基本逻辑门电路
- 格式:ppt
- 大小:1.03 MB
- 文档页数:25
第一节根本逻辑门电路1.1 门电路的概念:实现根本和常用逻辑运算的电子电路,叫逻辑门电路。
实现与运算的叫与门,实现或运算的叫或门,实现非运算的叫非门,也叫做反相器,等等〔用逻辑1表示高电平;用逻辑0表示低电平〕11.2 与门:逻辑表达式F=A B即只有当输入端A和B均为1时,输出端Y才为1,不然Y为0.与门的常用芯片型号有:74LS08,74LS09等.11.3 或门:逻辑表达式F=A+ B即当输入端A和B有一个为1时,输出端Y即为1,所以输入端A和B均为0时,Y才会为O.或门的常用芯片型号有:74LS32等.11.4.非门逻辑表达式F=A即输出端总是与输入端相反.非门的常用芯片型号有:74LS04,74LS05,74LS06,74LS14等.11.5.与非门逻辑表达式 F=AB即只有当所有输入端A和B均为1时,输出端Y才为0,不然Y为1.与非门的常用芯片型号有:74LS00,74LS03,74S31,74LS132等.11.6.或非门:逻辑表达式 F=A+B即只要输入端A和B中有一个为1时,输出端Y即为0.所以输入端A和B均为0时,Y才会为1.或非门常见的芯片型号有:74LS02等.11.7.同或门: 逻辑表达式F=A B+A BAFB11.8.异或门:逻辑表达式F=A B+A B=1FB11.9.与或非门:逻辑表逻辑表达式F=AB+CDABC F11.10.RS触发器:电路结构把两个与非门G1、G2的输入、输出端交叉连接,即可构成根本RS触发器,其逻辑电路如图.(a)所示。
它有两个输入端R、S和两个输出端Q、Q。
工作原理 :根本RS触发器的逻辑方程为:根据上述两个式子得到它的四种输入与输出的关系:1.当R=1、S=0时,那么Q=0,Q=1,触发器置1。
2.当R=0、S=1时,那么Q=1,Q=0,触发器置0。
=1&≥1如上所述,当触发器的两个输入端参加不同逻辑电平时,它的两个输出端Q和Q有两种互补的稳定状态。
基本逻辑门电路实验小结基本逻辑门电路实验小结逻辑门电路是数字电路中最基本的电路,其功能是根据输入信号的逻辑关系产生相应的输出信号。
在本次实验中,我们实现了与门、或门、非门和异或门的电路,并通过实验验证了它们的功能。
在与门的实验中,我们使用了两个输入信号A和B,并通过两个与门的连接使得输出信号与两个输入信号同时为高电平时才为高电平。
实验结果显示,当A和B的输入信号同时为高电平时,输出信号确实为高电平;而当A和B中任意一个或两个输入信号为低电平时,输出信号为低电平。
在或门的实验中,我们同样使用了两个输入信号A和B,并通过两个或门的连接使得输出信号与两个输入信号只要有一个为高电平就为高电平。
实验结果显示,当A和B中任意一个或两个输入信号为高电平时,输出信号确实为高电平;而当A 和B的输入信号同时为低电平时,输出信号为低电平。
在非门的实验中,我们只使用了一个输入信号A,并通过一个非门的连接使得输出信号与输入信号相反。
实验结果显示,当输入信号为高电平时,输出信号为低电平;而当输入信号为低电平时,输出信号为高电平。
在异或门的实验中,我们同样使用了两个输入信号A和B,并通过两个异或门的连接使得输出信号与两个输入信号不同时为高电平。
实验结果显示,当A和B的输入信号不同时为高电平时,输出信号确实为高电平;而当A和B的输入信号同时为低电平或同时为高电平时,输出信号为低电平。
通过本次实验,我们深入了解了逻辑门电路的基本原理和功能,并通过实验验证了它们的工作原理。
