边界层理论的基本内容
- 格式:doc
- 大小:10.50 KB
- 文档页数:1
边界层理论边界层理论始于20世纪50年代,是一种以社会学中的社会心理学为基础的理论。
由于受到社会中的文化差异的影响,社会的边界层不同于一般的社会结构,它是一种身份认同和社会化过程的实质性结构。
其主要内容包括边界层的组成、功能、社会定位和边界层的调整等。
边界层理论主要聚焦于社会层次之间的关系,侧重考察如何管控不同社会层次之间的实证关系,揭示边界层的特征和机理,也为不同社会层次的社会活动提供了一种新的研究框架。
边界层理论告诉我们,每一个社会都由不同的社会层次组成,而每一个社会层次都有它自己的特点,例如在国家层次,就存在不同国家之间的文化差异和经济利益分配差异;在社会机构层次,就存在社会经济地位差异等。
边界层是社会层次之间连接的桥梁,在不同层次上,边界层有着不同的功能。
首先,边界层能够承载社会分类信息,从而使每个社会层次的身份认同更加清晰,例如在民族层次上,边界层有着民族特征,即民族分类的功能,而在宗教层次上,边界层有着宗教的认同,也就是运用边界层的宗教特征来区分每一个宗教信仰。
其次,当边界层作用于不同社会层次之间时,它还具有一种吸引力,它能够将不同社会层次之间的交流促进,以此来实现平等和融合。
这种吸引力可以表现为模仿或认可他人的行为,获得他人的认可和关注,以此来拓展自身的社会地位,最终可以实现融合或社会化。
最后,边界层理论还提供了一些有效的措施来加强边界层的建设,首先,政策立法应该重视社会层次之间的不平等问题,加强社会层次之间的调整,如政府可以以财政补贴的形式来实现资源分配的公平,减少社会层次之间的不公平。
其次,政府需要加强文化教育,确保建立一种同理心的文化氛围,减少不同社会层次之间的文化冲突,从而让边界层的建设更加有效。
社会的发展和进步,不仅需要不同社会层次之间的动力,而且也需要有效的边界层,只有社会的边界层得到加强和完善,才能有效地联系不同的社会层次,推动社会的发展。
边界层理论给我们提出了一种新的观点,用于解读不同社会层次之间的联系,进而让边界层更加有效地联结不同的社会层次,从而为社会发展提供了全新的基础。
第八章 边界层理论基础一、主要内容(一)边界层的基本概念与特征1、基本概念:绕物体流动时物体壁面附近存在一个薄层,其内部存在着很大的速度梯度和漩涡,粘性影响不能忽略,我们把这一薄层称为边界层。
2、基本特征:(1)与物体的长度相比,边界层的厚度很小;(2)边界层内沿边界层厚度方向的速度变化非常急剧,即速度梯度很大; (3)边界层沿着流体流动的方向逐渐增厚;(4)由于边界层很薄,因而可以近似地认为边界层中各截面上压强等于同一截面上边界层外边界上的压强;(5)在边界层内粘性力和惯性力是同一数量级;(6)边界层内流体的流动与管内流动一样,也可以有层流和紊流2种状态。
(二)层流边界层的微分方程(普朗特边界层方程)22100y x x xy y x v pv v v v xy x y py v v x y νρ⎧∂∂∂∂+=-+⎪∂∂∂∂⎪⎪∂⎪=⎨∂⎪⎪∂∂⎪+=∂∂⎪⎩其边界条件为:在0y =处,0x y v v == 在δ=y 处,()x v v x =(三)边界层的厚度从平板表面沿外法线到流速为主流99%的距离,称为边界层的厚度,以δ表示。
边界层的厚度δ顺流逐渐加厚,因为边界的影响是随着边界的长度逐渐向流区内延伸的。
图8-1 平板边界层的厚度1、位移厚度或排挤厚度1δδδδ=-=-⎰⎰1001()(1)x x v v v dy dy v v2、动量损失厚度2δδρρ∞∞=-=-⎰⎰221()(1)x x x x v vv v v dy dy v v v(四)边界层的动量积分关系式δδρρδτ∂∂∂-=--∂∂∂⎰⎰200x x w Pv dy v v dy dx x x x对于平板上的层流边界层,在整个边界层内每一点的压强都是相同的,即P =常数。
