基本逻辑门电路知识介绍
- 格式:docx
- 大小:97.52 KB
- 文档页数:5
逻辑门电路有关知识一、逻辑门电路有关概念1、逻辑所谓逻辑是指条件与结果之间的关系。
最基本的逻辑关系是与、或、非。
2、逻辑电路输入与输出信号之间存在一定逻辑关系的电路称为逻辑电路。
3、门所谓门就是一种开关,它能按照一定的条件去控制信号的通过或不通过。
4、门电路门电路是一种具有多个输入端和一个输出端的开关电路。
门电路是数字电路的基本单元。
5、逻辑门电路门电路的输入和输出之间存在一定的逻辑关系(因果关系),所以门电路又称为逻辑门电路。
逻辑门电路是指能实现基本和常用逻辑运算的电子电路,也是集成电路上的基本组件。
最基本的逻辑门是与门、或门和非门。
6、正、负逻辑规定低电平为“0”,高电平为“1”,称为正逻辑;反之,高电平为“0”,低电平为“1”,称为负逻辑。
二、基本逻辑门电路1、与门电路实现与逻辑功能的电路叫与门电路。
1)与门是一个能够实现逻辑乘运算的、多端输入、单端输出的逻辑电路,逻辑函数式为:F=A·B。
记忆口诀为:有0出0,全1才1。
2)二极管与门电路,输入端A、B代表条件,输出端F代表结果。
有多个输入端,一个输出端。
当所有的输入同时为高电平(逻辑1)时,输出才为高电平,否则输出为低电平(逻辑0)。
当U A=U B=0时,D1、D2均导通,输出U F被限制在0.7V;当U A=0V,U B=3V时,D1先导通,U F=0.7V,D2承受反压而截止;当U A=3V,U B-=0V 时,D2先导通,D1承受反压而截止;当U A=U B=3V时,D1,D2导通,输出端电压U F=3.7V。
若忽略二极管压降,高电平用1、低电平用0代替,其结果与真值表是一致的,与门电路逻辑符号。
2、或门电路实现或逻辑功能的电路叫或门电路。
或门是一个能够实现逻辑加运算的、多端输入、单端输出的逻辑电路,逻辑函数式为:F=A+B。
记忆口诀为:有1出1,全0才0。
3、非门电路实现非逻辑功能的电路叫非门电路,有时又叫反相缓冲器。
基本逻辑门电路(与门,或门,非门)介绍基本逻辑门电路(1).与门在逻辑问题中,如果决定某一事件发生的多个条件必须同时具备事件才能发生,则称这种因果关系为与逻辑。
例如,在图8-1所示电路中,开关A和B串联控制灯Y。
显然,仅当两个开关均闭合时(条件),灯才能亮(结果)。
否则,灯灭。
实现与逻辑关系的电路称为与门电路,如图8-2所示的是最简单的二极管与门电路。
A、B是它的两个输入端,Y是输出端。
也可以认为A、B是它的两个输入变量,Y是输出变量。
假设输入信号低电平为0 V,高电平为3 V,按输入信号的不同可有下述几种情况(忽略二极管正向压降)。
图8-1 与逻辑电路图8-2 二极管与门电路①输入端全为高电平,D A、D B均导通,则输出V Y=3V。
②输入端有一个或两个为低电平。
例如V A=0V,V B=3V时,DA先导通,这时承受反向电压而截止,输出V Y=0V。
可见,只有当输入端A、B全为高电平1时,才输出高电平1,否则输出端均为低电平0,这合乎与门的要求。
将逻辑电路所有可能的输入变量和输出变量间的逻辑关系列成表格,如表8-1所示,称为真值表。
表8-1 与门真值表A B Y000010100111上述逻辑关系可用逻辑表达式描述为:Y=A•B (8-1) 式中小圆点“•”表示A、B的与运算,也表示逻辑乘。
在不致引起混淆的前提下,“•”常被省略。
在某些文献中,也有用符号∧表示与运算的。
图8-3所示为两输入端的与门逻辑符号。
与门也可有两个以上的输入端。
式中小圆点“•”表示A、B的与运算,也表示逻辑乘。
在不致引起混淆的前提下,“•”常被省略。