这对我们进一步学习和理解数字电路有很大的帮助。
同时,本次实验也让我加强了实验操作的能力和思维逻辑能力,培养了我细致观察和分析实验现象的能力,为我今后的学习打下了坚实的基础。
第三节基本逻辑门电路基本逻辑运算有与、或、非运算,对应的基本逻辑门有与、或、非门。
本节介绍简单的二极管门电路和BJT反相器(非门),作为逻辑门电路的基础。
用电子电路来实现逻辑运算时,它的输入、输出量均为电压(以V为单位)或电平(用1或0表示)。
通常将门电路的输入量作为条件,输出量作为结果。
一、二极管与门及或门电路1.与门电路当门电路的输入与输出量之间能满足与逻辑关系时,则称这样的门电路为与门电路。
下图表示由半导体二极管组成的与门电路,右边为它的代表符号。
图中A、B、C为输入端,L为输出端。
输入信号为+5V或0V。
下面分析当电路的输入信号不同时的情况:(1)若输入端中有任意一个为0时,例如V A=0V,而V A=V B=+5V时,D1导通,从而导致L点的电压V L被钳制在0V。
此时不管D2、D3的状态如何都会有V L≈0V (事实上D2、D3受反向电压作用而截止)。
由此可见,与门几个输入端中,只有加低电压输入的二极管才导通,并把L钳制在低电压(接近0V),而加高电压输入的二极管都截止。
(2)输入端A、B、C都处于高电压+5V ,这时,D1、D2、D3都截止,所以输出端L点电压V L=+V CC,即V L=+5V。
如果考虑输入端的各种取值情况,可以得到下表输入(V)输出(V)V A V B V C V L0 0 +5 +5 +5 +5+5+5+5+5+5+5+5+5+5将表中的+5V用1代替,则可得到真值表:A B C L0 0 1 1 1 10111111111由表中可见该门电路满足与逻辑关系,所以这是一种与门。
输入变量A、B、C与输出变量L只间的关系满足逻辑表达式。
2.或门电路对上图所示电路可做如下分析:(1)输入端A、B、C都为0V时,D1、D2、D3两端的电压值均为0V,因此都处于截止状态,从而V L=0V;(2)若A、B、C中有任意一个为+5V,则D1、D2、D3中有一个必定导通。
我们注意到电路中L点与接地点之间有一个电阻,正是该电阻的分压作用,使得V L处于接近+5V的高电压(扣除掉二极管的导通电压),D2、D3受反向电压作用而截止,这时 V L≈+5V。
模块五数字电路基础任务一:逻辑门电路 【问题情景】知识目标1.掌握基本逻辑门电路的逻辑功能、图形符号、真值表、逻辑代数表达式。
技能目标:会进行简单的逻辑运算 【基础知识】、基本逻辑门 1. 与逻辑门 (1)与逻辑关系图5-1与逻辑实例(2)二极管与门电路全1出1,有0出3V 0V图5-2 与门电路与门图形符号项目基本逻辑门电路Y=A B捕示灯Jr3V0V小』T如图所示电路,小灯泡在什么情况下会亮?(2)二极管或门电路-5V图5-4或门电路与或门图形符号0V图5-6非门原理电路非门图形符号2.或逻辑门(1)或逻辑关系Y=A+B图5-3或逻辑实例有1出I ,全0出0 ”3V(1V3.非逻辑门 (1)非逻辑关系(2)三极管非门电路--- ory图5-5非逻辑实例等仪4——&O —Y—Fli —2. 或非门在或门后串联非门就构成或非门,如图所示。
图5-8或非门逻辑结构及电路符号3. 与或非门与或非的逻辑结构图及电路符号如下图所示。
图5-9与或非门逻辑结构及电路符号与或非门的逻辑函数式为 Y AB CD ,其逻辑功能为:当输入端的任何一组全 I 时, 输出为0;任何一组输入都至少有一个为0时,输出端才能为I 。
