概率与统计(选择题、填空题)—高考真题文科数学分项汇编(解析版)
- 格式:pdf
- 大小:274.29 KB
- 文档页数:8
考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
2014-2019年高考数学真题分类汇编专题13:概率与统计(文科选择填空)(二)(二)统计选择题1.(2014•广东文)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为()A.50B.40C.25D.20【考点】系统抽样方法【分析】根据系统抽样的定义,即可得到结论.【解答】解:从1000名学生中抽取40个样本,∴样本数据间隔为10004025÷=.故选:C.【点评】本题主要考查系统抽样的定义和应用,比较基础.2.(2014•广东理)已知某地区中小学学生的近视情况分布如图1和图2所示,为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A.200,20B.100,20C.200,10D.100,10【考点】频率分布直方图【分析】根据图1可得总体个数,根据抽取比例可得样本容量,计算分层抽样的抽取比例,求得样本中的高中学生数,再利用图2求得样本中抽取的高中学生近视人数.【解答】解:由图1知:总体个数为35002000450010000++=,∴样本容量100002%200=⨯=,分层抽样抽取的比例为150,∴高中生抽取的学生数为40,∴抽取的高中生近视人数为4050%20⨯=.故选:A .【点评】本题借助图表考查了分层抽样方法,熟练掌握分层抽样的特征是关键. 3.(2014•湖北文)根据如下样本数据:得到了回归方程ˆˆˆy bx a =+,则( ) A .ˆ0a>,ˆ0b < B .ˆ0a>,ˆ0b > C .ˆ0a<,ˆ0b < D .ˆ0a<,ˆ0b > 【考点】线性回归方程【分析】利用公式求出b ,a ,即可得出结论. 【解答】解:样本平均数 5.5x =,0.25y =,∴61()()24.5i i i x x y y =--=-∑,621()17.5i i x x =-=∑,24.51.417.5b ∴=-=-, 0.25( 1.4)5.57.95a ∴=--=,故选:A .【点评】本题考查线性回归方程的求法,考查最小二乘法,属于基础题.4.(2014•湖南文理)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为1P ,2P ,3P ,则( ) A .123P P P =<B .231P P P =<C .132P P P =<D .123P P P ==【考点】简单随机抽样;分层抽样方法;系统抽样方法【分析】根据简单随机抽样、系统抽样和分层抽样的定义即可得到结论.【解答】解:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的, 即123P P P ==. 故选:D .【点评】本题主要考查简单随机抽样、系统抽样和分层抽样的性质,比较基础.5.(2014•山东文理)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:)kPa 的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,⋯,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A.6B.8C.12D.18【考点】频率分布直方图【分析】由频率频数样本容量以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出第三组中有疗效的人数得到答案;【解答】解:由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,所以第一组有12人,第二组8人,第三组的频率为0.36,所以第三组的人数:18人,第三组中没有疗效的有6人,第三组中有疗效的有12人.故选:C.【点评】本题考查古典概型的求解和频率分布的结合,列举对事件是解决问题的关键,属中档题.6.(2014•江西文理)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1 表2表3表4A .成绩B .视力C .智商D .阅读量【考点】独立性检验【分析】根据表中数据,利用公式,求出2X ,即可得出结论.【解答】解:表2252(6221014)1:0.00916362032X ⨯⨯-⨯=≈⨯⨯⨯;表2252(4201216)2: 1.76916362032X ⨯⨯-⨯=≈⨯⨯⨯;表2252(824812)3: 1.316362032X ⨯⨯-⨯=≈⨯⨯⨯;表2252(143062)4:23.4816362032X ⨯⨯-⨯=≈⨯⨯⨯,∴阅读量与性别有关联的可能性最大,故选:D .【点评】本题考查独立性检验的应用,考查学生的计算能力,属于中档题.7.(2014•陕西文)某公司10位员工的月工资(单位:元)为1x ,2x ,⋯,10x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( )A .x ,22100s +B .100x +,22100s +C .x ,2sD .100x +,2s【考点】众数、中位数、平均数;极差、方差与标准差【分析】根据变量之间均值和方差的关系和定义,直接代入即可得到结论. 【解答】解:由题意知100i i y x =+, 则1210121011(10010)()1001010y x x x x x x x =++⋯++⨯=++⋯+=+, 方差222222221210121011[(100(100)(100(100)(100(100)][()()()]1010s x x x x x x x x x x x x s =+-+++-++⋯++-+=-+-+⋯+-=. 故选:D .【点评】本题主要考查样本数据的均值和方差之间的关系,利用均值和方差的定义是解决本题的关键,要求熟练掌握相应的计算公式.8.(2014•四川文)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,在这个问题中,5000名居民的阅读时间的全体是( ) A .总体 B .个体C .样本的容量D .从总体中抽取的一个样本【考点】用样本的数字特征估计总体的数字特征【分析】根据题意,结合总体、个体、样本、样本容量的定义可得结论.【解答】解:根据题意,结合总体、个体、样本、样本容量的定义可得,5000名居民的阅读时间的全体是总体,故选:A.【点评】本题主要考查总体、个体、样本、样本容量的定义,属于基础题.9.(2014•重庆文)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为()A.100B.150C.200D.250【考点】分层抽样方法【分析】计算分层抽样的抽取比例和总体个数,利用样本容量=总体个数⨯抽取比例计算n值.【解答】解:分层抽样的抽取比例为701 350050=,总体个数为350015005000+=,∴样本容量1500010050n=⨯=.故选:A.【点评】本题考查了分层抽样方法,熟练掌握分层抽样方法的特征是关键.10.(2014•重庆理)已知变量x与y正相关,且由观测数据算得样本平均数3x=, 3.5y=,则由该观测数据算得的线性回归方程可能是()A.ˆ0.4 2.3y x=+B.ˆ2 2.4y x=-C.ˆ29.5y x=-+D.ˆ0.3 4.4y x=-+【考点】线性回归方程【分析】变量x与y正相关,可以排除C,D;样本平均数代入可求这组样本数据的回归直线方程.【解答】解:变量x与y正相关,∴可以排除C,D;样本平均数3x=, 3.5y=,代入A符合,B不符合,故选:A.【点评】本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.11.(2015•新课标Ⅱ文理)根据如图给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()A.逐年比较,2008年减少二氧化硫排放量的效果最显著B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关【考点】频率分布直方图【分析】A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量减少的最多,故A正确;B从2007年开始二氧化硫排放量变少,故B正确;C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D年以来我国二氧化硫年排放量越来越少,与年份负相关,故D错误.2006【解答】解:A从图中明显看出2008年二氧化硫排放量比2007年的二氧化硫排放量明显减少,且减少的最多,故A正确;B 年二氧化硫排放量越来越多,从2007年开始二氧化硫排放量变少,故B正确;20042006C从图中看出,2006年以来我国二氧化硫年排放量越来越少,故C正确;D年以来我国二氧化硫年排放量越来越少,而不是与年份正相关,故D错误.2006故选:D.【点评】本题考查了学生识图的能力,能够从图中提取出所需要的信息,属于基础题.12.(2015•北京文)某校老年、中年和青年教师的人数见如表,采用分层插样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为()A.90B.100C.180D.300【考点】分层抽样方法【分析】由题意,老年和青年教师的人数比为900:16009:16=,即可得出结论. 【解答】解:由题意,老年和青年教师的人数比为900:16009:16=, 因为青年教师有320人,所以老年教师有180人, 故选:C .【点评】本题考查分层抽样,考查学生的计算能力,比较基础.13.(2015•福建理)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元 B .11.8万元 C .12.0万元 D .12.2万元【考点】线性回归方程【分析】由题意可得x 和y ,可得回归方程,把15x =代入方程求得y 值即可. 【解答】解:由题意可得1(8.28.610.011.311.9)105x =++++=,1(6.27.58.08.59.8)85y =++++=,代入回归方程可得ˆ80.76100.4a=-⨯=, ∴回归方程为ˆ0.760.4yx =+, 把15x =代入方程可得0.76150.411.8y =⨯+=, 故选:B .【点评】本题考查线性回归方程,涉及平均值的计算,属基础题.14.(2015•湖北文)已知变量x 和y 满足关系0.11y x =-+,变量y 与z 正相关,下列结论中正确的是()A .x 与y 负相关,x 与z 负相关B .x 与y 正相关,x 与z 正相关C .x 与y 正相关,x 与z 负相关D .x 与y 负相关,x 与z 正相关【考点】变量间的相关关系【分析】由题意,根据一次项系数的符号判断相关性,由y与z正相关,设y kz=,0k>,得到x与z的相关性.【解答】解:因为变量x和y满足关系0.11y x=-+,一次项系数为0.10-<,所以x与y负相关;变量y与z正相关,设,y kz=,(0)k>,所以0.11kz x=-+,得到0.11z xk k=-+,一次项系数小于0,所以z与x负相关;故选:A.【点评】本题考查由线性回归方程,正确理解一次项系数的符号与正相关还是负相关的对应是解题的关键.15.(2015•湖北文理)我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A.134石B.169石C.338石D.1365石【考点】简单随机抽样【分析】根据254粒内夹谷28粒,可得比例,即可得出结论.【解答】解:由题意,这批米内夹谷约为281534169254⨯≈石,故选:B.【点评】本题考查利用数学知识解决实际问题,考查学生的计算能力,比较基础.16.(2015•湖南文)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.若将运动员按成绩由好到差编为135-号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是()A.3B.4C.5D.6【考点】茎叶图【分析】对各数据分层为三个区间,然后根据系统抽样方法从中抽取7人,得到抽取比例为15,然后各层按照此比例抽取.【解答】解:由已知,将个数据分为三个层次是[130,138],[139,151],[152,153],根据系统抽样方法从中抽取7人,得到抽取比例为15,所以成绩在区间[139,151]中共有20名运动员,抽取人数为12045⨯=;故选:B.【点评】本题考查了茎叶图的认识以及利用系统抽样抽取个体的方法;关键是正确分层,明确抽取比例. 17.(2015•山东文)为比较甲,乙两地某月14时的气温,随机选取该月中的5天,将这5天中14时的气温数据(单位:C)︒制成如图所示的茎叶图,考虑以下结论: ①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( )A .①③B .①④C .②③D .②④【考点】命题的真假判断与应用【分析】由已知的茎叶图,我们易分析出甲、乙甲,乙两地某月14时的气温抽取的样本温度,进而求出两组数据的平均数、及方差可得答案【解答】解:由茎叶图中的数据,我们可得甲、乙甲,乙两地某月14时的气温抽取的样本温度分别为: 甲:26,28,29,31,31 乙:28,29,30,31,32;可得:甲地该月14时的平均气温:1(2628293131)295++++=,乙地该月14时的平均气温:1(2829303132)305++++=,故甲地该月14时的平均气温低于乙地该月14时的平均气温;甲地该月14时温度的方差为:(2222221[(2629)(2829)(2929)(3129)3129) 3.65S ⎤=-+-+-+-+-=⎦甲 乙地该月14时温度的方差为:(2222221[(2830)(2930)(3030)(3130)3230)25S ⎤=-+-+-+-+-=⎦乙, 故22S S >乙甲,所以甲地该月14时的气温的标准差大于乙地该月14时的气温标准差. 故选:B .【点评】本题考查数据的离散程度与茎叶图形状的关系,考查学生的计算能力,属于基础题18.(2015•陕西文理)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()A.93B.123C.137D.167【考点】收集数据的方法【分析】利用百分比,可得该校女教师的人数.【解答】解:初中部女教师的人数为11070%77⨯=,⨯=;高中部女教师的人数为15040%60+=,∴该校女教师的人数为7760137故选:C.【点评】本题考查该校女教师的人数,考查收集数据的方法,考查学生的计算能力,比较基础.19.