在某些文献中,也有用符号∧表示与运算的。
图8-3所示为两输入端的与门逻辑符号。
与门也可有两个以上的输入端。
门电路的逻辑关系也可以用波形图来描述,如图8-4所示。
图8-3 与门逻辑符号图8-4 与门波形图2.或门在逻辑问题的描述中,如果决定某一事件发生的多个条件中,只要有一个或一个以上条件成立,事件便可发生,则称这种因果关系为或逻辑。
逻辑电路的基础知识一、逻辑电路的概念及分类逻辑电路是指由逻辑门组成的电路,其输入和输出信号只有两种状态:高电平和低电平。
逻辑电路按照功能可分为组合逻辑电路和时序逻辑电路。
组合逻辑电路输出仅取决于输入,而时序逻辑电路的输出还受到时钟信号等因素的影响。
二、基本逻辑门1. 与门(AND Gate):当所有输入都为高电平时,输出为高电平;否则输出为低电平。
2. 或门(OR Gate):当任意一个输入为高电平时,输出为高电平;否则输出为低电平。
3. 非门(NOT Gate):当输入为高电平时,输出为低电平;否则输出为高电平。
4. 异或门(XOR Gate):当输入相同时,输出为低电平;否则输出为高电平。
三、逻辑运算符1. 与运算符(&&):当且仅当两个条件都成立时返回true。
2. 或运算符(||):只要有一个条件成立就返回true。
3. 非运算符(!):如果条件成立,则返回false;否则返回true。
四、布尔代数布尔代数是一种数学分支,用于描述二进制变量之间的关系。
它包括基本运算(与、或、非)和衍生运算(异或、与非、或非等)。
布尔代数可以用来简化逻辑电路的设计。
五、Karnaugh图Karnaugh图是一种用于简化布尔代数的工具。
它将输入变量的所有可能取值表示为一个二维表格,然后将相邻的1合并为更大的区域,以减少逻辑门数量。
Karnaugh图可以用于组合逻辑电路的设计。
六、触发器触发器是时序逻辑电路中常用的元件,它可以存储一个二进制状态,并根据时钟信号进行状态转换。
常见的触发器包括SR触发器、D触发器、JK触发器等。
七、计数器计数器是一种常见的时序逻辑电路,它可以根据时钟信号进行计数操作。
常见的计数器包括二进制计数器和BCD计数器。
八、多路选择器多路选择器是一种组合逻辑电路,它可以根据控制信号从多个输入中选择一个输出。
常见的多路选择器包括2:1选择器和4:1选择器等。
九、总线总线是一种用于连接多个设备的通信线路,它可以传输数据和控制信息。
基本逻辑门电路1.基本概念在数字电路中,门电路是最基本的逻辑元件,它的应用极为广泛。
所谓门就是一种开关,它能按照一定的条件去控制数字信号通过或不通过。
门电路的输入信号和输出信号之间存在一定的逻辑关系,所以门电路又称为逻辑门电路。
基本逻辑门电路有与门、或门和非门,逻辑门电路可以用二极管、三极管等分立元件组成,更常用的是集成门电路。
2. 基本逻辑关系逻辑电路的基本逻辑关系有“与逻辑”、“或逻辑”和“非逻辑”。
(1) 与逻辑“与”逻辑是指当决定某件事的几个条件全部具备时,该件事才会发生,这种因果关系称为“与”逻辑关系,实现“与”逻辑关系的电路称为“与”门电路。
例如在图1所示的照明电路中,开关A和B串联,只有当A“与”B同时接通时(条件),电灯才亮(结果),电路具有“与”逻辑功能。
“与”逻辑可用下式表示B=F⋅A图1 “与”门电路举例式中小圆点“.”表示A、B的“与”运算,又称逻辑乘,应用时往往省略“.”。
(2)“或”逻辑“或”逻辑是指当决定某件事的几个条件中,只要有一个条件具备,该件事就会发生,这种因果关系称为“或”逻辑关系,实现“或”逻辑关系的电路称为“或”门电路。
例如在图2所示的照明电路中,开关A和B关联,只要开关A “或”B有一闭合,灯就会亮,所以图2电路具有“或”逻辑功能。
