则,所以由余弦定理可知cosθ==,所以7所对的角为60°.所以三角形的最大角与最小角之和为:120°.故答案为:120°.14.若数列{a n}满足,则a2017= 2 .【考点】8H:数列递推式.【分析】数列{a n}满足a1=2,a n=1﹣,可得a n+3=a n,利用周期性即可得出.【解答】解:数列{a n}满足a1=2,a n=1﹣,可得a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2a5=1﹣=,…,∴a n+3=a n,数列的周期为3.∴a2017=a672×3+1=a1=2.故答案为:215.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4= 15 .【考点】89:等比数列的前n项和.【分析】由题意先求出公比,再根据前n项和公式计算即可.【解答】解:正项等比数列{a n}中,a1=1,且,∴1﹣=,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∴S4==15,故答案为:15.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【考点】HX:解三角形.【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc (1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.【考点】HT:三角形中的几何计算.【分析】(1)将2(a2﹣b2)=2accosB+bc化解结合余弦定理可得答案.(2)因为∠DAC=,所以AD=CD•sinC,∠DAB=.利用正弦定理即可求解.【解答】解:(1)由题意2accosB=a2+c2﹣b2,∴2(a2﹣b2)=a2+c2﹣b2+bc.整理得a2=b2+c2+bc,由余弦定理:a2=b2+c2﹣2bccosA可得:bc=﹣2bccosA∴cosA=﹣,∵0<A<π∴A=.(Ⅱ)∵∠DAC=,∴AD=CD•sinC,∠DAB=.在△ABD中,有,又∵CD=3BD,∴3sinC=2sinB,由C=﹣B,得cosB﹣sinB=2sinB,整理得:tanB=.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.【考点】8D:等比关系的确定;81:数列的概念及简单表示法.【分析】(1)分别令n=1,2,3,依次计算a1,a2,a3的值;(2)假设存在常数λ,使得{a n+λ}为等比数列,则(a2+λ)2=(a1+λ)(a3+λ),从而可求得λ,根据等比数列的通项公式得出a n+λ,从而得出a n.【解答】解:(1)当n=1时,S1=a1=2a1﹣3,解得a1=3,当n=2时,S2=a1+a2=2a2﹣6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3﹣9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.∴{a n+3}的首项为a1+3=6,公比为=2.∴a n+3=6×2n﹣1,∴a n=6×2n﹣1﹣3.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.【考点】8E:数列的求和.【分析】(1)由已知数列递推式可得a n+1=2a n,再由数列{a n}是等比数列求得首项,并求出数列通项公式;(2)把数列{a n}的通项公式代入数列,可得数列是递减数列,可知当n=9时,数列的项为正数,n=10时,数列的项为负数,则答案可求.【解答】解:(1)由a n+1=1+S n得:当n≥2时,a n=1+S n﹣1,两式相减得:a n+1=2a n,∵数列{a n}是等比数列,∴a2=2a1,又∵a2=1+S1=1+a1,解得:a1=1.得:;(2),可知数列是一个递减数列,∴,由此可知当n=9时,数列的前项和T n取最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【考点】HX:解三角形;HP:正弦定理;HR:余弦定理.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.【考点】8M:等差数列与等比数列的综合.