(2015•四川文)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【考点】抽样方法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.︒数据的茎叶图如,则这组数据的中位数是( 20.(2015•重庆文理)重庆市2013年各月的平均气温(C))A.19B.20C.21.5D.23【考点】茎叶图【分析】根据中位数的定义进行求解即可.【解答】解:样本数据有12个,位于中间的两个数为20,20, 则中位数为2020202+=, 故选:B .【点评】本题主要考查茎叶图的应用,根据中位数的定义是解决本题的关键.比较基础.21.(2015•安徽理)若样本数据1x ,2x ,⋯,10x 的标准差为8,则数据121x -,221x -,⋯,1021x -的标准差为( ) A .8B .15C .16D .32【考点】极差、方差与标准差【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可. 【解答】解:样本数据1x ,2x ,⋯,10x 的标准差为8,∴8=,即64DX =,数据121x -,221x -,⋯,1021x -的方差为(21)4464D X DX -==⨯,16=, 故选:C .【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.22.(2016•新课标Ⅲ文理)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A 点表示十月的平均最高气温约为15C ︒,B 点表示四月的平均最低气温约为5C ︒,下面叙述不正确的是( )A .各月的平均最低气温都在0C ︒以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均最高气温高于20C︒的月份有5个【考点】进行简单的合情推理︒以上,正确【解答】解:A.由雷达图知各月的平均最低气温都在0CB.七月的平均温差大约在10︒左右,一月的平均温差在5︒左右,故七月的平均温差比一月的平均温差大,正确C.三月和十一月的平均最高气温基本相同,都为10︒,正确D.平均最高气温高于20C︒的月份有7,8两个月,故D错误,故选:D.【点评】本题主要考查推理和证明的应用,根据平均最高气温和平均最低气温的雷达图,利用图象法进行判断是解决本题的关键.23.(2016•山东文理)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )A.56B.60C.120D.140【考点】频率分布直方图【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.【解答】解:自习时间不少于22.5小时的频率为:(0.160.080.04) 2.50.7++⨯=,故自习时间不少于22.5小时的频数为:0.7200140⨯=,故选:D.【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.24.(2017•新课标Ⅰ文)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:)kg 分别是1x ,2x ,⋯,n x ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A .1x ,2x ,⋯,n x 的平均数B .1x ,2x ,⋯,n x 的标准差C .1x ,2x ,⋯,n x 的最大值D .1x ,2x ,⋯,n x 的中位数【考点】极差、方差与标准差【分析】利用平均数、标准差、最大值、中位数的定义和意义直接求解.【解答】解:在A 中,平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标, 故A 不可以用来评估这种农作物亩产量稳定程度;在B 中,标准差能反映一个数据集的离散程度,故B 可以用来评估这种农作物亩产量稳定程度; 在C 中,最大值是一组数据最大的量,故C 不可以用来评估这种农作物亩产量稳定程度; 在D 中,中位数将数据分成前半部分和后半部分,用来代表一组数据的“中等水平”, 故D 不可以用来评估这种农作物亩产量稳定程度. 故选:B .【点评】本题考查可以用来评估这种农作物亩产量稳定程度的量的判断,是基础题,解题时要认真审题,注意平均数、标准差、最大值、中位数的定义和意义的合理运用.25.(2017•新课标Ⅲ文理)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( ) A .月接待游客量逐月增加 B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月D .各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【考点】命题的真假判断与应用;频率分布折线图、密度曲线【分析】根据已知中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,逐一分析给定四个结论的正误,可得答案.【解答】解:由已有中2014年1月至2016年12月期间月接待游客量(单位:万人)的数据可得: 月接待游客量逐月有增有减,故A 错误; 年接待游客量逐年增加,故B 正确;各年的月接待游客量高峰期大致在7,8月,故C 正确;各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳,故D 正确; 故选:A .【点评】本题考查的知识点是数据的分析,命题的真假判断与应用,难度不大,属于基础题.26.(2017•山东文)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A .3,5B .5,5C .3,7D .5,7【考点】茎叶图【分析】由已知有中这两组数据的中位数相等,且平均值也相等,可得x ,y 的值. 【解答】解:由已知中甲组数据的中位数为65, 故乙组数据的中位数也为65, 即5y =,则乙组数据的平均数为:66, 故3x =, 故选:A .【点评】本题考查的知识点是茎叶图,平均数和中位数,难度不大,属于基础题.27.(2017•山东理)为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y 与x 之间有线性相关关系,设其回归直线方程为y b x a ∧∧∧=+,已知101225i i x ==∑,1011600i i y ==∑,4b ∧=,该班某学生的脚长为24,据此估计其身高为() A .160B .163C .166D .170【考点】线性回归方程【分析】由数据求得样本中心点,由回归直线方程必过样本中心点,代入即可求得ˆa,将24x =代入回归直线方程即可估计其身高.【解答】解:由线性回归方程为ˆˆ4y x a =+, 则101122.510i i x x ===∑,101116010i i y y ===∑,则数据的样本中心点(22.5,160),由回归直线方程样本中心点,则ˆˆ4160422.570a y x =-=-⨯=, ∴回归直线方程为ˆ470yx =+, 当24x =时,ˆ42470166y=⨯+=, 则估计其身高为166, 故选:C .【点评】本题考查回归直线方程的求法及回归直线方程的应用,考查计算能力,属于基础题.28.(2018•新课标Ⅰ文理)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是( ) A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半 【考点】命题的真假判断与应用;概率的应用【分析】设建设前经济收入为a ,建设后经济收入为2a .通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.【解答】解:设建设前经济收入为a ,建设后经济收入为2a .A 项,种植收入37%260%14%0a a a ⨯-=>,故建设后,种植收入增加,故A 项错误.B 项,建设后,其他收入为5%210%a a ⨯=,建设前,其他收入为4%a ,故10%4% 2.52÷=>,a a故B项正确.⨯=,C项,建设后,养殖收入为30%260%a a建设前,养殖收入为30%a,故60%30%2÷=,a a故C项正确.D项,建设后,养殖收入与第三产业收入总和为+⨯=⨯,a a(30%28%)258%2经济收入为2a,故(58%2)258%50%⨯÷=>,a a故D项正确.因为是选择不正确的一项,故选:A.【点评】本题主要考查事件与概率,概率的应用,命题的真假的判断,考查发现问题解决问题的能力.29.(2019•新课标Ⅲ文理)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并成为中国古典小说四大名著.某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【考点】简单随机抽样【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:700.7100=. 故选:C .【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题. 【点评】本题考查排列组合的综合应用.考查古典概型的计算.30.(2019新课标Ⅱ理5)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是( ) A .中位数B .平均数C .方差D .极差【考点】众数、中位数、平均数【分析】根据题意,由数据的数字特征的定义,分析可得答案.【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分, 7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变, 故选:A .【点评】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.31.(2019新课标Ⅰ文)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生 B .200号学生 C .616号学生 D .815号学生【考点】系统抽样方法【分析】根据系统抽样的特征,从1000名学生从中抽取一个容量为100的样本,抽样的分段间隔为10,结合从第4组抽取的号码为46,可得第一组用简单随机抽样抽取的号码. 【解答】解::从1000名学生从中抽取一个容量为100的样本,∴系统抽样的分段间隔为100010100=, 46号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列, 设其数列为{}n a ,则610(1)104n a n n =+-=-,。
授课资料范本三年高考高考数学真题分项汇编专题14概率与统计(选择题、填空题)文含分析编辑: __________________时间: __________________专题 14 概率与统计(选择题、填空题)1.【 2019 年高考全国Ⅲ卷文数】《西游》《三国演》《水》和《楼梦》是中国古典文学瑰宝,并称中国古典小四大名著.某中学认识本校学生四大名著的情况,随机了100 位学生,其中《西游》或《楼梦》的学生共有90 位,《楼梦》的学生共有80 位,《西游》且《楼梦》的学生共有60位,校《西游》的学生人数与校学生数比的估A.B.C.D.【答案】 C【分析】由意得,《西游》的学生人数90-80+60=70,其与校学生人数之比70÷.故 C.【名点睛】本考抽数据的,浸透了数据理和数学运算涵养.采用去重法,利用化与化思想解.2.【 2019 年高考全国Ⅰ卷文数】某学校认识 1 000 名再生的身体素,将些学生号1, 2,⋯, 1 000 ,从些再生中用系抽方法等距抽取100 名学生行体.若 46 号学生被抽到,下面 4 名学生中被抽到的是A.8 号学生B. 200 号学生C.616 号学生D. 815 号学生【答案】 C【分析】由已知将 1000 名学生分成 100 个,每 10 名学生,用系抽,46 号学生被抽到,因此第一抽到 6 号,且每抽到的学生号构成等差数列{ a n } ,公差d 10,因此a n 6 10n (n N),若861 n0 ,解得 n 1610n ,解得,不合意;若2005n 1 9. 4,不合意;若 616610n , n61,吻合意;若 815 610n, n 80.9 ,不合意.故 C.3.【 2019 年高考全国Ⅱ卷文数】生物室有 5 只兔子,其中只有 3 只量某指,若从 5 只兔子中随机取出 3 只,恰有 2 只量指的概率A.2B.3 35C.2D.1 55【答案】 B【分析】第一用列举法写出全部基本事件,从中确定吻合条件的基本事件数,应用古典概率的计算公式即可求解.【分析】设其中做过测试的 3 只兔子为a, b, c,节余的 2 只为A,B,则从这5只中任取3只的所有取法有{ a, b, c},{ a,b, A},{ a, b, B},{ a, c, A},{ a,c, B},{ a, A, B},{b, c, A} , { b, c, B},{ b, A, B},{ c, A, B} ,共10 种.其中恰有 2 只做过测试的取法有{ a,b, A},{ a,b, B},{ a, c, A},{ a,c, B}, { b, c, A},{ b, c, B},共 6 种,63因此恰有 2 只做过测试的概率为,应选 B.105【名师点睛】本题主要观察古典概率的求解,题目较易,侧重了基础知识、基本计算能力的观察.应用列举法写出全部基本事件过程中易于出现遗漏或重复,将兔子注明字母,利用“树图法”,可最大限度的防备出错.4.【 2018 年高考全国Ⅰ卷文数】某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地认识该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比率,获取以下饼图:建设前经济收入构成比率建设后经济收入构成比率则下面结论中不正确的选项是A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和高出了经济收入的一半【答案】 A【分析】设新农村建设前的收入为M,而新农村建设后的收入为2M,则新农村建设前种植收入为,而新农村建设后的种植收入为,因此种植收入增加了,因此 A 项不正确;新农村建设前其他收入为,新农村建设后其他收入为,故增加了一倍以上,因此 B 项正确;新农村建设前,养殖收入为,新农村建设后为,因此增加了一倍,因此 C 项正确;新农村建设后,养殖收入与第三产业收入的综合占经济收入的,因此高出了经济收入的一半,因此 D 正确;应选 A.5.【 2018 年高考全国Ⅱ卷文数】从 2 名男同学和 3 名女同学中任选 2 人参加社区服务,则选中的 2 人都是女同学的概率为A..BC..D【答案】 D【分析】设 2 名男同学为, 3 名女同学为,从以上 5 名同学中任选 2 人总合有,共 10 种可能,选中的 2 人都是女同学的情况共有,共 3 种可能,则选中的 2 人都是女同学的概率为,应选D.