【应知训练】1.门电路中最简单的逻辑门是二、复合逻辑门 732复合逻辑门 1.与非门与仃 V,,菲门(a>图5-7与非门电路图5-8与非门逻辑结构与电路符号与非门的逻辑函数式为 Y AB ,其逻辑功能可归纳为Ml等效 □—Y O或非门的逻辑函数式为YLB ,其逻辑功能可归纳为有1出0,全0出1 ”。
A I tC —D —任务二:门电路 【问题情景】集成逻辑门电路是将逻辑电路的元件和连线都制作在一块半导体基片上。
知识目标1. 掌握TTL 门电路的引脚功能2. 掌握CMOS 门电路的引脚功能 技能目标会测试与非门和逻辑门的功能测试。
【基础知识】一.TTL 门电路集成门电路若是由三极管为主要元件, 输入端和输出端都是三极管结构,极管一三极管逻辑电路,简称(1)型号的规定按现行国家标准规定,TTL 集成电路的型号由五部分构成,现以CT74LS04CP 为例说明型号意义。
基本逻辑门电路逻辑门电路是构成数字电路的基础。
它们是能够执行逻辑操作的电子元件,通过输入电信号和逻辑规则,输出电信号。
现如今,逻辑门电路应用非常广泛,例如计算机、移动设备和工业、医疗领域等,都离不开逻辑门电路的应用。
一. 逻辑门电路分类逻辑门电路可以分为基础逻辑门电路和组合逻辑门电路。
基础逻辑门电路的作用是完成基本逻辑运算,其中包括与门、或门、非门。
组合逻辑门电路是基础逻辑门电路的组合,输出还可以输入到其它逻辑门电路中。
1.与门与门又叫AND门,它的输入端接有两个或多个信号,只有当所有的输入信号都为1时,输出信号才为1,否则输出信号为0。
2.或门或门又叫OR门,它的输入端有两个信号或多个信号,只要有一个输入信号为1,输出信号就为1,否则输出信号为0。
3.非门非门又叫NOT门,它的输入端只有一个信号,如果该信号为1,则输出信号为0;反之,如果输入信号为0,则输出信号为1。
二. 逻辑门电路的组合组合逻辑门电路包括多个基础逻辑门电路的组合,为用户提供了各种复杂的逻辑运算。
常见的组合逻辑门电路有:1.与-非门与-非门又叫NAND门,它的输入和输出都是逆的。
当所有输入信号都为1时,输出信号为0,否则输出信号为1。
2.或-非门或-非门又叫NOR门,它的输入和输出都是逆的。
只有当所有输入信号都为0时,输出信号才为1,否则输出信号为0。
3.异或门异或门又叫XOR门,它的输入端有两个信号或多个信号,只有当输入信号中正好有一个为1时,输出信号才为1,否则输出信号为0。
三. 逻辑门电路的应用逻辑门电路在计算机领域有极其广泛的应用。
只有逻辑门电路的组合,才能实现计算机的算数运算和逻辑运算;只有逻辑门电路的组合,才能实现大型计算机的逻辑控制和存储器的运算。
此外,逻辑门电路还广泛应用于移动设备和工业、医疗领域中。
总之,逻辑门电路是数字电路的基础,由此可见,它在各种电器中有着重要的应用作用。
无论是基础逻辑门电路还是组合逻辑门电路,都具有广泛的应用前景。
八种逻辑门电路1. 逻辑门简介逻辑门是数字电路中的基本组成部分,它通过对电信号的逻辑运算来实现特定的功能。
逻辑门包括与门、或门、非门、与非门、或非门、异或门、同或门和与或非门。
本文将逐一介绍这八种逻辑门电路的原理和应用。
2. 与门(AND Gate)与门是最基本的逻辑门之一,它的输出信号为1的条件是所有输入信号都为1,否则输出信号为0。
与门电路通常由两个输入端和一个输出端组成。
当且仅当两个输入信号同时为1时,输出信号才为1。