【分析】(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;(2)求得=a n+b n=2n﹣1+3n﹣1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)=a n+b n=2n﹣1+3n﹣1,则数列{}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)由已知利用三角函数恒等变换的应用化简可得,由0<B+C<π,可求,进而可求A的值.(Ⅱ)根据余弦定理,得a2=(b﹣1)2+3,又b+c=2,可求X围0<b<2,进而可求a的取值X围.【解答】(本小题满分12分)解:(Ⅰ)由已知得,化简得,整理得,即,由于0<B+C<π,则,所以.(Ⅱ)根据余弦定理,得=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值X围是.。
2016-2017学年江苏省淮安市高一(上)期末数学试卷一、填空题(共14小题,每小题5分,满分70分) 1.设集合A={1,3,5,7},B={2,3,4},则A ∩B= .2.函数的最小正周期为 .3.函数y=的定义域为 .4.计算log 324﹣log 38的值为 .5.已知集合A={x |x <1},B={x |x >3},则∁R (A ∪B )= .6.已知向量=(﹣1,3),=(2,y ),若,则实数y 的值为 .7.已知f (x )是R 上的奇函数,当x >0时,f (x )=x ,则f (﹣9)= .8.将函数y=3sin (2x ﹣)的图象向左平移个单位后,所在图象对应的函数解析式为 .9.已知a=(),b=(),c=ln ,则这三个数从大到小的顺序是 .10.已知α∈(0,π),tan ()=,则sin ()= .11.已知定义在实数集R 上的偶函数f (x )在区间[0,+∞)上是单调减函数,若f (1)<f (lgx ),则x 的取值范围为 .12.如图,在△ABC 中,已知=,P 是BN 上一点,若,则实数m 的值是 .13.函数f (x )=sin (πx )﹣,x ∈[﹣4,2]的所有零点之和为 .14.已知两个函数f (x )=log 4(a)(a ≠0),g (x )=log 4(4x +1)﹣的图象有且只有一个公共点,则实数a 的取值范围是 .二、解答题(共6小题,满分90分)15.(14分)在平面之间坐标系中,角α的终边经过点P(1,2).(1)求tanα的值;(2)求的值.16.(14分)在平面直角坐标系中,已知A(1,0),B(0,1),C(2,5),求:(1)2+的模;(2)cos∠BAC.17.(14分)已知函数f(x)=x2+2xsinθ﹣1,x∈[﹣,].(1)当时,求函数f(x)的最小值;(2)若函数f(x)在x∈[﹣,]上是单调增函数,且θ∈[0,2π],求θ的取值范围.18.(16分)一半径为4米的水轮如图所示,水轮圆心O距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<).(1)求函数f(t)的解析式;(2)点P第二次到达最高点要多长时间?19.(16分)已知函数f(x)=x+是奇函数.(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;(2)写出函数f(x)的单调区间(不要解答过程,只写结果);(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP 的面积为2,若这样的点P恰好有4个,求实数a的取值范围.20.(16分)已知函数f(x)=2x.(1)解方程f(log4x)=3;(2)已知不等式f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,求实数a的取值范围;(3)存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立,试求a的取值范围.2016-2017学年江苏省淮安市高一(上)期末数学试卷参考答案与试题解析一、填空题(共14小题,每小题5分,满分70分)1.设集合A={1,3,5,7},B={2,3,4},则A∩B={3} .【考点】交集及其运算.【分析】由A与B,求出两集合的交集即可.【解答】解:∵A={1,3,5,7},B={2,3,4},∴A∩B={3},故答案为:{3}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.函数的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】由函数解析式找出ω的值,代入周期公式T=即可求出函数的最小正周期.【解答】解:函数,∵ω=2,∴T==π.