“或”逻辑可用下式表示B=AF+图2 “或”门电路举例式中符号“+”表示A 、B “或”运算,又称逻辑加。
3.“非”逻辑在逻辑关系中,“非”就是否定或相反的意思。
实现“非”逻辑关系的电路称为“非”门电路。
图3所示照明电路中,当开关A 断开(“0”)时,灯亮(“1”);开关A 合上(“1”)时,灯不亮(“0”)。
这表示条件和结果是相反的逻辑关系,这种关系称为“非”逻辑关系,所以图3电路具有“非”逻辑功能。
可写为A F =图3 “非”门电路式中A 上的短横线表示“非”的意思,读作“A 非”或“非A ”。
能够实现逻辑运算的电路称为逻辑门电路。
基本逻辑门电路实验原理基本逻辑门电路是数字电子电路中的核心组成部分,用于处理和控制数字信号。
它由逻辑门,即与门、或门和非门组成,通过这些门的组合和连接,可以实现诸如加法器、缓冲器、触发器、计数器等功能。
在这篇文章中,我们将介绍基本逻辑门电路的实验原理与相关知识。
一、基本逻辑门的分类1.与门(AND gate):具有两个或多个输入端和一个输出端。
当所有输入端同时为高电平时,输出为高电平;否则输出为低电平。
2.或门(OR gate):具有两个或多个输入端和一个输出端。
当任意一个或多个输入端为高电平时,输出为高电平;只有当所有输入端都为低电平时,输出才为低电平。
3.非门(NOT gate):具有一个输入端和一个输出端。
当输入为高电平时,输出为低电平;当输入为低电平时,输出为高电平。
二、基本逻辑门电路的实验原理在基本逻辑门电路实验中,最常见的就是使用集成电路来实现逻辑门。
集成电路是在单个芯片上集成了多个逻辑门电路的一种电子器件。
在实验中,我们可以使用逻辑门集成电路来实现基本逻辑门电路。
1.与门电路实验原理与门电路有多种实现方式,其中一个常见的实现方式是使用与门集成电路,如74LS08。
74LS08集成电路具有四个2输入与门,每个与门有两个输入端和一个输出端。
在与门电路中,当所有输入端都为高电平时,与门的输出才为高电平;否则输出为低电平。
因此,我们可以使用与门电路来实现与运算。
例如,通过连接两个开关到与门的两个输入端,我们可以控制该与门的输出。
2.或门电路实验原理或门电路的实验原理与与门类似。
使用或门集成电路,如74LS32,可以实现或门电路。
74LS32集成电路具有四个2输入或门。
在或门电路中,当任意一个或多个输入端为高电平时,或门的输出为高电平;只有当所有输入端都为低电平时,输出为低电平。
因此,我们可以使用或门电路来实现或运算。
例如,通过连接两个开关到或门的两个输入端,我们可以控制该或门的输出。
3.非门电路实验原理非门电路的实验原理比较简单。
基本逻辑门电路一、引言逻辑门电路是数字电路中最基本的组成单元,用于实现逻辑运算。
在计算机科学和电子工程领域,逻辑门电路被广泛应用于各种数字系统中,如计算机处理器、存储器、控制单元等。
本文将深入探讨基本逻辑门电路的原理、分类、真值表和应用。
二、逻辑门电路的原理逻辑门电路是由晶体管、二极管等电子元件组成的。
它们能够根据输入信号的逻辑值产生相应的输出信号。
常见的逻辑门电路有与门、或门、非门、异或门等。
1. 与门(AND Gate)与门是最基本的逻辑门之一,它只有在所有输入信号均为高电平时,才会输出高电平信号。
与门的真值表如下:输入A 输入B 输出Y0 0 00 1 01 0 01 1 12. 或门(OR Gate)或门是另一个常见的逻辑门,它只要有一个输入信号为高电平,就会输出高电平信号。
或门的真值表如下:输入A 输入B 输出Y0 0 00 1 11 0 11 1 13. 非门(NOT Gate)非门是最简单的逻辑门之一,它只有一个输入信号,并将其取反输出。