3. 或门(OR Gate)或门是另一种常见的逻辑门,它的输出信号为1的条件是至少有一个输入信号为1,否则输出信号为0。
或门电路通常由两个或多个输入端和一个输出端组成。
当任意一个输入信号为1时,输出信号即为1。
4. 非门(NOT Gate)非门是最简单的逻辑门,它只有一个输入和一个输出。
非门的输出信号与输入信号相反。
当输入信号为1时,输出信号为0;当输入信号为0时,输出信号为1。
非门通常用于翻转信号的逻辑状态。
5. 与非门(NAND Gate)与非门是由与门和非门组成的复合逻辑门。
与非门的输出信号与与门的输出信号相反。
当且仅当所有输入信号都为1时,与非门的输出信号为0;其他情况下,输出信号都为1。
与非门可用于实现各种逻辑功能。
6. 或非门(NOR Gate)或非门是由或门和非门组成的复合逻辑门。
或非门的输出信号与或门的输出信号相反。
当且仅当所有输入信号都为0时,或非门的输出信号为1;其他情况下,输出信号都为0。
或非门常用于逻辑计算、控制和存储等领域。
7. 异或门(XOR Gate)异或门是一种有两个或多个输入端和一个输出端的逻辑门。
异或门的输出信号为1的条件是输入信号中只有一个信号为1,其他信号为0;否则输出信号为0。
异或门在数字电路中有广泛的应用,例如数据比较、错误检测和纠正等。
8. 同或门(XNOR Gate)同或门与异或门相似,不同之处在于同或门的输出信号与异或门的输出信号相反。
常用逻辑门电路逻辑门电路是数字电路中最基本的组成部分之一,它可以根据输入产生相应的输出信号,被广泛应用于计算机等各种电子设备中。
本文将从常见的逻辑门入手,分步骤阐述常用逻辑门电路的工作原理及特点。
一、非门电路非门也叫反相器,它只有一个输入,输出与输入正好相反。
例如输入为0时,输出为1;输入为1时,输出为0。
非门电路由一个晶体管和两个电阻组成。
二、与门电路与门接收两个输入信号,只有两个输入信号同时为1时,输出才会为1。
如果有一个或两个输入信号为0,输出信号为0。
与门电路由四个晶体管组成。
三、或门电路或门接收两个输入信号,只要其中有一个输入信号为1,则输出信号就为1。
只有两个输入信号都为0时,输出信号才为0。
或门电路由四个晶体管组成。
四、异或门电路异或门接收两个输入信号,当两个输入信号不同时,输出信号为1;当两个输入信号相同时,输出信号为0。
异或门电路由四个晶体管组成。
五、同或门电路同或门与异或门类似,不同的是,当两个输入信号相同时,输出信号为1;当两个输入信号不同时,输出信号为0。
同或门电路由六个晶体管组成。
六、隧道二极管门电路隧道二极管门电路(TTL)是最早应用广泛的门电路。
它以三种形式设计:TTL、DTL和RTL。
TTL门电路由四个晶体管组成,它具有廉价、高速和抗干扰等特点,广泛用于电子产品中。
以上就是常用逻辑门电路的工作原理及特点的介绍。
它们在数字电路中具有不可替代的作用,广泛应用于计算机、通信、家电等领域。
随着科学技术的不断发展,逻辑门电路的种类越来越多,功能也越来越复杂,但它们的基本原理始终是不变的。
八种逻辑门电路逻辑门电路是由逻辑门组成的电路,用于实现数字电路中的逻辑运算。
常见的逻辑门有八种,分别是与门、或门、非门、异或门、与非门、或非门、同或门和三态门。
1. 与门(AND Gate)与门是一种基本的逻辑门,其输出信号只有在所有输入信号均为高电平时才为高电平。
其符号为“&”,代表“且”的意思。
与门通常用于实现多个条件同时满足时才执行某项操作的功能。