【名师点睛】应用古典概型求概率的步骤:第一步,判断本试验的结果可否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.6.【 2017 年高考全国Ⅰ卷文数】如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A.1B.π48C.1D.π24【答案】 B【分析】不如正方形 a ,由形的称性可知,太极中黑、白部分面相等,即各占面的一半.1π ( a )2由几何概型概率的算公式得,所求概率22π, B.a28【名点睛】于一个详尽可否用几何概型的概率公式算事件的概率,关在于能否将几何化,也可依照的详尽情况,取合适的参数建立合适的坐系,在此基上,将的每一果一一于坐系中的一点,使得全体果构成一个可胸襟的地区;别的,从几何概型的定可知,在几何概型中,“等可能”一理解于每个果的点落入某地区内的可能性大小,与地区的胸襟成正比,而与地区的地址、形状没关.7.【 2017 年高考全国Ⅰ卷文数】估一种作物的种植收效,了n 地作田. n 地的量(位: kg)分 x1,x2,⋯, x n,下面出的指中可以用来估种作物量定程度的是A.x1,x2,⋯, x n的平均数. x1,x2,⋯, x n的准差BC.x1,x2,⋯, x n的最大. x1,x2,⋯, x n的中位数D【答案】 B【分析】估种作物量定程度的指是准差或方差,故B.【名点睛】众数:一数据出次数最多的数叫众数,众数反响一数据的多数水平;中位数:一数据中的数(起到分水岭的作用),中位数反响一数据的中水平;平均数:反响一数据的平均水平;方差:反响一数据偏离平均数的程度,用来衡量一批数据的波大小(即批数据偏离平均数的大小).在本容量相同的情况下,方差越大,明数据的波越大,越不定.准差是方差的算平方根,意在于反响一数据的失散程度.8.【 2017 年高考山卷文数】如所示的茎叶了甲、乙两各 5 名工人某日的量数据(位:件).若两数据的中位数相等,且平均也相等,x 和 y 的分A.3,5B.5,5 C.3,7D.5,7【答案】 A【分析】由题意,甲组数据为56,62,65,70x ,,乙组数据为,,, 60y ,7459616778.要使两组数据的中位数相等,则6560y ,因此 y 5 ,又平均数相同,则56 62 65(70x)74 596167 6578,解得 x 3 .应选 A.55【名师点睛】由茎叶图可以清楚地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失;第二点是茎叶图便于记录和表示.缺点是当样本容量较大时,作图较烦杂.利用茎叶图对样本进行估计时,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.9.【 2017 年高考全国Ⅲ卷文数】某城市为认识游客人数的变化规律,提高旅游服务质量,收集并整理了20xx 年 1 月至 20xx 年 12 月期间月款待游客量(单位:万人)的数据,绘制了下面的折线图.依照该折线图,以下结论错误的选项是A.月款待游客量逐月增加B.年款待游客量逐年增加C.各年的月款待游客量巅峰期大体在7,8 月D.各年 1 月至 6 月的月款待游客量相关于7 月至 12 月,颠簸性更小,变化比较平稳【答案】 A【分析】由折线图,可知每年7 月到 8 月折线图呈下降趋势,月款待游客量减少, A 错误;折线图整体表现出增加的趋势,年款待游客量逐年增加, B 正确;每年的款待游客量7,8 月份达到最高点,即各年的月款待游客量巅峰期大体在7,8 月,C正确;每年 1 月至 6 月的月折线图平稳,月款待游客量颠簸性更小,7 月至 12 月折线图不平稳,月款待游客量颠簸性大,D正确.因此选 A.【名师点睛】用样本估计整体时统计图表主要有:(1)频率分布直方图,特点:频率分布直方图中各小长方形的面积等于对应区间的频率,全部小长方形的面积之和为 1;(2)频率分布折线图,连接频率分布直方图中各小长方形上端的中点,就获取频率分布折线图;(3)茎叶图,关于统计图表类题目,最重要的是认真观察图表,从中提炼出适用的信息和数据.10.【 2017 年高考天津卷文数】有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这 5 支彩笔中任取2 支不相同颜色的彩笔,则取出的 2 支彩笔中含有红色彩笔的概率为A.4B.3 55C.2D.1 55【答案】 C【分析】采用两支彩笔的方法有:红黄、红蓝、红绿、红紫、黄蓝、黄绿、黄紫、蓝绿、蓝紫、绿紫,共 10 种,含有红色彩笔的选法有:红黄、红蓝、红绿、红紫,共 4 种,由古典概型的概率计算公式,可得所求概率42P.应选 C.105【名师点睛】本题主要观察古典概型及其概率计算,属于基础题.解题时要正确理解题意,先要判断该概率模型可否是古典概型,尔后找出随机事件 A 包含的基本事件的个数n( A)和试验中基本事件的总数,代入公式P即可得解.n( )11.【 2017 年高考全国Ⅱ卷文数】从分别写有1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.1B.1 105C.3D.2 105【答案】 D【分析】以下表所示,表中的点的横坐标表示第一次取到的数,纵坐标表示第二次取到的数:12345 1(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)总计有 25 种情况,满足条件的有10 种.因此所求概率为102 .255【名师点睛】古典概型中基本事件数的研究方法:(1)列举法;(2)树状图法:合适于较为复杂的问题中的基本事件的研究.关于基本事件有“有序”与“无序”区其他题目,常采用树状图法;(3)列表法:适用于多元素基本事件的求解问题,经过列表把复杂的题目简单化、抽象的题目详尽化.12.【 2019 年高考全国Ⅱ卷文数】我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10 个车次的正点率为0.97 ,有 20 个车次的正点率为0.98 ,有 10 个车次的正点率为,则经停该站高铁列车全部车次的平均正点率的估计值为______________.【答案】【分析】本题观察经过统计数据进行概率的估计,采用估计法,利用概率思想解题.【分析】由题意得,经停该高铁站的列车正点数约为102010,其中高铁个数为 10 20 10 40,因此该站全部高铁平均正点率约为0.98 .40【名师点睛】本题观察了概率统计,浸透了数据办理和数学运算涵养,重视统计数据的概率估计,难度不大.易忽视概率的估计值不是精确值而失误,依照分类抽样的统计数据,估计出正点列车数量与列车总数的比值.13.【 2018 年高考全国Ⅲ卷文数】公司有大量客户,且不相同年龄段客户对其服务的议论有较大差别.为认识客户的议论,该公司准备进行抽样检查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是______________.【答案】分层抽样【分析】由于从不相同年龄段客户中抽取,故采用分层抽样,故答案为:分层抽样.14 .【 2019 年高考江苏卷】已知一组数据 6 , 7 , 8 , 8, 9, 10,则该组数据的方差是______________.【答案】5367889108 ,【分析】由题意,该组数据的平均数为6因此该组数据的方差是1[(68)2(7 8)2(88)2(88)2(9 8)2(10 8)2 ] 5 .6315.【 2018 年高考江苏卷】已知 5 位裁判给某运动员打出的分数的茎叶图以下列图,那么这5 位裁判打出的分数的平均数为______________.【答案】 90【分析】由茎叶图可知, 5 位裁判打出的分数分别为,故平均数为898990919190 .516.【 2018 年高考江苏卷】某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰好选中 2 名女生的概率为 ______________.【答案】310【分析】从 5 名学生中抽取 2 名学生,共有 10 种方法,其中恰好选中 2 名女生的方法有3 种,因此所求概率为3.1017.【 2017 年高考江苏卷】记函数 f ( x)6x x2的定义域为 D .在区间[ 4,5]上随机取一个数 x ,则x D 的概率是 ______________.【答案】59【分析】由 6 x x20 ,即 x2x 60,得2x 3 ,依照几何概型的概率计算公式3( 2)5得 x D 的概率是( 4).59【名师点睛】( 1)当试验的结果构成的地区为长度、面积或体积等时,应试虑使用几何概型求解;( 2)利用几何概型求概率时,要点是试验的全部结果构成的地区和事件发生的地区的搜寻,有时需要设出变量,在坐标系中表示所需要的地区;( 3)几何概型有两个特点:①无量性,②等可能性.基本事件可以抽象为点,尽管这些点是无量的,但它们所据有的地区都是有限的,因此可用“比率解法”求解.18.【 2017 年高考江苏卷】某工厂生产甲、乙、丙、丁四种不相同型号的产品,产量分别为200,400,300, 100 件.为检验产品的质量,现用分层抽样的方法从以上全部的产品中抽取 60 件进行检验,则应从丙种型号的产品中抽取______________件.【答案】 18【分析】应从丙种型号的产品中抽取6030018 件,故答案为.100018【名师点睛】在分层抽样的过程中,为了保证每个个体被抽到的可能性是相同的,这就要求各层所抽取的个体数与该层所包含的个体数之比等于样本容量与整体的个体数之比,即 n i∶N i=n∶N.。
专题16 概率与统计(解答题)(文科专用)1.【2022年全国甲卷】甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), P (K 2⩾k )0.100 0.050 0.010 k 2.7063.8416.6352.【2022年全国乙卷】某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i y i10i=1=0.2474. (1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =i n i=1i √∑(x i −x̅)2ni=1∑(y i−y ̅)2ni=1√1.896≈1.377.3.【2021年甲卷文科】甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++4.【2021年乙卷文科】某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x和y,样本方差分别记为21s和22s.(1)求x,y,21s,22s;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x-≥认为有显著提高).5.【2020年新课标1卷文科】某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务6.【2019年新课标1卷文科】某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.7.【2019年新课标2卷文科】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)8.602.8.【2018年新课标1卷文科】某家庭记录了未使用节水龙头50天的日用水量数据(单位:3m)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于30.35m的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)。
概率与统计 试题分类汇编(文科)分析解读 从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为 A. 0.3 B. 0.4 C. 0.6 D. 0.7 【答案】B2.【2018年全国卷II 文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为 A.B.C.D.【答案】D点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.3.【2017课标1,文4】如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π 4【答案】B【解析】【考点】几何概型【名师点睛】对于一个具体问题能否用几何概型的概率公式计算事件的概率,关键在于能否将问题几何化,也可根据实际问题的具体情况,选取合适的参数建立适当的坐标系,在此基础上,将实验的每一结果一一对应于该坐标系中的一点,使得全体结果构成一个可度量的区域;另外,从几何概型的定义可知,在几何概型中,“等可能”一词理解为对应于每个实验结果的点落入某区域内的可能性大小,仅与该区域的度量成正比,而与该区域的位置、形状无关.4. 【2017课标II,文11】从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C.310D.25【答案】D【名师点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.5.【2017课标1,文2】为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别为x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数【答案】B【名师点睛】众数:一组数据出现次数最多的数叫众数,众数反应一组数据的多数水平;中位数:一组数据中间的数,(起到分水岭的作用)中位数反应一组数据的中间水平;平均数:反应一组数据的平均水平;方差:方差是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)并把它叫做这组数据的方差.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定. 标准差是方差的算术平方根,意义在于反映一个数据集的离散程度.6. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为A. 3,5B. 5,5C. 3,7D. 5,7【答案】A试题分析:由题意,甲组数据为56,62,65,70x +,74,乙组数据为59,61,67,60y +,78.要使两组数据数相等,有6560y =+,所以5y =,又平均数相同,则566265(70)74596167657855x +++++++++=,解得3x =.故选A. 【名师点睛】由茎叶图可以清晰地看到数据的分布情况,这一点同频率分布直方图类似.它优于频率分布直方图的第一点是从茎叶图中能看到原始数据,没有任何信息损失,第二点是茎叶图便于记录和表示.