故答案为:π【点评】此题考查了三角函数的周期性及其求法,准确找出ω的值,熟练掌握周期公式是解本题的关键.3.函数y=的定义域为(﹣1,+∞).【考点】函数的定义域及其求法.【分析】直接由根式内部的代数式大于等于0,分式的分母不为0联立不等式组求解.【解答】解:由,解得x >﹣1.∴函数y=的定义域为(﹣1,+∞).故答案为:(﹣1,+∞).【点评】本题考查函数的定义域及其求法,是基础题.4.计算log 324﹣log 38的值为 1 . 【考点】对数的运算性质.【分析】根据对数的运算法则计算即可. 【解答】解:原式=log 3(24÷8)=log 33=1, 故答案为:1【点评】本题考查了对数的运算法则,属于基础题.5.已知集合A={x |x <1},B={x |x >3},则∁R (A ∪B )= {x |1≤x ≤3} . 【考点】交、并、补集的混合运算.【分析】根据集合并集和补集的定义进行运算即可. 【解答】解:∵A={x |x <1},B={x |x >3}, ∴A ∪B={x |x >3或x <1}, 则∁R (A ∪B )={x |1≤x ≤3}, 故答案为:{x |1≤x ≤3}【点评】本题主要考查集合的基本运算,比较基础.6.已知向量=(﹣1,3),=(2,y ),若,则实数y 的值为 ﹣6 .【考点】平行向量与共线向量.【分析】根据平面向量共线定理的坐标表示,列出方程求出实数y 的值.【解答】解:向量=(﹣1,3),=(2,y ),且,所以﹣1•y ﹣3×2=0, 解得y=﹣6,所以实数y 的值为﹣6.故答案为:﹣6.【点评】本题考查了平面向量的共线定理与应用问题,是基础题目.7.已知f(x)是R上的奇函数,当x>0时,f(x)=x,则f(﹣9)=﹣3.【考点】函数的值.【分析】先由x>0时,f(x)=x,求出f(9),再根据f(x)是R上的奇函数,得到答案.【解答】解:∵当x>0时,f(x)=x,∴f(9)=3,∵f(x)是R上的奇函数,∴f(﹣9)=﹣f(9)=﹣3,故答案为:﹣3【点评】本题考查的知识点是函数奇偶性的性质,函数求值,难度不大,属于基础题.8.将函数y=3sin(2x﹣)的图象向左平移个单位后,所在图象对应的函数解析式为y=3sin(2x+).【考点】函数y=Asin(ωx+φ)的图象变换.【分析】利用y=Asin(ωx+φ)的图象变换规律即可求得所得图象的解析式.【解答】解:把函数y=3sin(2x﹣)的图象向左平移个单位,所得图象的解析式是y=3sin[2(x+)﹣]=3sin(2x+),故答案为:y=3sin(2x+).【点评】本题主要考查了y=Asin(ωx+φ)的图象变换规律的应用,属于基础题.9.已知a=(),b=(),c=ln,则这三个数从大到小的顺序是a >b>c.【考点】对数值大小的比较.【分析】利用指数函数与对数函数单调性即可判断出结论.【解答】解:a=(),>1,b=()∈(0,1),c=ln<0,则这三个数从大到小的顺序是a>b>c,故答案为:a>b>c.【点评】本题考查了指数函数与对数函数单调性,考查了推理能力与计算能力,属于基础题.10.已知α∈(0,π),tan()=,则sin()=.【考点】两角和与差的正切函数.【分析】由已知利用两角差的正切函数公式可求tanα的值,利用同角三角函数基本关系式可求cosα,sinα的值,进而利用两角和的正弦函数公式即可计算得解.【解答】解:∵α∈(0,π),tan()==,解得:tanα=2,∴可得:α∈(0,),∴cosα==,sinα=,∴sin()=+=.故答案为:.【点评】本题主要考查了两角差的正切函数公式,同角三角函数基本关系式,两角和的正弦函数公式在三角函数化简求值中的应用,考查了转化思想,属于基础题.11.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lgx),则x的取值范围为<x<10.【考点】奇偶性与单调性的综合.【分析】根据函数的奇偶性和单调性,根据f(1)<f(lgx)建立不等式组求得x 的范围.【解答】解:∵偶函数f(x)在区间[0,+∞)上是单调减函数,f(1)<f(lgx),∴1>|lgx|,解得<x<10,故答案为<x<10.【点评】本题主要考查了函数奇偶性的应用,考查学生的计算能力,属于中档题.12.如图,在△ABC中,已知=,P是BN上一点,若,则实数m的值是.【考点】平面向量的基本定理及其意义.【分析】由于B,P,N三点共线,利用向量共线定理可得:存在实数λ使得=λ+(1﹣λ)=λ+,又,利用共面向量基本定理即可得出.【解答】解:∵B,P,N三点共线,∴存在实数λ使得=λ+(1﹣λ)=λ+,又,∴,解得m=.