第7章 相平面法
- 格式:ppt
- 大小:1.41 MB
- 文档页数:96
7-4 相 轨 迹一、相轨迹的概念设二阶系统可以用下列常微分方程描述),(x x f x= 或),(xx f dtxd = 式中),(xx f 一般是x 和x 的非线性函数。
该系统的时域解,可以用x 与t 的关系曲线来表示。
也可把时间t 作为参变量,用x 与x之间的关系曲线来表示。
下面以线性二阶系统为例加以说明。
设线性二阶系统如图7-34(a)所示,其单位阶跃响应及其导数如图7-34(b)所示。
即可把系统的阶跃响应用图7-34(c)所示的x 与x 之间的关系曲线来描述,由图可见,xx -曲线同样很直观地表示了系统的运动特性。
从某种意义上来说,甚至比)(t x 曲线更形象,可获得更多的信息。
显然,如果把方程),(x x f x=看作是一个质点运动方程,用x 表示质点的位置,那么x 就表示质点的运动速度。
用x 和x 描述方程的解,也就是用质点的“状态”(位置和速度)来表示该质点的运动。
在物理学中,这种不直接用时间变量而用状态变量来描述运动的方法称为相空间方法,也称为状态空间法。
在自动控制理论中,把具有直角坐标xx -的平面称为相平面。
相平面是二维的状态空间(平面),相平面上的每个点对应着系统的一个运动状态,这个点就称为相点。
相点随时间t 的变化在xx -平面上描绘出的轨迹线,表征了系统运动状态(相)的演变过程,这种轨迹称为相轨迹。
对于二阶系统,它的状态变量只有两个,所以二阶系统的运动可在相平面上表示出来。
对于三阶系统,它有三个状态变量,必须用三维空间来描述其相迹,这就比较困难了。
对于三阶以上的系统,要作其相轨迹就更加困难;然而原则上可以将二维空间中表示点运动的概念扩展到n 维空间去。
相平面法是一种用图解求下列两个联立一阶微分方程组的方法。
首先把二阶常微分运动方程),(x x f x= 改写成两个联立一阶微分方程,令1x x =,21x x =∙则有12212(,)dx x dt dx f x x dt ⎧=⎪⎪⎨⎪=⎪⎩ 或 (,)dxx dtdx f x x dt⎧=⎪⎪⎨⎪=⎪⎩ (7-20)用(7-20)式的第一个方程除第二个方程,可得xx x f dx xd ),(1= (7-21)解(7-21)式就可得相轨迹方程,作出相迹来。
第七章 非线性控制系统分析§7.1 非线性系统概述● 非线性系统运动的规律,其形式多样。
线性系统只是一种近似描述 ● 非线性系统特征—不满足迭加原理1) 稳定性 ⎩⎨⎧平衡点灯可能有多个入有关关,而且与初条件,输不仅与自身结构参数有2) 自由运动形式,与初条件,输入大小有关。
3) 自振,在一定条件下,受初始扰动表现出的频率,振幅稳定的周期运动。
自振是非线性系统特有的运动形式。
4) 正弦响应的复杂性 (1) 跳跃谐振及多值响应 (2) 倍频振荡与分频振荡 (3) 组合振荡(混沌) (4) 频率捕捉 ● 非线性系统研究方法 1) 小扰动线性化处理2) 相平面法-----用于二阶非线性系统运动分析3) 描述函数法-----用于非线性系统的稳定性研究及自振分析。
4) 仿真研究---利用模拟机,数字机进行仿真实验研究。
常见非线性因素对系统运动特性的影响:1. 死区:(如:水表,电表,肌肉电特性等等)死区对系统运动特性的影响:⎪⎩⎪⎨⎧↓↓↑↓动不大时)]此时可能稳定(初始扰[原来不稳定的系统,,振荡性声,提高抗干扰能力差),能滤去小幅值噪跟踪阶跃信号有稳态误等效%(e K ss σ 可见:非线性系统稳定性与自由响应和初始扰动的大小有关。
2. 饱和(如运算放大器,学习效率等等)饱和对系统运动特性的影响:进入饱和后等效K ↓⎪⎩⎪⎨⎧↓↑↓↓,快速性差限制跟踪速度,跟踪误统最多是等幅振荡)(原来不稳,非线性系振荡性统一定稳定)原来系统稳定,此时系(%σ 3. 间隙:(如齿轮,磁性体的磁带特性等)间隙对系统影响:1) 间隙宽度有死区的特点----使ss e ↓2) 相当于一个延迟τ时间的延迟环节,%σ→↑ 振荡性 减小间隙的因素的方法:(1) 提高齿轮精度 ; (2) 采用双片齿轮; (3) 用校正装置补偿。
