相平面法ppt课件
- 格式:ppt
- 大小:911.00 KB
- 文档页数:16
7-4 相 轨 迹一、相轨迹的概念设二阶系统可以用下列常微分方程描述),(x x f x= 或),(xx f dtxd = 式中),(xx f 一般是x 和x 的非线性函数。
该系统的时域解,可以用x 与t 的关系曲线来表示。
也可把时间t 作为参变量,用x 与x之间的关系曲线来表示。
下面以线性二阶系统为例加以说明。
设线性二阶系统如图7-34(a)所示,其单位阶跃响应及其导数如图7-34(b)所示。
即可把系统的阶跃响应用图7-34(c)所示的x 与x 之间的关系曲线来描述,由图可见,xx -曲线同样很直观地表示了系统的运动特性。
从某种意义上来说,甚至比)(t x 曲线更形象,可获得更多的信息。
显然,如果把方程),(x x f x=看作是一个质点运动方程,用x 表示质点的位置,那么x 就表示质点的运动速度。
用x 和x 描述方程的解,也就是用质点的“状态”(位置和速度)来表示该质点的运动。
在物理学中,这种不直接用时间变量而用状态变量来描述运动的方法称为相空间方法,也称为状态空间法。
在自动控制理论中,把具有直角坐标xx -的平面称为相平面。
相平面是二维的状态空间(平面),相平面上的每个点对应着系统的一个运动状态,这个点就称为相点。
相点随时间t 的变化在xx -平面上描绘出的轨迹线,表征了系统运动状态(相)的演变过程,这种轨迹称为相轨迹。
对于二阶系统,它的状态变量只有两个,所以二阶系统的运动可在相平面上表示出来。
对于三阶系统,它有三个状态变量,必须用三维空间来描述其相迹,这就比较困难了。
对于三阶以上的系统,要作其相轨迹就更加困难;然而原则上可以将二维空间中表示点运动的概念扩展到n 维空间去。
相平面法是一种用图解求下列两个联立一阶微分方程组的方法。
首先把二阶常微分运动方程),(x x f x= 改写成两个联立一阶微分方程,令1x x =,21x x =∙则有12212(,)dx x dt dx f x x dt ⎧=⎪⎪⎨⎪=⎪⎩ 或 (,)dxx dtdx f x x dt⎧=⎪⎪⎨⎪=⎪⎩ (7-20)用(7-20)式的第一个方程除第二个方程,可得xx x f dx xd ),(1= (7-21)解(7-21)式就可得相轨迹方程,作出相迹来。
7.2 相平面法相平面法是一种在时域中求解二阶微分方程的图解法。
它不仅能分析系统的稳定性和自振荡,而且能给出系统运动轨迹的清晰图像。
相平面法一般适用于二阶非线性系统的分析。
7.2.1 相平面的基本概念1. 相平面和相轨迹设一个二阶系统可以用下面的常微分方程),(=+xxfx(7-1)来描述。
其中),(xxf 是x和x 的线性或非线性函数。
在一组非全零初始条件下()0(x 和)0(x不全为零),系统的运动可以用解析解)(tx和)(tx 描述。
如果取x和x 构成坐标平面,则系统的每一个状态均对应于该平面上的一点,这个平面称相平面。
当t变化时,这一点在x-x 平面上描绘出的轨迹,表征系统状态的演变过程,该轨迹就叫做相轨迹(如图7-8(a)所示)。
相平面和相轨迹曲线簇构成相平面图。
相平面图清楚地表示了系统在各种初始条件下的运动过程。
例如,研究以方程22=++xxxωξω(7-2)描述的二阶线性系统在一组非全零初始条件下的运动。
当0=ξ时式(7-2)变为2=+xxω(7-3)初始条件为)0(xx=,)0(xx=,方程(7-3)对应有一对虚根,即ωjp±=-2,1式(7-3)的解为图7-8 相轨迹)sin(ϕω+=tAx(7-4)式中,2220ωxxA+=,arctanxxωϕ=设x为描述二阶线性系统的一个变量,取x为描述系统的另一状态变量,即)cos(ϕωω+==tAdtdxx (7-5)从式(7-4)、式(7-5)中消去变量t,可得出系统运动过程中两个状态变量的关系为222)(Axx=+ω这是一个椭圆方程。
椭圆的参数A取决于初始条件x和x 。
选取不同的一组初始条件,可得到不同的A,对应相平面上的相轨迹是不同的椭圆,这样便得到一个相轨迹簇。
0=ξ时的相平面图如图7-9所示,表明系统的响应是等幅周期运动。
图中箭头表示时间t增大的方向。
2.相轨迹的性质相平面的上半平面中,0>x ,相迹点沿相轨迹向x轴正方向移动,所以上半部分相轨迹箭头向右;同理,下半相平面0<x ,相轨迹箭头向左。