故答案为:.【点评】本题考查了向量共线定理、共面向量基本定理,属于基础题.13.函数f(x)=sin(πx)﹣,x∈[﹣4,2]的所有零点之和为﹣4.【考点】根的存在性及根的个数判断.【分析】由题意函数y=sin(πx)﹣,x∈[﹣4,2]的零点,即sin(πx)=的根;作出函数y=sin(πx)与y=的图象结合函数的对称性,可得答案.【解答】解:函数y=sin(πx)﹣,x∈[﹣4,2]的零点,即sin(πx)=的根;作出函数y=2sin(πx)与y=在x∈[﹣4,2]上的图象,如下图所示:由图可得:两个函数的图象有4个不同的交点,且两两关于点(﹣1,0)对称,故四个点横坐标之和为﹣4,即函数f(x)=sin(πx)﹣,x∈[﹣4,2]的所有零点之和为﹣4,故答案为:﹣4.【点评】本题主要考查正弦函数的图象特征,函数的零点与方程的根的关系,体现了转化、数形结合的数学思想,属于中档题.14.已知两个函数f(x)=log4(a)(a≠0),g(x)=log4(4x+1)﹣的图象有且只有一个公共点,则实数a的取值范围是{a|a>1或a=﹣3}..【考点】根的存在性及根的个数判断.【分析】根据函数f(x)与g(x)的图象有且只有一个公共点,化简得出即可得到结论【解答】g(x)=log4(a•2x﹣a),函数f(x)与g(x)的图象有且只有一个公共点,即方程f(x)=g(x)只有一个解由已知得log4(4x+1)x=log4(a•2x﹣a),∴log4()=log4(a•2x﹣a),方程等价于,设2x=t,t>0,则(a﹣1)t2﹣at﹣1=0有一解若a﹣1>0,设h(t)=(a﹣1)t2﹣at﹣1,∵h(0)=﹣1<0,∴恰好有一正解∴a>1满足题意若a﹣1=0,即a=1时,h(t)=﹣﹣1,由h(t)=0,得t=﹣<0,不满足题意若a﹣1<0,即a<1时,由△=(﹣)2﹣4(a﹣1)×(﹣1)=0,得a=﹣3或a=,当a=﹣3时,t=满足题意当a=时,t=﹣2(舍去)综上所述实数a的取值范围是{a|a>1或a=﹣3}.故答案为:{a|a>1或a=﹣3}.【点评】本题主要考查函数与方程的运用,以及对数的基本运算,考查学生的运算能力,综合性较强,做难题的意志能力.二、解答题(共6小题,满分90分)15.(14分)(2016秋•淮安期末)在平面之间坐标系中,角α的终边经过点P (1,2).(1)求tanα的值;(2)求的值.【考点】三角函数的化简求值.【分析】(1)根据角α的终边经过点P(1,2),可得x=1,y=2,再根据tanα=计算即可;(2)由角α的终边经过点P(1,2),利用任意角的三角函数定义求出sinα与cosα的值,代入原式计算即可得答案.【解答】解:(1)∵角α的终边经过点P(1,2),∴x=1,y=2,则tanα==2;(2)∵角α的终边经过点P(1,2),∴sinα=,cosα=,则==.【点评】本题主要考查任意角的三角函数的定义,考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键,是基础题.16.(14分)(2016秋•淮安期末)在平面直角坐标系中,已知A(1,0),B(0,1),C(2,5),求:(1)2+的模;(2)cos∠BAC.【考点】平面向量的综合题.【分析】(1)作出图象,从而可得=(﹣1,1)=(1,5);2+=(﹣2,2)+(1,5)=(﹣1,7);求模即可;(2)cos∠BAC=,代入计算即可.【解答】解:(1)如图,=(﹣1,1)=(1,5);故2+=(﹣2,2)+(1,5)=(﹣1,7);故|2+|==5;(2)cos∠BAC====.【点评】本题考查了平面向量的应用,同时考查了平面向量的坐标运算,属于中档题.17.(14分)(2016秋•淮安期末)已知函数f(x)=x2+2xsinθ﹣1,x∈[﹣,].(1)当时,求函数f(x)的最小值;(2)若函数f(x)在x∈[﹣,]上是单调增函数,且θ∈[0,2π],求θ的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)当θ=时,f(x)=x2+x﹣1=(x+)2+,利用二次函数的性质求得f(x)的最大值和最小值.(2)利用f(x)=x2+2xsinθ﹣1的对称轴为x=﹣sinθ,由题意可得﹣sinθ≤﹣,或﹣sinθ≥,求得sinθ的范围,再结合θ的范围,确定出θ的具体范围.【解答】解:(1)当θ=时,f(x)=x2+x﹣1=(x+)2﹣,由于x∈[﹣,],故当x=﹣时,f(x)有最小值﹣;当x=时,f(x)有最大值﹣.