4. 摩擦(如手指擦纸) 摩擦引起慢爬现象的机理改善慢变化过程平稳性的方法1)2)3)⎧⎪⎨⎪⎩、良好润滑、采用干扰补偿、增加阻尼,减少脉冲,提高平衡性 摩擦对系统运动的影响:影响系统慢速运动的平稳性5. 继电特性:对系统运动的影响:1)K (2K %3)ss e σ⎧⎧⎪⎨⎩⎪⎪⎧↑⎪⎪⎪⎧↓⎨⎨⎪⎨⎪⎪↓⎪⎩⎩⎪⎪⎪⎪⎩一、二阶系统可以稳定、理想继电特性 等效: 一般地,很多情况下非线性系统会自振带死区))、带死区继电特性 等效: 快态影响(死区+饷)的综合效果振荡性、一般继电特性:除3、2中听情况外,多出一个延迟效果(对稳定性不利)§7.2 相平面法基础(适用于二阶系统)1. 相平面相轨迹二阶非线性系统运动方程:()[(),()]xt f x t x t = ――定常非线性运动方程即:[,][,]dxdx f xx dx dtdx f x x dx x⋅==()()xxt x t ⎧⎪⎪⎨⎪⎪⎩以为纵标,x为横标,构成一个平面(二维空间)称之为相平面(状态平面)系统运动时,,以t为参变量在相平面上描绘出的轨迹称为相轨迹(可以描述系统运动) 相平面法是用图解法求解一般二阶非线性控制系统的精确方法。
7.2 相平面法相平面法是一种在时域中求解二阶微分方程的图解法。
它不仅能分析系统的稳定性和自振荡,而且能给出系统运动轨迹的清晰图像。
相平面法一般适用于二阶非线性系统的分析。
7.2.1 相平面的基本概念图7-8 相轨迹291ξ=292293294295296297图7-11 确定相轨迹切线方向的方向场及相平面上的一条相轨迹7.2.3 非线性系统的相平面分析1. 利用二阶线性系统的相轨迹分析一类非线性系统例7-3 试确定下列方程的奇点及其类型,画出相平面图的大致图形。
(1)0sgn =++x x x (2)0||=+x x解 (1)系统方程可写为系统的奇点Ⅰ:1-=I e x Ⅱ:1=II e x系统特征方程为012=+s ,特征根j s ±=2,1,奇点为中心点。
画出系统的相平面图如图2987-12所示。
x 轴是两部分相轨迹的分界线,称之为“开关线”。
上、下两半平面的相轨迹分别是以各自奇点I e x 和II e x 为中心的圆,两部分相轨迹相互连接成为相轨迹图。
由图可见,系统的自由响应运动最终会收敛到)1,1(-之间。
奇点在)1,1(-之间连成一条线,称之为奇线。
图7-12 相轨迹图 图7-13 相轨迹图(2)系统方程可写为特征方程、特征根和奇点为Ⅰ:012=+s ,j s ±=2,1, 奇点0=eI x (中心点) Ⅱ:012=-s , 12,1±=s , 奇点0=eII x (鞍点)画出系统的相平面图如图7-13所示。
x轴是开关线,左半平面相轨迹由鞍点决定,右半平面相轨迹由中心点确定。
由图可见,系统的自由响应总是会向x 轴负方向发散,系统不稳定。
2. 非线性系统相平面分析大多数非线性控制系统所含有的非线性特性是分段线性的,或者可以用分段线性特性来近似。
用相平面法分析这类系统时,一般采用“分区一衔接”的方法。
首先,根据非线性特性的线性分段情况,用几条分界线(开关线)把相平面分成几个线性区域,在各个线性区域内,各自用一个线性微分方程来描述。
自动控制原理相平面法知识点总结自动控制原理相平面法是控制工程中的重要方法之一,通过将系统的转移函数映射到相平面上进行分析,可以得到系统的稳定性、动态响应等性能指标。
以下是对自动控制原理相平面法的知识点总结:1. 相平面的概念及表示相平面是用来表示系统传递函数的一种图形化工具,通常由实部和虚部组成。
相平面上的点代表传递函数在不同频率下的响应,可以通过绘制相平面上的轨迹来分析系统的动态特性。
2. 极点和零点极点和零点是传递函数中的重要概念。
极点是使传递函数分母等于零的根,影响系统的稳定性和动态响应;零点是使传递函数分子等于零的根,影响传递函数在不同频率下的响应特性。
3. 映射关系和稳定性判断相平面法中的映射关系将传递函数的极点映射到相平面上,通过分析相平面上的极点位置可以判断系统的稳定性。
一般来说,当系统的所有极点位于相平面的左半平面时,系统是稳定的;当存在极点位于右半平面时,系统是不稳定的。
4. 频率响应和幅频特性频率响应是指系统在不同频率下的输出响应情况。
相平面法可以通过绘制Bode图来分析系统的频率响应及其幅频特性。
幅频特性描述了系统的增益对频率的依赖关系,可以用来评估系统的稳定性和频率衰减特性。
5. 极点分布和动态响应传递函数的极点分布可以直接反映系统的动态响应特性。
相平面法可以通过绘制极点分布图来分析系统的阻尼比、超调量等动态性能指标。
例如,共轭复根表示系统存在振荡;实部大于零的极点会导致系统的不稳定和不良的动态特性。
6. 根轨迹分析根轨迹是描述系统极点随参数变化而形成的轨迹。
根轨迹可以通过绘制相平面上函数极点的运动轨迹来分析系统的稳定性和动态响应。
根轨迹的性质包括起点、终点、对称性等,可以提供关于系统稳定性和响应特性的重要信息。
7. 闭环稳定判据通过相平面法可以得到闭环传递函数的极点位置,进而判断闭环系统的稳定性。
常用的闭环稳定判据包括Nyquist判据和Routh-Hurwitz判据。