其缺点是当样本容量较大时,作图较繁琐. 利用茎叶图对样本进行估计是,要注意区分茎与叶,茎是指中间的一列数,叶是从茎的旁边生长出来的数.7.【2017课标3,文3】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )A.月接待游客逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳【答案】A【考点】折线图【名师点睛】用样本估计总体时统计图表主要有频率分布直方图,(特点:频率分布直方图中各小长方形的面积等于对应区间概率,所有小长方形的面积之和为1); 2. 频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图. 3. 茎叶图.对于统计图表类题目,最重要的是认真观察图表,从中提炼有用的信息和数据.8. [2016高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为150C,B点表示四月的平均最低气温约为50C.下面叙述不正确的是()(A) 各月的平均最低气温都在00C以上 (B) 七月的平均温差比一月的平均温差大(C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B .9.【2016高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) (A )13 (B )12 (C )23 (D )56【答案】A 【解析】试题分析:将4中颜色的花种任选两种种在一个花坛中,余下2种种在另一个花坛,有6种种法,其中红色和紫色不在一个花坛的种数有4种,故概率为23,故选C. 考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. 10.甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( ) (A )65 (B )52 (C )61 (D )31【答案】A 【解析】11. 某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米). 【答案】1.76考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.12.从2、3、8、9任取两个不同的数值,分别记为a 、b ,则log a b 为整数的概率= . 【答案】16【解析】试题分析:从2,3,8,9中任取两个数记为,a b ,作为作为对数的底数与真数,共有2412A =个不同的基本事件,其中为整数的只有23log 8,log 9两个基本事件,所以其概率21126P ==. 考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,因此所有对数的个数就相当于4个数中任取两个的全排列,个数为44A ,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.13. 某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______. 【答案】16考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.14.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.15.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90点睛:的平均数为.16.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样17.【2018年新课标I卷文】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表使用了节水龙头50天的日用水量频数分布表(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)【答案】(1)直方图见解析.(2) 0.48.(3).详解:(1)点睛:该题考查的是有关统计的问题,涉及到的知识点有频率分布直方图的绘制、利用频率分布直方图计算变量落在相应区间上的概率、利用频率分布直方图求平均数,在解题的过程中,需要认真审题,细心运算,仔细求解,就可以得出正确结果.18.【2018年全国卷Ⅲ文】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,.【答案】(1)第二种生产方式的效率更高.理由见解析(2)超过不超过(3)有【解析】分析:(1)计算两种生产方式的平均时间即可。
2022年数学文高考真题分类汇编专题07概率与统计1.【2022高考新课标1文数】为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是()A.1125B.C.D.3236【答案】A【解析】考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举.2.【2022高考新课标2文数】某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.7533B.C.D.108810【答案】B【解析】试题分析:因为红灯持续时间为40秒.所以这名行人至少需要等待15秒才出现绿灯的概率为故选B.考点:几何概型.【名师点睛】对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法.3.[2022高考新课标Ⅲ文数]某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图.图中A点表示十月的平均最高气温约为15C,B点表示四月的平均最低气温约为5C.下面叙述不正确的是()40155,408A.各月的平均最低气温都在0C以上B.七月的平均温差比一月的平均温差大C.三月和十一月的平均最高气温基本相同D.平均气温高于20C的月份有5个【答案】D【解析】考点:1、平均数;2、统计图.【易错警示】解答本题时易错可能有两种:(1)对图形中的线条认识不明确,不知所措,只觉得是两把雨伞重叠在一起,找不到解决问题的方法;(2)估计平均温差时易出现错误,错选B.学优高考网4.[2022高考新课标Ⅲ文数]小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是()A.8111B.C.D.1581530【答案】C【解析】试题分析:开机密码的可能有(M,1),M(,2)M,(,3)M,(,M,4),(I,5)I,(,1)I,((,,4I2)),,((,I,53)(N,1),(N,2),(N,3),(N,4),(N, 5),共15种可能,所以小敏输入一次密码能够成功开机的概率是选C.考点:古典概型.1,故15【解题反思】对古典概型必须明确判断两点:①对于每个随机试验来说,所有可能出现的试验结果数n必须是有限个;②出现的各个不同的试验结果数m其可能性大小必须是相同的.只有在同时满足①、②的条件下,运用的古典概型计算公式P(A)m得出的结果才是正确的.n5.【2022高考山东文数】某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30).根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140【答案】D【解析】考点:频率分布直方图【名师点睛】本题主要考查频率分布直方图,是一道基础题目.从历年高考题目看,图表题已是屡见不鲜,作为一道应用题,考查考生的视图、用图能力,以及应用数学解决实际问题的能力.6.【2022高考天津文数】甲、乙两人下棋,两人下成和棋的概率是率为()(A)11,甲获胜的概率是,则甲不输的概2356(B)25(C)16(D)13【答案】A【解析】试题分析:甲不输概率为115.选A.236考点:概率【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率考查,属于简单题.运用概率加法的前提是事件互斥,不输包含赢与和,两种互斥,可用概率加法.对古典概型概率考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往采取计数其对立事件.7.【2022高考北京文数】从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.1289B.C.D.552525【答案】B考点:古典概型【名师点睛】如果基本事件的个数比较少,可用列举法把古典概型试验所含的基本事件一一列举出来,然后再求出事件A中的基本事件数,利用公式P(A)但列举时必须按照某一顺序做到不重不漏.如果基本事件个数比较多,列举有一定困难时,也可借助两个计数原理及排列组合知识直接计算m,n,再运用公式P(A)m求出事件A的概率,这是一个形象直观的好方法,nm求概率.学优高考网n8.【2022高考北京文数】某学校运动会的立定跳远和30秒跳绳两个单项比赛分成预赛和决赛两个阶段.下表为10名学生的预赛成绩,其中有三个数据模糊.【名师点睛】本题将统计与实际应用结合,创新味十足,是能力立意的好题,根据表格中数据分析排名的多种可能性,此题即是如此.列举的关键是要有序(有规律),从而确保不重不漏,另外注意条件中数据的特征.9.【2022高考北京文数】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店①第一天售出但第二天未售出的商品有______种;②这三天售出的商品最少有_______种.【答案】①16;②29【解析】考点:统计分析【名师点睛】本题将统计与实际情况结合,创新味十足,是能力立意的好题,关键在于分析商品出售的所有可能的情况,分类讨论做到不重复不遗漏,另外,注意数形结合思想的运用.学优高考网10.【2022高考四川文科】从2、3、8、9任取两个不同的数值,分别记为a、b,则oglab为整数的概率=.【答案】【解析】16考点:古典概型.【名师点睛】本题考查古典概型,解题关键是求出基本事件的总数,本题中所给数都可以作为对数的底面,4因此所有对数的个数就相当于4个数中任取两个的全排列,个数为A4,而满足题意的只有2个,由概率公式可得概率.在求事件个数时,涉及到排列组合的应用,涉及到两个有理的应用,解题时要善于分析.11.【2022高考上海文科】某食堂规定,每份午餐可以在四种水果中任选两种,则甲、乙两同学各自所选的两种水果相同的概率为______.【答案】161.6【解析】试题分析:将4种水果每两种分为一组,有C246种方法,则甲、乙两位同学各自所选的两种水果相同的概率为考点:.古典概型【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题能较好的考查考生数学应用意识、基本运算求解能力等.12.【2022高考上海文科】某次体检,6位同学的身高(单位:米)分别为1.72,1.78,1.75,1.80,1.69,1.77则这组数据的中位数是_________(米).【答案】1.76【解析】试题分析:将这6位同学的身高按照从矮到高排列为:1.69,1.72,1.75,1.77,1.78,1.80,这六个数的中位数是1.75与1.77的平均数,显然为1.76.考点:中位数的概念.【名师点睛】本题主要考查中位数的概念,是一道基础题目.从历年高考题目看,涉及统计的题目,往往不难,主要考查考生的视图、用图能力,以及应用数学解决实际问题的能力.13.【2022高考新课标1文数】(本小题满分12分)某公司计划购买1台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:频数2420221060161718192022更换的易损零件数记某表示1台机器在三年使用期内需更换的易损零件数,y表示1台机器在购买易损零件上所需的费用(单位:元),n表示购机的同时购买的易损零件数.(I)若n=19,求y与某的函数解析式;(II)若要求“需更换的易损零件数不大于n”的频率不小于0.5,求n的最小值;(III)假设这100台机器在购机的同时每台都购买19个易损零件,或每台都购买20个易损零件,分别计算这100台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买19个还是20个易损零件?【答案】(I)y【解析】,某19,3800(某N)(II)19(III)19,某19,500某5700(Ⅱ)由柱状图知,需更换的零件数不大于18的概率为0.46,不大于19的概率为0.7,故n的最小值为19.(Ⅲ)若每台机器在购机同时都购买19个易损零件,则这100台机器中有70台在购买易损零件上的费用为3800,20台的费用为4300,10台的费用为4800,因此这100台机器在购买易损零件上所需费用的平均数为【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂题意,所以提醒考生要重视数学中的阅读理解问题.学优高考网14.【2022高考新课标2文数】某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数保费0123452a0.85aa1.25a1.5a1.75a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数频数060150230330420510(Ⅰ)记A为事件:“一续保人本年度的保费不高于基本保费”.求P(A)的估计值;(Ⅱ)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”.求P(B)的估计值;(III)求续保人本年度的平均保费估计值.【答案】(Ⅰ)由公式求解.【解析】60503030求P(A)的估计值;(Ⅱ)由求P(B)的估计值;(III)根据平均值得计算200200(Ⅱ)事件B发生当且仅当一年内出险次数大于1且小于4.由是给数据知,一年内出险次数大于1且小于4的频率为30300.3,200故P(B)的估计值为0.3.(Ⅲ)由题所求分布列为:保费频率0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.05调查200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.302a0.101.1925a,因此,续保人本年度平均保费估计值为 1.1925a.考点:样本的频率、平均值的计算.【名师点睛】样本的数字特征常见的命题角度有:(1)样本的数字特征与直方图交汇;(2)样本的数字特征与茎叶图交汇;(3)样本的数字特征与优化决策问题.15.[2022高考新课标Ⅲ文数]下图是我国2022年至2022年生活垃圾无害化处理量(单位:亿吨)的折线图(I)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;(II)建立y关于t的回归方程(系数精确到0.01),预测2022年我国生活垃圾无害化处理量.