(2)因为f(x)=x2+2xsinθ﹣1的对称轴为x=﹣sinθ,又欲使f(x)在区间[﹣,]上是单调函数,则﹣sinθ≤﹣,或﹣sinθ≥,即sinθ≥或sinθ≤﹣因为θ∈[0,2π],故所求θ的范围是[,]∪[,].【点评】本题主要考查求二次函数在闭区间上的最值,二次函数的性质的应用,考查分类讨论的思想方法,考查正弦函数的图象和性质,考查运算能力,属于中档题和易错题.18.(16分)(2016秋•淮安期末)一半径为4米的水轮如图所示,水轮圆心O 距离水面2米,已知水轮每60秒逆时针转动5圈,如果当水轮上点P从水中浮现时(图象P0点)开始计算时间,且点P距离水面的高度f(t)(米)与时间t(秒)满足函数:f(t)=Asin(ω+φ)+B(A>0,ω>0,|φ|<).(1)求函数f(t)的解析式;(2)点P第二次到达最高点要多长时间?【考点】二次函数的性质;已知三角函数模型的应用问题.【分析】(1)先根据z的最大和最小值求得A和B,利用周期求得ω,当x=0时,z=0,进而求得φ的值,则函数的表达式可得;(2)令f(t)=4sin()+2=6,)⇒sin()=1,=解得t.【解答】解:(1)依题意可知z的最大值为6,最小为﹣2,∴,,∴f(t)=4sin(φ)+2,当t=0时,f(t)=0,得sinφ=﹣,φ=﹣,故所求的函数关系式为f(t)=4sin()+2,(2)令f(t)=4sin()+2=6,)⇒sin()=1,=得t=16,故点P第二次到达最高点大约需要16s.【点评】本题主要考查了在实际问题中建立三角函数模型的问题.考查了运用三角函数的最值,周期等问题确定函数的解析式,属于中档题.19.(16分)(2016秋•淮安期末)已知函数f(x)=x+是奇函数.(1)若点Q(1,3)在函数f(x)的图象上,求函数f(x)的解析式;(2)写出函数f(x)的单调区间(不要解答过程,只写结果);(3)设点A(t,0),B(t+1,0)(t∈R),点P在f(x)的图象上,且△ABP 的面积为2,若这样的点P恰好有4个,求实数a的取值范围.【考点】函数与方程的综合运用;对勾函数.【分析】(1)f(x)+f(﹣x)=0恒成立,可得b=0.Q(1,3)在函数f(x)的图象上,可得a=2即可.(2)由对勾函数图象可得;(3)在f(x)的图象上恰好有4个点,使△ABP的面积为2⇔在f(x)的图象上恰好有4个点到横轴的距离等于4,即f(x)min<4,2<4,解得a.【解答】解:(1)函数f(x)=x+是奇函数,则f(x)+f(﹣x)=0恒成立,即x+⇒b=0.∴f(x)=x+(a>0).∵Q(1,3)在函数f(x)的图象上,∴1+a=3,∴a=2,∴f(x)=x+.(x≠0).(2)f (x )=x + (a >0).的增区间为:(﹣∞,﹣),(,+∞);减区间为:(﹣,0),(0,).(3)∵点A (t ,0),B (t +1,0)(t ∈R )在横轴上,且AB=1,∴在f (x )的图象上恰好有4个点,使△ABP 的面积为2⇔在f (x )的图象上恰好有4个点到横轴的距离等于4,如图所示,函数f (x )的图象与y=4,y=﹣4各有两个交点,即f (x )min <4,2<4,解得0<a <4.∴实数a 的取值范围为:(0,4).【点评】本题考查了对勾函数的图象及性质,数形结合是解题关键,属于中档题.20.(16分)(2016秋•淮安期末)已知函数f (x )=2x . (1)解方程f (log 4x )=3;(2)已知不等式f (x +1)≤f [(2x +a )2](a >0)对x ∈[0,15]恒成立,求实数a 的取值范围;(3)存在x ∈(﹣∞,0],使|af (x )﹣f (2x )|>1成立,试求a 的取值范围. 【考点】函数恒成立问题.【分析】(1)依题意,f (log 4x )=3⇔=3,即==3,从而可解得x=9;(2)利用指数函数y=2x 的单调性可得:f (x +1)≤f [(2x +a )2]⇒x +1≤(2x +a )2,依题意,整理可得a ≥(﹣2x +)max ,x ∈[0,15].利用换元法可解得a 的取值范围;(3)令2x =t ,则存在t ∈(0,1)使得|t 2﹣at |>1,即存在t ∈(0,1)使得t 2﹣at>1或t2﹣at<﹣1,分离参数a,即存在t∈(0,1)使得a<(t﹣)max或a>(t+)min,解之即可;【解答】解:(1)∵f(x)=2x,∴f(log4x)=3⇔===3,解得:x=9,即方程f(log4x)=3的解为:x=9;(2)∵f(x)=2x,为R上的增函数,∴由f(x+1)≤f[(2x+a)2](a>0)对x∈[0,15]恒成立,得x+1≤(2x+a)2(a>0)对x∈[0,15]恒成立,因为a>0,且x∈[0,15],所以问题即为≤2x+a恒成立∴a≥(﹣2x+)max,x∈[0,15].