非门的真值表如下:输入A 输出Y0 11 04. 异或门(XOR Gate)异或门是一种特殊的逻辑门,它只有在输入信号不相同时,才会输出高电平信号。
异或门的真值表如下:输入A 输入B 输出Y0 0 00 1 11 0 11 1 0三、逻辑门电路的分类根据逻辑门电路的复杂程度和功能,可以将其分为基本逻辑门电路和组合逻辑电路。
1. 基本逻辑门电路基本逻辑门电路是由单个逻辑门构成的简单电路,如与门、或门、非门等。
它们能够实现基本的逻辑运算,如与、或、非等。
2. 组合逻辑电路组合逻辑电路是由多个逻辑门组合而成的电路,它们能够实现复杂的逻辑运算。
常见的组合逻辑电路有多路选择器、加法器、比较器等。
四、逻辑门电路的真值表逻辑门电路的真值表是描述逻辑门输入输出关系的表格。
通过真值表,我们可以清楚地了解逻辑门在不同输入情况下的输出结果。
五、逻辑门电路的应用逻辑门电路在数字系统中有广泛的应用,下面介绍几个常见的应用场景:1. 计算机处理器计算机处理器是由大量逻辑门电路组成的,它能够完成各种复杂的运算和控制任务。
第三节基本逻辑门电路基本逻辑运算有与、或、非运算,对应的基本逻辑门有与、或、非门。
本节介绍简单的二极管门电路和BJT反相器(非门),作为逻辑门电路的基础。
用电子电路来实现逻辑运算时,它的输入、输出量均为电压(以V为单位)或电平(用1或0表示)。
通常将门电路的输入量作为条件,输出量作为结果。
一、二极管与门及或门电路1.与门电路当门电路的输入与输出量之间能满足与逻辑关系时,则称这样的门电路为与门电路。
下图表示由半导体二极管组成的与门电路,右边为它的代表符号。
图中A、B、C为输入端,L为输出端。
输入信号为+5V或0V。
下面分析当电路的输入信号不同时的情况:(1)若输入端中有任意一个为0时,例如V A=0V,而V A=V B=+5V时,D1导通,从而导致L点的电压V L被钳制在0V。
此时不管D2、D3的状态如何都会有V L≈0V (事实上D2、D3受反向电压作用而截止)。
由此可见,与门几个输入端中,只有加低电压输入的二极管才导通,并把L钳制在低电压(接近0V),而加高电压输入的二极管都截止。
(2)输入端A、B、C都处于高电压+5V ,这时,D1、D2、D3都截止,所以输出端L点电压V L=+V CC,即V L=+5V。
如果考虑输入端的各种取值情况,可以得到下表输入(V)输出(V)V A V B V C V L0 0 +5 +5 +5 +5+5+5+5+5+5+5+5+5+5将表中的+5V用1代替,则可得到真值表:A B C L0 0 1 1 1 10111111111由表中可见该门电路满足与逻辑关系,所以这是一种与门。
输入变量A、B、C与输出变量L只间的关系满足逻辑表达式。
2.或门电路对上图所示电路可做如下分析:(1)输入端A、B、C都为0V时,D1、D2、D3两端的电压值均为0V,因此都处于截止状态,从而V L=0V;(2)若A、B、C中有任意一个为+5V,则D1、D2、D3中有一个必定导通。
我们注意到电路中L点与接地点之间有一个电阻,正是该电阻的分压作用,使得V L处于接近+5V的高电压(扣除掉二极管的导通电压),D2、D3受反向电压作用而截止,这时 V L≈+5V。
基本逻辑门电路知识介绍
1.1 门电路的概念:
实现基本和常用逻辑运算的电子电路,叫逻辑门电路。
实现与运算的叫与门,实现或运算的叫或门,实现非运算的叫非门,也叫做反相器,等等(用逻辑1表示高电平;用逻辑0表示低电平)
11.2 与门:
逻辑表达式F=A B
即只有当输入端A和B均为1时,输出端Y才为1,不然Y为0.与门的常用芯片型号有:74LS08,74LS09等.