附注:参考数据:yi9.32,tiyi40.17,i1i1772(yy)0.55,7≈2.646.ii17参考公式:相关系数r(tt)(yy)iii1n(tt)(y2ii1i1nn,iy)2b中斜率和截距的最小二乘估计公式分别为:回归方程yab(ti1nit)(yiy)i(ti1nybt.,at)2【答案】(Ⅰ)理由见解析;(Ⅱ)1.82亿吨.【解析】考点:线性相关与线性回归方程的求法与应用.【方法点拨】(1)判断两个变量是否线性相关及相关程度通常有两种方法:(1)利用散点图直观判断;(2)将相关数据代入相关系数r公式求出r,然后根据r的大小进行判断.求线性回归方程时在严格按照公式求解时,一定要注意计算的准确性.学优高考网16.【2022高考北京文数】(本小题13分)某市民用水拟实行阶梯水价,每人用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费,从该市随机调查了10000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(I)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(II)假设同组中的每个数据用该组区间的右端点值代替,当w=3时,估计该市居民该月的人均水费.【答案】(Ⅰ)3;(Ⅱ)10.5元.【解析】所以该月用水量不超过3立方米的居民占85%,用水量不超过2立方米的居民占45%.依题意,w至少定为3.考点:频率分布直方图求频率,频率分布直方图求平均数的估计值.【名师点睛】1.用样本估计总体是统计的基本思想,而利用频率分布表和频率分布直方图来估计总体则是用样本的频率分布去估计总体分布的两种主要方法.分布表在数量表示上比较准确,直方图比较直观.2.频率分布表中的频数之和等于样本容量,各组中的频率之和等于1;在频率分布直方图中,各小长方形的面积表示相应各组的频率,所以,所有小长方形的面积的和等于1.17.【2022高考山东文数】(本小题满分12分)某儿童乐园在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.设两次记录的数分别为某,y.奖励规则如下:①若某y3,则奖励玩具一个;②若某y8,则奖励水杯一个;③其余情况奖励饮料一瓶.假设转盘质地均匀,四个区域划分均匀.小亮准备参加此项活动.(I)求小亮获得玩具的概率;(II)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.【答案】()【解析】5.()小亮获得水杯的概率大于获得饮料的概率.16所以,PB63.168则事件C包含的基本事件共有5个,即1,4,2,2,2,3,3,2,4,1,所以,PC因为5.1635,816所以,小亮获得水杯的概率大于获得饮料的概率.考点:古典概型学优高考网【名师点睛】本题主要考查古典概型概率的计算.解答本题,关键在于能准确确定所研究对象的基本事件空间、基本事件个数,利用概率的计算公式求解.本题较易,能较好的考查考生数学应用意识、基本运算求解能力等.18.【2022高考四川文科】(12分)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5]分成9组,制成了如图所示的频率分布直方图.(I)求直方图中的a值;(II)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数.说明理由;(Ⅲ)估计居民月均用水量的中位数.【答案】(Ⅰ)a0.30;(Ⅱ)36000;(Ⅲ)2.04.【解析】试题分析:(Ⅰ)由高某组距=频率,计算每组中的频率,因为所有频率之和为1,计算出a的值;(Ⅱ)利用高某组距=频率,先计算出每人月均用水量不低于3吨的频率,再利用频率某样本总数=频数,计算所求人数;(Ⅲ)将前5组的频率之和与前4组的频率之和进行比较,得出2≤某<2.5,再进行计算.试题解析:(Ⅰ)由频率分布直方图,可知:月用水量在[0,0.5]的频率为0.08某0.5=0.04.同理,在[0.5,1),(1.5,2],[2,2.5),[3,3.5),[3.5,4),[4,4.5)等组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1–(0.04+0.08+0.21+.025+0.06+0.04+0.02)=0.5某a+0.5某a,解得a=0.30.考点:频率分布直方图、频率、频数的计算公式【名师点睛】本题主要考查频率分布直方图、频率、频数的计算公式等基础知识,考查学生的分析问题解决问题的能力.在频率分布直方图中,第个小矩形面积就是相应的频率或概率,所有小矩形面积之和为1,这是解题的关键,也是识图的基础.。
专题十三 概率统计(2019·全国Ⅰ文科)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是 A. 8号学生 B. 200号学生C. 616号学生D. 815号学生 【答案】C【分析】等差数列的性质.渗透了数据分析素养.使用统计思想,逐个选项判断得出答案. 【详解】详解:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差, 所以,若,则,不合题意;若,则,不合题意; 若,则,符合题意;若,则,不合题意.故选C .【点睛】本题主要考查系统抽样.(2019·全国Ⅱ文科)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A.B.C. D.【答案】B【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,{}n a 10d =610n a n=+()n *∈N 8610n =+15n =200610n =+19.4n =616610n =+60n =815610n =+80.9n =23352515,,a b c ,A B {,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B共10种.其中恰有2只做过测试的取法有共6种,所以恰有2只做过测试的概率为,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.(2019·全国Ⅲ文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A.B.C.D.【答案】D【分析】男女生人数相同可利用整体发分析出两位女生相邻的概率,进而得解.【详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是.故选D . 【点睛】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.(2019·全国Ⅲ文科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A. B.C.D.【答案】C【分析】根据题先求出阅读过西游记的人数,进而得解.【详解】由题意得,阅读过《西游记》的学生人数为90-80+60=70,则其与该校学生人数之比为70÷100=0.7.故选C . 【点睛】本题考查抽样数据的统计,渗透了数据处理和数学运算素养.采取去重法,利用转化与化归思想解题.{,c,},{,c,},{b,,},{c,,}b A b B A B A B {,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 6310516141312120.50.60.70.8(2019·全国Ⅱ文科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________. 【答案】0.98.【分析】本题考查通过统计数据进行概率的估计,采取估算法,利用概率思想解题. 【详解】由题意得,经停该高铁站的列车正点数约为,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为. 【点睛】本题考点为概率统计,渗透了数据处理和数学运算素养.侧重统计数据的概率估算,难度不大.易忽视概率的估算值不是精确值而失误,根据分类抽样的统计数据,估算出正点列车数量与列车总数的比值.(2019·浙江)设,则随机变量的分布列是:则当在内增大时( ) A. 增大 B. 减小C. 先增大后减小D. 先减小后增大【答案】D【分析】研究方差随变化的增大或减小规律,常用方法就是将方差用参数表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为的二次函数,二测函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查. 【详解】方法1:由分布列得,则 ,则当在内增大时,先减小后增大.方法2:则100.97200.98100.9939.2⨯+⨯+⨯=39.20.9840=01a <<X a ()0,1()D X ()D X ()D X ()D X a a a 1()3aE X +=2222111111211()01333333926a a a D X a a +++⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+-⨯+-⨯=-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭a (0,1)()D X故选D.【点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.(2019·江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是____. 【答案】53. 【分析】由题意首先求得平均数,然后求解方差即可. 【详解】由题意,该组数据的平均数为678891086+++++=,所以该组数据的方差是22222215[(68)(78)(88)(88)(98)(108)]63-+-+-+-+-+-=. 【点睛】本题主要考查方差的计算公式,属于基础题.(2019·江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____. 【答案】710. 【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况, 若选出的2名学生都是女生,有221C =种情况, 所以所求的概率为6171010+=. 【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.(2019·全国Ⅰ文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:()222221(1)222213()()03399924a a a a D X E X E X a ⎡⎤+-+⎛⎫=-=++-==-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:.【解析】(1)从题中所给的列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有的把握认为男、女顾客对该商场服务的评价有差异.【解】:(1)由调查数据,男顾客中对该商场服务满意的比率为,因此男顾客对该商场服务满意的概率的估计值为0.8. 女顾客中对该商场服务满意的比率为,因此女顾客对该商场服务满意的概率的估计值为0.6.(2). 由于,故有95%的把握认为男、女顾客对该商场服务的评价有差异. 【点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算的值,独立性检验,属于简单题目.(2019·全国Ⅱ文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.22()()()()()n ad bc K a b c d a c b d -=++++22⨯95%400.850=300.650=22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯4.762 3.841>2K(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例; (2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01).【解析】(1)本题首先可以通过题意确定个企业中增长率超过的企业以及产值负增长的企业的个数,然后通过增长率超过的企业以及产值负增长的企业的个数除随机调查的企业总数即可得出结果;(2)可通过平均值以及标准差的计算公式得出结果。