设m(x)=﹣2x+,令=t(1≤t≤4),则x=t2﹣1,t∈[1,4],∴m(t)=﹣2(t2﹣1)+t=﹣2(t﹣)2+,所以,当t=1时,m(x)max=1,∴a≥1.(3)令2x=t,∵x∈(﹣∞,0],∴t∈(0,1),∴存在x∈(﹣∞,0],使|af(x)﹣f(2x)|>1成立⇔存在t∈(0,1)使得|t2﹣at|>1,所以存在t∈(0,1)使得t2﹣at>1或t2﹣at<﹣1,即存在t∈(0,1)使得a<(t﹣)max或a>(t+)min,∴a≤0或a≥2;【点评】本题考查函数恒成立问题,突出考查指数函数的单调性,闭区间上的最值的求法,考查函数方程思想、等价转化思想、考查换元法、构造法、配方法的综合运用,属于难题.。
江苏省淮安市2016—2017学年度第一学期高一数学试题2017.6一、填空题:(本大题共14小题,每小题5分,共70分)1. 2sin15cos15 的值为 .2.一组数据1,3,2,5,4的方差是 .3.若()0,1x ∈,则()1x x -的最大值是 .4.如图是一个算法的流程图,则输出a 的值是 . 5.两根相距6m 的木杆上系一根绳子,并在绳子上挂一盏灯,则灯与两端距离都大于2m 的概率是 .6.已知实数,x y 满足约束条件502200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,那么目标函数z x y =-的最小值是 .7.在ABC ∆中,内角A,B,C 的对边分别为,,a b c ,若::2:3:4a b c =,则cos C = .8.若()1tan 2,tan 3ααβ=-+=,则tan β的值是 .9.已知{}n a 是等差数列,n S 是其前n 项和,若75230a a --=,则17S 的值是 .10.在ABC ∆中,若1,30AB BC A === ,则AC 的长是 . 11.已知数列{}n a 中,112,2n n a a a +==n S 是其前n 项和,若254n S =,则n = .12.已知{}n a 是等差数列,11a =,公差0d ≠,n S 是其前n 项和,若125,,a a a 成等比数列,则10S = .13.在锐角ABC ∆中,sin sin sin A B C =,则tan 2tan B C +的最小值是 .14.已知ABC ∆中,内角A,B,C 的对边分别为,,a b c ,若,,a b c 成等比数列,则22a b ab+的取值范围为 . 二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.15.(本题满分14分)已知3sin ,,.52πααπ⎛⎫=∈ ⎪⎝⎭(1)求sin 3πα⎛⎫+ ⎪⎝⎭的值;(2)求cos 24πα⎛⎫- ⎪⎝⎭的值.16.(本题满分14分)已知等差数列{}n a 中,其前n 项和为25,4,30.n S a S == (1)求{}n a 的首项1a 和公差d 的值; (2)设数列{}n b 满足1n nb S =,求数列{}n b 的前项和n T .17.(本题满分14分)某学校为了解学校食堂的服务情况,随机调查了50名就餐的教师和学生.根据这50名师生对餐厅服务质量进行评分,绘制出了频率分布直方图(如图所示),其中样本数据分组为[)[)[]40,50,50,60,,90,100 . (1)求频率分布直方图中a 的值;(2)从评分在[)40,60的师生中,随机抽取2人,求此人中恰好有1人评分在[)40,50上的概率;(3)学校规定:师生对食堂服务质量的评分不得低于75分,否则将进行内部整顿,试用组中数据估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿.18.(本题满分16分)已知函数()()222,.f x ax a x a R =+--∈.(1)若关于X 的不等式()0f x ≤的解集为[]1,2-,求实数a 的值; (2)当0a <时,解关于x 的不等式()0f x ≤.19.(本题满分16分)如图,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建设一仓库,设AB ykm =,并在公路北侧建造边长为xkm 的正方形无顶中转站CDEF (其中EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB,AC,已知AB=AC+1,且60.ABC ∠=.