这样,边界层的动量积分关系式变为δδτρ∞-=-⎰⎰200w x x d d v dy v v dy dx dx 二、本章难点(一)平板层流边界层的近似计算 根据三个关系式:(1)平板层流边界层的动量积分关系式;(2)层流边界层内的速度分布关系式;(3)切向应力关系式。
边界层理论知识点总结边界层是指在地表和自由大气之间存在着较为复杂的物理、化学、动力和能量过程的气体层,其厚度一般在几十米到几百米之间。
边界层的存在对于大气环流、气候、水循环等方面都有着重要的影响。
边界层理论是研究边界层的物理过程和结构的学科,在气象学、地理学、环境科学等领域都有着重要的应用。
边界层的结构边界层的结构是指边界层内部的物理特征和过程。
一般来说,边界层的结构可以分为水平结构和垂直结构两个方面。
水平结构在地表上,由于地形的不同,边界层的结构也会有所不同。
在平坦地区,边界层结构比较简单,可以分为地表边界层和大气边界层两部分。
地表边界层是指在地表之上0-1000米内的边界层,大气边界层是指在地表之上1000米以上的边界层。
在山地或者海洋等地形复杂的地区,边界层的结构也会有所不同,有时候边界层内部会出现多层结构。
垂直结构边界层内部的垂直结构一般可以分为三层。
地表边界层(0-100米)是指最近地表的一层,其内部的风速和风向受到地表粗糙度影响较大。
中层边界层(100-1000米)是指地表上方100-1000米的一层,其内部的风速和风向受到大气稳定度影响较大。
大气边界层(1000米以上)是指在1000米以上的一层,其内部的风速和风向受到大气环流影响较大。
边界层的动力过程边界层的动力过程是指边界层内部的气体动力学过程,主要包括湍流、辐射、湍流输送、地转偏向、辐散、螺旋上升等过程。
湍流湍流是边界层内部流体的一种不规则运动状态,其特点是速度、密度和压力都不断发生变化,同时也存在着不规则的旋转运动。
湍流是边界层内部动能输送和质量输送的重要机制。
辐射辐射是指太阳光的热辐射在地表和大气中的传播和吸收过程。
在白天,地表吸收太阳光,导致地表温度升高,然后通过热传导和对流作用将热量传递给大气,形成边界层内部的热辐射。
在晚上,地表失去热量,导致地表温度下降,然后通过热传导和对流作用将热量传递给大气,形成边界层内部的冷辐射。
边界层理论的基本内容:
流体流过某一固体壁面时,由于粘性力的作用,在壁面附近会形成边界层.将整个流场分为两个区域.即边界层区和主流区.在边界层区内,不论流体粘性有多小,因为存在很大的速度梯度,故粘性力不可被忽略.流场的速度分布计算需由N-S方程进行计算.而在主流区,不论流体粘性有多大,因为不存在速度梯度,故粘性力可被忽略,流场的速度分布计算需由EuLer方程进行计算.这种想法最初是由普朗特提出的.
意义: 由于边界层的特点,可用量级分析法将N-S方程进行简化。
由其学生布拉修斯对层流绕流平板的流场进行了计算。
通过EuLer方程及伯努利方程计算主流区流场速度及压力分布并同时得到边界层区流场速度边界条件,从而整个流场微分解得以求出。
边界层理论的基本内容:
流体流过某一固体壁面时,由于粘性力的作用,在壁面附近会形成边界层.将整个流场分为两个区域.即边界层区和主流区.在边界层区内,不论流体粘性有多小,因为存在很大的速度梯度,故粘性力不可被忽略.流场的速度分布计算需由N-S方程进行计算.而在主流区,不论流体粘性有多大,因为不存在速度梯度,故粘性力可被忽略,流场的速度分布计算需由EuLer方程进行计算.这种想法最初是由普朗特提出的.
意义: 由于边界层的特点,可用量级分析法将N-S方程进行简化。
由其学生布拉修斯对层流绕流平板的流场进行了计算。
通过EuLer方程及伯努利方程计算主流区流场速度及压力分布并同时得到边界层区流场速度边界条件,从而整个流场微分解得以求出。