2014-2019年高考数学真题分类汇编专题13:概率与统计(文科选择填空)(一)(一)概率选择题1.(2014•湖北文)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2p ,点数之和为偶数的概率记为3p ,则( ) A .123p p p <<B .213p p p <<C .132p p p <<D .312p p p <<【考点】古典概型及其概率计算公式【分析】首先列表,然后根据表格点数之和不超过5,点数之和大于5,点数之和为偶数情况,再根据概率公式求解即可. 【解答】解:列表得:∴一共有36种等可能的结果,∴两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,∴向上的点数之和不超过5的概率记为11053618p ==,点数之和大于5的概率记为226133618p ==,点数之和为偶数的概率记为3181362p ==, 132p p p ∴<<故选:C .【点评】本题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比.2.(2014•湖南文)在区间[2-,3]上随机选取一个数X ,则1X …的概率为( )A .45 B .35C .25 D .15【考点】几何概型【分析】利用几何槪型的概率公式,求出对应的区间长度,即可得到结论. 【解答】解:在区间[2-,3]上随机选取一个数X , 则23X -剟, 则1X …的概率1(2)33(2)5P --==--,故选:B .【点评】本题主要考查几何槪型的概率的计算,求出对应的区间长度是解决本题的关键,比较基础. 3.(2014•辽宁文)若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .2π B .4π C .6π D .8π 【考点】几何概型【分析】利用几何槪型的概率公式,求出对应的图形的面积,利用面积比即可得到结论. 【解答】解:2AB =,1BC =,∴长方体的ABCD 的面积122S =⨯=,圆的半径1r =,半圆的面积2S π=,则由几何槪型的概率公式可得质点落在以AB 为直径的半圆内的概率是224ππ=,故选:B .【点评】本题主要考查几何槪型的概率的计算,求出对应的图形的面积是解决本题的关键,比较基础. 4.(2014•江西文)掷两颗均匀的骰子,则点数之和为5的概率等于( ) A .118B .19C .16D .112【考点】古典概型及其概率计算公式【分析】本题是一个求概率的问题,考查事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”这是一个古典概率模型,求出所有的基本事件数N 与事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”包含的基本事件数n ,再由公式nN求出概率得到答案【解答】解:抛掷两颗骰子所出现的不同结果数是6636⨯=事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件有(1,4),(2,3),(3,2),(4,1)共四种故事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”的概率是41 369=,故选:B.【点评】本题是一个古典概率模型问题,解题的关键是理解事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”,由列举法计算出事件所包含的基本事件数,判断出概率模型,理解求解公式nN是本题的重点,正确求出事件“抛掷两颗骰子,所得两颗骰子的点数之和为5”所包含的基本事件数是本题的难点.5.(2014•陕西文理)从正方形四个顶点及其中心这5个点中任取2个点,则这2个点的距离小于该正方形边长的概率为()A.15B.25C.35D.45【考点】几何概型【分析】设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4条长度为2【解答】解:设正方形边长为1,则从正方形四个顶点及其中心这5个点中任取2个点,共有10条线段,4条长度为1,4,∴所求概率为42 105=.故选:B.【点评】本题考查概率的计算,列举基本事件是关键.6.(2015•新课标Ⅰ文)如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为()A.310B.15C.110D.120【考点】列举法计算基本事件数及事件发生的概率【分析】一一列举出所有的基本事件,再找到勾股数,根据概率公式计算即可.【解答】解:从1,2,3,4,5中任取3个不同的数,有(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)(2,3,4),(2,3,5),(2,4,5),(3,4,5)共10种,其中只有(3,4,5)为勾股数,故这3个数构成一组勾股数的概率为110.故选:C .【点评】本题考查了古典概型概率的问题,关键是不重不漏的列举出所有的基本事件,属于基础题. 7.(2015•福建文)如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数1,0()11,02x x f x x x +⎧⎪=⎨-+<⎪⎩…的图象上,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A .16B .14 C .38D .12【考点】几何概型【分析】由题意易得矩形和三角形顶点的坐标,进而可得面积,由几何概型可得. 【解答】解:由题意可得(1,0)B ,把1x =代入1y x =+可得2y =,即(1,2)C , 把0x =代入1y x =+可得1y =,即图中阴影三角形的第3个定点为(0,1), 令1122x -+=可解得2x =-,即(2,2)D -,∴矩形的面积326S =⨯=,阴影三角形的面积133122S '=⨯⨯=, ∴所求概率14S P S '== 故选:B .【点评】本题考查几何概型,涉及面积公式和分段函数,属基础题.8.(2015•广东文)已知5件产品中有2件次品,其余为合格品.现从这5件产品中任取2件,恰有一件次品的概率为( ) A .0.4B .0.6C .0.8D .1【考点】古典概型及其概率计算公式【分析】首先判断这是一个古典概型,而基本事件总数就是从5件产品任取2件的取法,取到恰有一件次品的取法可利用分步计数原理求解,最后带入古典概型的概率公式即可. 【解答】解:这是一个古典概型,从5件产品中任取2件的取法为2510=ð;∴基本事件总数为10;设“选的2件产品中恰有一件次品”为事件A ,则A 包含的基本事件个数为11326=痧;P ∴(A )630.6105===. 故选:B .【点评】考查古典概型的概念,以及古典概型的概率求法,明白基本事件和基本事件总数的概念,掌握组合数公式,分步计数原理.9.(2015•湖北文)在区间[0,1]上随机取两个数x ,y ,记1p 为事件“12x y +…”的概率,2P 为事件“12xy …”的概率,则( ) A .1212p p <<B .1212p p << C .2112p p << D .2112p p << 【考点】几何概型【分析】分别求出事件“12x y +…”和事件“12xy …”对应的区域,然后求出面积,利用几何概型公式求出概率,比较大小.【解答】解:由题意,事件“12x y +…”表示的区域如图阴影三角形,1111122218p ⨯⨯==; 满足事件“12xy …”的区域如图阴影部分所以1112212111111122|(12)12222dxxp lnx ln ⨯+==+=+>⎰;所以1212p p <<; 故选:B .【点评】本题考查了几何概型的公式运用;关键是分别求出阴影部分的面积,利用几何概型公式解答. 10.(2015•山东文)在区间[0,2]上随机地取一个数x ,则事件“1211log ()12x -+剟”发生的概率为( ) A .34B .23 C .13D .14【考点】几何概型 【专题】概率与统计【解答】解:利用几何概型,其测度为线段的长度. 1211log ()12x -+剟∴11222x +剟 解得302x剟, 02x 剟302x∴剟 ∴所求的概率为:33224P ==故选:A .【点评】本题主要考查了几何概型,如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.11.(2015•陕西文理)设复数(1)(z x yi x =-+,)y R ∈,若||1z …,则y x …的概率为( ) A .3142π+B .112π+ C .1142π-D .112π- 【考点】复数的代数表示法及其几何意义;几何概型 【分析】判断复数对应点图形,利用几何概型求解即可.【解答】解:复数(1)(z x yi x =-+,)y R ∈,若||1z …,它的几何意义是以(1,0)为圆心,1为半径的圆以及内部部分.y x …的图形是图形中阴影部分,如图:复数(1)(z x yi x =-+,)y R ∈,若||1z …,则y x …的概率:1111114242πππ-⨯⨯=-. 故选:C .【点评】本题考查复数的几何意义,几何概型的求法,考查计算能力以及数形结合的能力.12.(2016•新课标Ⅰ文)为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( ) A .13B .12C .23D .56【考点】古典概型及其概率计算公式【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【解答】解:从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有246C =种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为4263=. 另解:由列举法可得,红、黄、白、紫记为1,2,3,4, 即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12), 则4263P ==. 故选:C .【点评】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础. 13.(2016•新课标Ⅰ理)某公司的班车在7:00,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是( ) A .13B .12C .23D .34【考点】几何概型【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案.【解答】解:设小明到达时间为y , 当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==, 故选:B .【点评】本题考查的知识点是几何概型,难度不大,属于基础题.14.(2016•新课标Ⅱ文)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为( ) A .710B .58C .38D .310【考点】几何概型【分析】求出一名行人前25秒来到该路口遇到红灯,即可求出至少需要等待15秒才出现绿灯的概率. 【解答】解:红灯持续时间为40秒,至少需要等待15秒才出现绿灯,∴一名行人前25秒来到该路口遇到红灯,∴至少需要等待15秒才出现绿灯的概率为255408=. 故选:B .【点评】本题考查概率的计算,考查几何概型,考查学生的计算能力,比较基础.15.(2016•新课标Ⅱ理)从区间[0,1]随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y 构成n 个数对1(x ,1)y ,2(x ,2)(n y x ⋯,)n y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为( ) A .4nmB .2n mC .4mnD .2mn【考点】几何概型【分析】以面积为测度,建立方程,即可求出圆周率π的近似值.【解答】解:由题意,两数的平方和小于1,对应的区域的面积为2114π,从区间[0,1】随机抽取2n 个数1x ,2x ,⋯,n x ,1y ,2y ,⋯,n y ,构成n 个数对1(x ,1)y ,2(x ,2)y ,⋯,(n x ,)n y ,对应的区域的面积为21. ∴221141mn π= 4mnπ∴=.故选:C .【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到. 16.(2016•新课标Ⅲ文)小敏打开计算机时,忘记了开机密码的前两位,只记得第一位是M ,I ,N 中的一个字母,第二位是1,2,3,4,5中的一个数字,则小敏输入一次密码能够成功开机的概率是() A .815B .18C .115D .130【考点】列举法计算基本事件数及事件发生的概率【分析】列举出从M ,I ,N 中任取一个字母,再从1,2,3,4,5中任取一个数字的基本事件数,然后由随机事件发生的概率得答案.【解答】解:从M ,I ,N 中任取一个字母,再从1,2,3,4,5中任取一个数字,取法总数为: (,1)M ,(,2)M ,(,3)M ,(,4)M ,(,5)M ,(,1)I ,(,2)I ,(,3)I ,(,4)I ,(,5)I ,(,1)N ,(,2)N ,(,3)N ,(,4)N ,(,5)N 共15种.其中只有一个是小敏的密码前两位.由随机事件发生的概率可得,小敏输入一次密码能够成功开机的概率是115. 故选:C .【点评】本题考查随机事件发生的概率,关键是列举基本事件总数时不重不漏,是基础题. 17.(2016•天津文)甲、乙两人下棋,两人下成和棋的概率是12,甲获胜的概率是13,则甲不输的概率为( )A.56B.25C.16D.13【考点】古典概型及其概率计算公式【分析】利用互斥事件的概率加法公式即可得出.【解答】解:甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率115326P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.18.(2016•北京文)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为()A.15B.25C.825D.925【考点】古典概型及其概率计算公式【分析】从甲、乙等5名学生中随机选出2人,先求出基本事件总数,再求出甲被选中包含的基本事件的个数,同此能求出甲被选中的概率.【解答】解:从甲、乙等5名学生中随机选出2人,基本事件总数2510n C==,甲被选中包含的基本事件的个数11144m C C==,∴甲被选中的概率42105mpn===.故选:B.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.19.(2017•新课标Ⅰ文理)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()A.14B.8πC.12D.4π【考点】几何概型【分析】根据图象的对称性求出黑色图形的面积,结合几何概型的概率公式进行求解即可.【解答】解:根据图象的对称性知,黑色部分为圆面积的一半,设圆的半径为1,则正方形的边长为2, 则黑色部分的面积2S π=,则对应概率248P ππ==,故选:B .【点评】本题主要考查几何概型的概率计算,根据对称性求出黑色阴影部分的面积是解决本题的关键. 20.(2017•新课标Ⅱ文)从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为( ) A .110B .15C .310D .25【考点】古典概型及其概率计算公式【分析】先求出基本事件总数5525n =⨯=,再用列举法求出抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件个数,由此能求出抽得的第一张卡片上的数大于第二张卡片上的数的概率. 【解答】解:从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张, 基本事件总数5525n =⨯=,抽得的第一张卡片上的数大于第二张卡片上的数包含的基本事件有: (2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共有10m =个基本事件,∴抽得的第一张卡片上的数大于第二张卡片上的数的概率102255p ==. 故选:D .【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.21.(2017•天津文)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( ) A .45B .35C .25 D .15【考点】列举法计算基本事件数及事件发生的概率【分析】先求出基本事件总数2510n C ==,再求出取出的2支彩笔中含有红色彩笔包含的基本事件个数11144m C C ==,由此能求出取出的2支彩笔中含有红色彩笔的概率.