(1)求y 关于x 的函数解析式,并求出定义域;(2)如果中转站四堵围墙造价为10万元/km,两条道路造价为30万元/km,问:x 取何值时,该公司建设中转站围墙和两条道路总造价M 最低.20.(本题满分16分)已知数列{}n a 的前n 项和为,n S 且满足24n S n n =-,数列{}n b 中,2133a b a =+对任意正整数112,.3nn n n b b +⎛⎫≥+= ⎪⎝⎭(1)求数列{}n a 的通项公式;(2)是否存在实数μ,使得数列{}3n n b μ⋅+是等比数列?若存在,请求出实数μ及公比q 的值,若不存在,请说明理由;(3)求证:121148n b b b ≤+++< .数学参考答案一、填空题: 1.12 2. 2 3.14 4. 9 5.136. -37.14-8. 79. 5110. 1或2 11.7 12.10013.3+ 14. 二、解答题:15.(1)因为()3sin 25ααπ∈π=,,,所以4cos 5α==-. …………………2分所以 ()sin sin cos cos sin αααπππ+=+ ………………………………………………4分413()525-+⋅. ………………………………………………………………7分(2) 因为24sin 22sin cos 25ααα==-,…………………………………………………9分227cos2cos sin 25ααα=-=,………………………………………………………………11分所以()cos 2cos cos2sin sin 2444αααπππ-=+.……………………………………………13分()724=-=.. …………………………………………………………14分 16. (1)因为{}n a 是等差数列,254,30a S ==,所以 114545302a d a d +=⎧⎪⎨⨯+=⎪⎩ …………………………………………………………………4分 解得 12,2a d ==. …………………………………………………………………7分 (2)由(1)知1(1)(1)2222n n n n n S a n d n --=+=+⋅即 2n S n n =+. ……………………………………………………………9分所以211111n n b S n n n n ===-++ .……………………………………………………10分 于是数列{}n b 的前n 项和 12311111......(1)()()2231n n T b b b b n n =++++=-+-++-+1111nn n =-=++. ………………………………………………………………………14分 17. (1)由 (0.0040.0220.0280.0220a +++++⨯=, 得 0.006a =.…………………………………………………………………………4分(2)设被抽取的2人中恰好有一人评分在)50,40[上为事件A. ……………5分 因为样本中评分在),40[50的师生人数为:10.00410502m =⨯⨯=,记为1,2号 样本中评分在),0[605的师生人数为:20.00610503m =⨯⨯=,记为3,4,5号………7分 所以从5人中任意取2人共有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)共10种等可能情况;2人中恰有1人评分在)50,40[上有(1,3),(1,4),(1,5),(2,3),(2,4),(2,5)共6种等可能情况. 得 63()105P A == .……………………………………………………………………9分 答:2人中恰好有1人评分在)50,40[上的概率为35.……………………………10分 (3) 服务质量评分的平均分为450.00410550.00610650.02210750.02810x =⨯⨯+⨯⨯+⨯⨯+⨯⨯850.02210950.0181076.2+⨯⨯+⨯⨯= ……………………………………………………13分因为 752.76>, 所以食堂不需要内部整顿. …………………………………14分18. (1) 因为不等式2(2)20ax a x +--≤的解集为[1,2]-,所以方程2(2)20ax a x +--=有两根且分别为1,2-,……………………………………2分 所以()()22420a a ∆=--⨯-≥且212a--⨯=,解得1a =.