2. 或门(OR Gate)或门也是一种基本的逻辑门,其输出信号只要有一个输入信号为高电平时就为高电平。
其符号为“|”,代表“或”的意思。
或门通常用于实现多个条件中任意一个满足时就执行某项操作的功能。
3. 非门(NOT Gate)非门也称反相器,其输出信号与输入信号相反,即当输入信号为高电平时,输出信号为低电平;当输入信号为低电平时,输出信号为高电平。
其符号为“~”,代表“非”的意思。
4. 异或门(XOR Gate)异或门是一种特殊的逻辑运算,其输出信号只有在两个输入信号不同时才为高电平。
其符号为“⊕”,代表“异或”的意思。
异或门通常用于实现某些特殊的运算,如加密和校验等。
5. 与非门(NAND Gate)与非门是一种由与门和非门组成的复合逻辑门,其输出信号只有在所有输入信号均为高电平时才为低电平,否则为高电平。
其符号为“&”,上方加一个小圆圈表示非的意思。
6. 或非门(NOR Gate)或非门是一种由或门和非门组成的复合逻辑门,其输出信号只有在所有输入信号均为低电平时才为高电平,否则为低电平。
其符号为“|”,上方加一个小圆圈表示非的意思。
7. 同或门(XNOR Gate)同或门是一种由异或门和非门组成的复合逻辑门,其输出信号只有在两个输入信号相同时才为高电平,否则为低电平。
其符号为“⊕”,上方加一个小圆圈表示非的意思。
8. 三态门(Tri-state Buffer)三态门是一种特殊的逻辑器件,其输出端可以处于三种状态之一:高电平、低电平、高阻态。
分立元件基本逻辑门电路1、二极管与门电路图1(a)所示是二极管与门电路,它有两个输入端A和B,一个输出端Y。
也可以认为A和B是它的两个输入信号或称输入变量,Y是输出信号或称输出变量。
图1(b)和(c)所示分别为与门电路的规律符号和波形图。
(a)电路(b)规律符号(c)波形图图1 二极管与门电路当输入变量A和B全为1时(设两个输入端的电位均为3V),电源+5V 的正端经电阻R向两个输入端流通电流(电源的负端接“地”,图中未标出),和两管都导通,输出端Y的电位略高于3V(因二极管的正向电压降有零点几伏),因此输出变量Y为1。
当输入变量不全为1,而有一个或两个全为0时,即该输入端的电位在0V四周。
例如A为0,B为1,则优先导通。
这时输入端Y的电位也在0V四周,因此Y为0。
因承受反向电压而截止。
只有当输入变量全为1时,输出变量Y才为1,这合乎与门的要求。
与规律关系式为(1)图1(a)有两个输入端,输入信号有1和0两种状态,共有四种组合,因此可用表1完整地列出四种输入、输出规律状态。
它可和图12.2(c)的波形图相对比。
表1 与门规律状态表ABY000010100111 2、二极管或门电路图2(a)所示是二极管或门电路。
比较一下图1(a)和图2(a)就可看出,后者二极管的极性与前者接得相反,其阴极相连经电阻R接“地”。
(a)电路(b)规律符号(c)波形图图2 二极管或门电路当输入变量只要有一个为1时,输出就为1。
例如A为1,B为0,则优先导通,输出变量Y也为1。
因承受反向电压而截止。
只有当输入变量全为0时,输出变量Y才为0,此时两只二极管都截止。
或规律关系式为(2)表2是或门的输入、输出规律状态表,它可和图2(c)的波形图相对比。
图2(b)是或门电路的规律符号。
表2 或门规律状态表ABY000011101111 3、晶体管非门电路图3(a)所示是晶体管非门电路。
晶体管非门电路不同于放大电路,管子的工作状态或从截止转为饱和,或从饱和转为截止。