【解答】解:有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫, 从这5支彩笔中任取2支不同颜色的彩笔,基本事件总数2510n C ==,取出的2支彩笔中含有红色彩笔包含的基本事件个数11144m C C ==, ∴取出的2支彩笔中含有红色彩笔的概率为42105m p n ===. 故选:C .【点评】本小题主要考查概率、古典概型、排列组合等基础知识,考查运算求解能力和推理论证能力,是基础题.22.(2018•新课标Ⅱ文)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为( ) A .0.6B .0.5C .0.4D .0.3【考点】排列、组合及简单计数问题【分析】(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有2510C =种,其中全是女生的有233C =种,根据概率公式计算即可,(适合文科生),设2名男生为a ,b ,3名女生为A ,B ,C ,则任选2人的种数为ab ,aA ,aB ,aC ,bA ,bB ,Bc ,AB ,AC ,BC 共10种,其中全是女生为AB ,AC ,BC 共3种,根据概率公式计算即可【解答】解:(适合理科生)从2名男同学和3名女同学中任选2人参加社区服务,共有2510C =种,其中全是女生的有233C =种, 故选中的2人都是女同学的概率30.310P ==, (适合文科生),设2名男生为a ,b ,3名女生为A ,B ,C ,则任选2人的种数为ab ,aA ,aB ,aC ,bA ,bB ,Bc ,AB ,AC ,BC 共10种,其中全是女生为AB ,AC ,BC 共3种,故选中的2人都是女同学的概率30.310P ==, 故选:D .【点评】本题考查了古典概率的问题,采用排列组合或一一列举法,属于基础题.23.(2018•新课标Ⅰ理10)如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC ∆的三边所围成的区域记为I ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为1p ,2p ,3p ,则( )A .12p p =B .13p p =C .23p p =D .123p p p =+【考点】几何概型【分析】如图:设12BC r =,22AB r =,32AC r =,分别求出Ⅰ,Ⅱ,Ⅲ所对应的面积,即可得到答案. 【解答】解:如图:设12BC r =,22AB r =,32AC r =,222123r r r ∴=+,23231422S r r r r ∴=⨯=Ⅰ,2123122S r r r π=⨯-Ⅲ,22222323212323111112222222S r r S r r r r r r r πππππ=⨯+⨯-=⨯+⨯-⨯+=ⅡⅢ,S S ∴=ⅠⅡ, 12P P ∴=,故选:A .【点评】本题考查了几何概型的概率问题,关键是求出对应的面积,属于基础题.24.(2019•新课标Ⅲ文3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14 C .13D .12【考点】古典概型及其概率计算公式;排列组合【分析】利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再 全部排列找到分母,可得到答案.【解答】解:用捆绑法将两女生捆绑在一起作为一个人排列,有323212A A =种排法, 再所有的4个人全排列有:4424A =种排法, 利用古典概型求概率原理得:121242p ==, 故选:D .25.(2019•新课标Ⅰ理6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116【考点】古典概型及其概率计算公式【分析】基本事件总数6264n==,该重卦恰有3个阳爻包含的基本个数336320m C C==,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数6264n==,该重卦恰有3个阳爻包含的基本个数336320m C C==,则该重卦恰有3个阳爻的概率2056416mpn===.故选:A.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.26.(2019新课标Ⅱ文4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.15【考点】古典概型及其概率计算公式【分析】本题根据组合的概念可知从这5只兔子中随机取出3只的所有情况数为35C,恰有2只测量过该指标是从3只侧过的里面选2,从未测的选1,组合数为2132C C.即可得出概率.【解答】解:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为35C,恰有2只测量过该指标的所有情况数为2132C C.21 32 3 53 5C CpC∴==.故选:B.【点评】本题主要考查组合的相关概念及应用以及简单的概率知识,本题属基础题.填空题1.(2014•新课标Ⅰ文)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为23.【考点】古典概型及其概率计算公式【分析】首先求出所有的基本事件的个数,再从中找到2本数学书相邻的个数,最后根据概率公式计算即可.【解答】解:2本不同的数学书和1本语文书在书架上随机排成一行,所有的基本事件有共有336A=种结果,其中2本数学书相邻的有(数学1,数学2,语文),(数学2,数学1,语文),(语文,数学1,数学2),(语文,数学2,数学1)共4个,故本数学书相邻的概率4263P==.故答案为:23.【点评】本题考查了古典概型的概率公式的应用,关键是不重不漏的列出满足条件的基本事件.2.(2014•新课标Ⅱ文)甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为13.【考点】相互独立事件和相互独立事件的概率乘法公式【分析】所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种,由此求得他们选择相同颜色运动服的概率.【解答】解:所有的选法共有339⨯=种,而他们选择相同颜色运动服的选法共有3种,故他们选择相同颜色运动服的概率为31 93 =,故答案为:13.【点评】本题主要考查相互独立事件的概率乘法公式,属于基础题.3.(2014•福建文)如图,在边长为1的正方形中随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为0.18.【考点】几何概型【分析】根据几何槪型的概率意义,即可得到结论.【解答】解:正方形的面积1S=,设阴影部分的面积为S,随机撒1000粒豆子,有180粒落到阴影部分,∴几何槪型的概率公式进行估计得1800.18 11000S==,即0.18S=,故答案为:0.18.【点评】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.4.(2014•广东文)从字母a,b,c,d,e中任取两个不同字母,则取到字母a的概率为25.【考点】等可能事件和等可能事件的概率【分析】求得从字母a,b,c,d,e中任取两个不同字母、取到字母a的情况,利用古典概型概率公式求解即可.【解答】解:从字母a,b,c,d,e中任取两个不同字母,共有2510C=种情况,取到字母a,共有144C=种情况,∴所求概率为42 105=.故答案为:25.【点评】本题考查古典概型,是一个古典概型与排列组合结合的问题,解题时先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数.5.(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是13.【考点】古典概型及其概率计算公式【分析】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.【解答】解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率2163P==.故答案为:13.【点评】本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.6.(2014•重庆文)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为932(用数字作答).【考点】几何概型【分析】设小张到校的时间为x,小王到校的时间为y.(,)x y可以看成平面中的点试验的全部结果所构成的区域为{(xΩ=,|3050y x剟,3050}y剟是一个矩形区域,则小张比小王至少早5分钟到校事件{(,)|5}A x y y x=-…作出符合题意的图象,由图根据几何概率模型的规则求解即可.【解答】解:设小张到校的时间为x,小王到校的时间为y.(,)x y可以看成平面中的点试验的全部结果所构成的区域为{(xΩ=,|3050y x剟,3050}y剟是一个矩形区域,对应的面积2020400S=⨯=,则小张比小王至少早5分钟到校事件{|5}A x y x=-…作出符合题意的图象,则符合题意的区域为ABC∆,联立550y xy-=⎧⎨=⎩得(45,50)C,联立530y xx-=⎧⎨=⎩得(30,35)B,则115152ABCS∆=⨯⨯,由几何概率模型可知小张比小王至少早5分钟到校的概率为1151592202032⨯⨯=⨯,故答案为:932.【点评】本题考查几何概率模型与模拟方法估计概率,求解的关键是掌握两种求概率的方法的定义及规则,求出对应区域的面积是解决本题的关键.7.(2014•浙江文)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是13.【考点】古典概型及其概率计算公式【分析】总共有9种可能,求出所获奖项有几种可能,根据概率公式进行计算即可.【解答】解:设一、二等奖各用A,B表示,另1张无奖用C表示,甲、乙两人各抽取1张的基本事件有AB,AC,BA,BC,CA,CB共6个,其中两人都中奖的有AB,BA共2个,故所求的概率2163P ==. 【点评】本题主要考查了古典概型的概率的公式的应用,关键是不重不漏的列出所有的基本事件. 8.(2015•重庆文)区间[0,5]上随机地选择一个数p ,则方程22320x px p ++-=有两个负根的概率为23. 【考点】几何概型【分析】由一元二次方程根的分布可得p 的不等式组,解不等式组,由长度之比可得所求概率.【解答】解:方程22320x px p ++-=有两个负根等价于2121244(32)020320p p x x p x x p ⎧=--⎪+=-<⎨⎪=->⎩…,解关于p 的不等式组可得213p <…或2p …, ∴所求概率215223503P -+-==-故答案为:23【点评】本题考查几何概型,涉及一元二次方程根的分布,属基础题.9.(2015•江苏)袋中有形状、大小都相同的4只球,其中1只白球、1只红球、2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为56. 【考点】列举法计算基本事件数及事件发生的概率【分析】根据题意,把4个小球分别编号,用列举法求出基本事件数,计算对应的概率即可. 【解答】解:根据题意,记白球为A ,红球为B ,黄球为1C 、2C ,则 一次取出2只球,基本事件为AB 、1AC 、2AC 、1BC 、2BC 、12C C 共6种, 其中2只球的颜色不同的是AB 、1AC 、2AC 、1BC 、2BC 共5种; 所以所求的概率是56P =, 故答案为:56. 【点评】本题考查了用列举法求古典概型的概率的应用问题,是基础题目. 10.(2016•四川文)从2,3,8,9中任取两个不同的数字,分别记为a ,b ,则l o g a b 为整数的概率是16. 【考点】古典概型及其概率计算公式【分析】由已知条件先求出基本事件总数,再利用列举法求出log a b 为整数满足的基本事件个数,由此能。
年高考数学真题分类汇编文科-概率与统计(文科)————————————————————————————————作者:————————————————————————————————日期:2一、选择题1.(2014四川文2)在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5000名居民的阅读时间的全体是( ) . A.总体 B.个体C.样本的容量D.从总体中抽取的一个样本2.(2014重庆文3)某中学有高中生3500人,初中生1500人,为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,已知从高中生中抽取70人,则n 为( ). A.100 B.150 C.200 D.2503.(2014广东文6)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ).A.50B.40C.25D.204.(2014湖南文5)在区间[2,3]-上随机选取一个数X ,则1X ≤的概率为( ). A.45 B. 35 C.25 D. 155.(2014江西文3)掷两颗均匀的骰子,则点数之和为5的概率等于( )A.118 B.19 C.16 D.1126.(2014陕西文6)从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( ). A.15 B. 25 C. 35 D. 457.(2014辽宁文6)若将一个质点随机投入如图所示的长方形ABCD 中,其中2AB =,1BC =,则质点落在以AB 为直径的半圆内的概率是( )A .2π B .4π C .6π D .8π8.(2014北京文8)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足的函数关系2p at bt c =++(a ,b ,c 是常数),如图所示记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为( )A.3.50分钟B.3.75分钟C.4.00分钟D.4.25分钟9.(2014大纲文7)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组,则不同的选法共有( ).A .60种B .70种C .75种D .150种10.(2014湖北文5)随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为1p ,点数之和大于5的概率记为2 p ,点数之和为偶数的概率记为3p ,则( ). A .123p p p << B .213p p p << C .132p p p <<D .312p p p <<11.