………………………………6分 (2)由2(2)20ax a x +--≤,得(1)(2)0x ax +-≤ ………………………7分 当20a -<<时,解集为2|1x x x a ⎧⎫-⎨⎬⎩⎭≤≥或; ………………………………………10分当2a =-时,解集为R ; ………………………………………………………………13分 当2a <-时,解集为2|1x x x a ⎧⎫-⎨⎬⎩⎭≤≥或 . ……………………………………………16分注:其它方法,酌情给分.19. (1)在BCF ∆中,BF CF FBC x CF ⊥︒=∠=,30,,所以x BC 2=.在ABC ∆中,︒=∠-==60,1,ABC y AC y AB ,由余弦定理,得ABC BC BA BC BA AC ∠⋅-+=cos 2222,…………………2分 即 ︒⋅⋅-+=-60cos 22)2()1(222x y x y y ,所以 22142--=x x y . ………………………………………………5分由BC AC AB <-, 得21,12>>x x . 又因为022142>--=x x y ,所以1>x . 所以函数22142--=x x y 的定义域是),1(+∞. ………………………………………6分(2)M x y 40)12(30+-⋅= .……………………………………………………8分因为22142--=x x y (1>x ), 所以x x x M 40)122142(302+---⋅⋅= 即 )1-41312(102 x x x M +--⋅=. …………………………………………10分 令,1-=x t 则0t >. 于是9()10(1625),0M t t t t=++> , ………………12分由基本不等式得()25)490M t =≥, 当且仅当43=t ,即47=x 时取等号. …………………………………………15分答:当34x =km 时,公司建中转站围墙和两条道路最低总造价M 为490万元. ………………………………………………………………………………16分 20. (1)当1n =时, 311-==S a ,……………………………………………………1分当2n ≥时,1--=n n n S S a )1(4)1(422-+---=n n n n ,即52-=n a n ,………………………………………………………………………3分1n =也适合,所以()25n a n n N +=-∈. …………………………………………4分(2)法一:假设存在实数μ,使数列{3}nn b μ+是等比数列,且公比为. ………5分因为对任意正整数2n ≥,nn n b b)31(1=+-,,413321-=+=a a b可令n=2,3,得 231335,36108b b ==-.…………………………………………6分 因为}{μ+n n b 3是等比数列,所以 213335()()()444μμμ+=--, 解得 14μ=- ……… ………………………7分 从而111111131344113344n n n n n n n n b b b b --------=--1113343134n n n n b b ----+==--(2n ≥) ………9分 所以存在实数14μ=-,公比为3q =-. ……………………………………10分 法二:因为对任意整数2n ≥,nn n b b )31(1=+-,所以133311 +⋅-=--n n n n b b , 设 )3(3311μμ+⋅-=+--n n n n b b ,则14=-μ,…………………………………8分所以存在41-=μ,且公比341341311-=--=--n n n n b b q . …………………………10分 (3)因为1,132=-=a a ,所以,413321-=+=a ab 14131-=-b ,所以1)3(1413--⋅-=-n n nb ,即1)31(12131)1(-⋅+⋅-=n n n b , ………………12分于是12n b b b +++= 0)31(12131)1(⋅+⋅-21111(1)()3123+-⋅+⋅+1)31(12131)1(-⋅+⋅-+n n311)311(12161)1(--+--=n n)311(8161)1(n n -+--=)311(8161)1(n n -+--=………13分 当是奇数时: 12n b b b +++= n n 3181245)311(8131⋅--=-+-=,关于递增, 得 1215424n b b b -+++<- ≤. ………………………………………………………14分当是偶数时: 12n b b b +++= )311(81n -=,关于递增, 得 121198n b b b +++< ≤ . …………………………………………………15分综上, 121148n b b b -+++< ≤. ……………………………………………16分。