11.3 或门:逻辑表达式F=A+ B
即当输入端A和B有一个为1时,输出端Y即为1,所以输入端A和B均为0时,Y才会为O.或门的常用芯片型号有:74LS32等.
11.4.非门逻辑表达式F=A
即输出端总是与输入端相反.非门的常用芯片型号有:74LS04,74LS05,74LS06,74LS14等.
11.5.与非门
逻辑表达式 F=AB
即只有当所有输入端A和B均为1时,输出端Y才为0,不然Y为 1.与非门的常用芯片型号有:74LS00,74LS03,74S31,74LS132等.
11.6.或非门:逻辑表达式 F=A+B
即只要输入端A和B中有一个为1时,输出端Y即为0.所以输入端A和B均为0时,Y才会为1.或非门常见的芯片型号有:74LS02等.
11.7.同或门: 逻辑表达式F=A B+A B
11.8.异或门:逻辑表达式F=A B+A B
11.9.与或非门:逻辑表逻辑表达式F=AB+CD
A
D
11.10.RS触发器:
电路结构
把两个与非门G1、G2的输入、输出端交叉连接,即可构成基本RS触发器,其逻辑电路如图7.2.1.(a)所示。
它有两个输入端R、S和两个输出端Q、Q。
工作原理 :
基本RS触发器的逻辑方程为:
根据上述两个式子得到它的四种输入与输出的关系:
1.当R=1、S=0时,则Q=0,Q=1,触发器置1。
2.当R=0、S=1时,则Q=1,Q=0,触发器置0。
如上所述,当触发器的两个输入端加入不同逻辑电平时,它的两个输出端Q和Q有两种互补的稳定状态。
一般规定触发器Q端的状态作为触发器的状态。
通常称触发器处于某种状态,实际是指它的
Q端的状态。
Q=1、Q=0时,称触发器处于1态,反之触发器处于0态。
S=0,R=1使触发器置1,或称置位。
因置位的决定条件是S=0,故称S 端为置1端。
R=0,S=1时,使触发器置0,或称复位。
同理,称R端为置0端或复位端。
若触发器原来为1态,欲使之变为0态,必须令R端的电平由1变0,S端的电平由0变1。
这里所加的输入信号(低电平)称为触发信号,由它们导致的转换过程称为翻转。
由于这里的触发信号是电平,因此这种触发器称为电平控制触发器。
从功能方面看,它只能在S和R的作用下置0和置1,所以又称为置0置1触发器,或称为置位复位触发器。
其逻辑符号如图7.2.1(b)所示。
由于置0或置1都是触发信号低电平有效,因此,S端和R端都画有小圆圈。
3.当R=S=1时,触发器状态保持不变。
触发器保持状态时,输入端都加非有效电平(高电平),需要触发翻转时,要求在某一输入端加一负脉冲,例如在S端加负脉冲使触发器置1,该脉冲信号回到高电平后,触发器仍维持1状态不变,相当于把S端某一时刻的电平信号存储起来,这体现了触发器具有记忆功能。
4.当R=S=0时,触发器状态不确定
在此条件下,两个与非门的输出端Q和Q全为1,在两个输入信号都同时撤去(回到1)后,由于两个与非门的延迟时间无法确定,触发器的状态不能确定是1还是0,因此称这种情况为不定状态,这种情况应当避免。
从另外一个角度来说,正因为R端和S端完成置0、置1都是低电平有效,所以二者不能同时为0。
此外,还可以用或非门的输入、输出端交叉连接构成置0、置1触发器,其逻辑图和逻辑符号分别如图7.2.2(a)和7.2.2(b)所示。
这种触发器的触发信号是高电平有效,因此在逻辑符号的S端和R端没有小圆圈。
2.特征方程
基本RS触发器的特性:
1.基本RS触发器具有置位、复位和保持(记忆)的功能;
2.基本RS触发器的触发信号是低电平有效,属于电平触发方式;
3.基本RS触发器存在约束条件(R+S=1),由于两个与非门的延迟时间无法确定;当R=S=0时,将导致下一状态的不确定。
4.当输入信号发生变化时,输出即刻就会发生相应的变化,即抗干扰性能较差。