(2014湖南文3)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为123,,p p p ,则( ). A.123p p p =< B. 231p p p =< C.132p p p =< D. 123p p p == 12.(2014湖北文6)根据如表所示样本数据x 345678y4.02.50.5得到的回归方程为ˆybx a =+,则( ). A .0a >,0b < B .0a >,0b > C .0a <,0b <D .0a <,0b >13.(2014陕西文9)某公司10位员工的月工资(单位:元)为1210,,x x x ,其均值和方差分别为x 和2s ,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为( ).A.x ,22100s +B.100x +,22100s +C. x ,2sD.x +100,2s14.(2014山东文8)为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa )的分组区间为[)[)[)[)[]12,13,13,14,14,15,15,16,16,17,将其按从左到右的顺序分别编号为第一组,第二组,……,第五组,如图所示是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( ).O 5430.80.70.5tp 0.5- 2.0- 3.0-A. 6B. 8C. 12D. 1815.(2014江西文7)某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量之间的关系,随机抽查了52名中学生,得到统计数据如表1至表4所示,则与性别有关联的可能性最大的变量是( ) 表1 表2表3 表4A.成绩B.视力C.智商D.阅读量二、填空题16.(2014新课标Ⅱ文13)甲、已两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为 .17.(2014浙江文14)在3张奖券中有一、二等奖各1张,另1张无奖,甲、乙两人各抽取1张,两人都中奖的概率是______________.18.(2014重庆文15)某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为_________(用数字作答). 19.(2014湖北文11)甲、乙两套设备生产的同类型产品共4800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测. 若样本中有50件产品由甲设备生产,则乙设备生产的产品总 数为 件.20.(2014新课标Ⅰ文13)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率成绩 性别不及格及格总计男 6 14 20 女 10 22 32 总计163652视力 性别好 差 总计男 4 16 20 女 12 20 32 总计163652智商 性别偏高正常总计男 8 12 20 女 8 24 32 总计163652阅读量 性别丰富 不丰富 总计男 14 6 20 女 2 30 32 总计163652171615141312/kPa舒张压频率/组距0.360.080.160.24O为 .21.(2014天津文9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取 名学生.22. (2014广东文12)从字母,,,,a b c d e 中任取两个不同字母,则取到字母a 的概率为________. 23.(2014江苏4)从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率 是 .24.(2014大纲文13)6(2)x -的展开式中3x 的系数为 .(用数字作答)25.(2014福建文13)如图所示,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为 .26.(2014江苏6)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[]80130,上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm .三、解答题27.(2014新课标Ⅰ文18)(本小题满分12分)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如图所示频数分布表:质量指标值分组[)75,85[)85,95[)95,105[)105,115[)115,125频数62638228(1)作出这些数据的频率分布直方图;频率/组距100 90 80 110 120 130 0.020 0.025 0.030 0.0100.015 底部周长/cm(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?28.(2014重庆文17)(本小题满分13分.(I )小问4分,(II )小问4分,(III )小问5分)20名学生某次数学考试成绩(单位:分)的频率分布直方图如图所示: 洞穿高考预测题六(I )求频率分布直方图中a 的值;(II )分别求出成绩落在[)6050,与[)7060,中的学生人数; (III )从成绩在[)7050,的学生中任选2人,求此2人的成绩都在[)7060,中的概率. 29.(2014陕西文19)(本小题满分12分)某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如表所示:赔付金额(元) 0 1000 200030004000车辆数(辆)500130100150120(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率;频率组距成绩(分)7a 6a 3a 2a100908070605000.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.00.0O78910115 12质量指0.00.0(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.30. (2014山东文16)(本小题满分12分) 洞穿高考例3.11海关对同时从,,A B C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示. 工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.地区 A B C 数量50 150100(1)求这6件样品中来自,,A B C 各地区商品的数量;(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 31.(2014安徽文17)(本小题满分12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时). (1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:[]0,2,(]2,4,(]4,6,(]6,8,(]8,10,(]10,12.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:))()()(()(22d b c a d c b a bc ad n K ++++-=.32.(2014北京文18)(本小题满分13分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:()P K k 20≥0.10 0.05 0.010 0.005 k 02.7063.8416.6357.879组号 分组 频数 1 [0,2) 6 2 [2,4) 8 3 [4,6) 17 4 [6,8) 22 5 [8,10) 25 6 [10,12) 12 7[12,14)6组距频率204681012)(小时时间025.0100.0570.0501.0125.0(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率; (2)求频率分布直方图中的a ,b 的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组(只需写出结论).33.(2014大纲文20)(本小题满分12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6、0.5、0.5、0.4,各人是否需使用设备相互独立.(Ⅰ)求同一工作日至少3人需使用设备的概率;(Ⅱ)实验室计划购买k 台设备供甲、乙、丙、丁使用.若要求“同一工作日需使用设备的人数大于k ”的概率小于0.1,求k 的最小值.34. (2014新课标Ⅱ文19)(本小题满分12分)洞穿高考例3.3某市为了考核甲、乙两部门的工作情况,随机访问了50位市民.根据这50位市民对这两部门的评分(评分越高表明市民的评价越高),绘制茎叶图如下:甲部门乙部门3 5 94 4 0 4 4 89 75 1 2 2 4 56 67 7 789 9 7 6 6 5 3 3 2 1 1 06 0 1 1 2 3 4 6 8 8 9 8 87 7 7 6 6 5 5 5 5 5 4 4 4 3 3 3 2 1 0 07 0 0 1 1 3 4 4 9 6 6 5 5 2 0 0 8 1 2 3 3 4 5 6 3 2 2 2 09 0 1 1 4 5 6100 0 0(1)分别估计该市的市民对甲、乙两部门评分的中位数;(2)分别估计该市的市民对甲、乙两部门的评分高于90的概率; (3)根据茎叶图分析该市的市民对甲、乙两部门的评价. 35.(2014福建文20)(本小题满分12分)根据世行2013年新标准,人均GDP 低于1035美元为低收入国家;人均GDP 为1035-4085元为中等偏下收b a频率组距阅读时间18161412108642O8 [14,16) 2 9[16,18) 2 合计100入国家;人均GDP为4085-12616美元为中等偏上收入国家;人均GDP不低于12616美元为高收入国家.某城市有5个行政区,各区人口占该城市人口比例及人均GDP如表所示:行政区区人口占城市人口比例区人均GDP(单位:美元)A 25% 8000B 30% 4000C 15% 6000D 10% 3000E 20% 10000(1)判断该城市人均GDP是否达到中等偏上收入国家标准;(2)现从该城市5个行政区中随机抽取2个,求抽到的2个行政区人均GDP都达到中等偏上收入国家标准的概率.36.(2014广东文17)(本小题满分13分)洞穿高考例3.3某车间20名工人年龄数据如表所示:年龄(岁)工人数(人)191283293305314323401合计20(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图;(3)求这20名工人年龄的方差.37.(2014辽宁文18)(本小题满分12分)某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生60 20 80北方学生10 10 20合计70 30 100(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:()22112212211212n n n n n n n n n χ++++-=,38.(2014湖南文17)(本小题满分12分)某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:()()()()()()()()a b a b a b a b a b a b a b a b ,,,,,,,,,,,,,,,, ()()()()()()()a b a b a b a b a b a b a b ,,,,,,,,,,,,,. 其中a a ,分别表示甲组研发成功和失败;b b ,分别表示乙组研发成功和失败. (1)若某组成功研发一种新产品,则给该组记1分,否则记0分,试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.39.(2014天津文15)(本小题满分13分)某校夏令营有3名男同学,,A B C 和3名女同学,,X Y Z ,其年级情况如表所示:一年级 二年级 三年级 男同学A B C 女同学X Y Z现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同)(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.40.(2014四川文16)(本小题满分12分)()2P k χ≥ 0.100 0.050 0.010 k 2.706 3.841 6.635一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a b c +=”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率.41.(2014江苏22)(本小题满分10 分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球, 这些球除颜色外完全相同.(1)从盒中一次随机取出2个球, 求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球, 其中红球、 黄球、 绿球的个数分别记为1x ,2x ,3x ,随机变量X 表示1x ,2x ,3x 中的最大数. 求X 的概率分布和数学期望()E X .42.(2014江西文21)(本小题满分14分)将连续正整数*1,2,,()n n ∈N 从小到大排列构成一个数123n ,()F n 为这个数的位数(如12n =时,此数为123 456 789 101 112,共有15个数字,(12)15F =),现从这个数中随机取一个数字,()p n 为恰好取到0的概率.(1)求(100)p ;(2)当2014n ≤时,求()F n 的表达式;(3)令()g n 为这个数中数字0的个数,()f n 为这个数中数字9的个数,()()()h n f n g n =-,*{|()1,100,}S n h n n n ==∈N ≤,求当n S ∈时()p n 的最大值.43.(2014天津文20)(本小题满分14分)已知q 和n 均为给定的大于1的自然数,设集合{}12,1,0-=q M ,集合{}11212n n i A x x x x q x q x M i n -==+++∈=,,,,,, (1)当3,2==n q 时,用列举法表示集合A ;(2)设111212,,,+,n n n n s t A s a a q a q t b b q b q --∈=+++=++其中12i i a b M i n ∈=,,,,,,求证:若,n n b a <则t s <.。