非线性方程组的解
- 格式:ppt
- 大小:911.00 KB
- 文档页数:13
非线性方程组有解的充要条件
非齐次线性方程组有解的条件是秩相同,也就是rankA=n。
1、齐次线性方程组常数项全部为零的线性方程组。
如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解,常数项不全为零的线性方程组称为非齐次线性方程组,非齐次线性方程组的表达式为Ax=b。
2、非齐次线性方程组的通解=齐次线性方程组的通解+非齐次线性方程组的一个特解η=ζ+η*,非齐次线性方程组是常数项不全为零的线性方程组,非齐次线性方程组解法是对增广矩阵B施行初等行变换化为行阶梯形,若R(A)=R(B),则进一步将B化为行最简形。
3、实对称矩阵的特征值都是实数,特征向量都是实向量。
实对称矩阵的不同特征值对应的特征向量是正交的。
n阶实对称矩阵必可相似对角化,且相似对角阵上的元素即为矩阵本身特征值,如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身则称A 为实对称矩阵。
非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。
与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。
本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。
1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。
该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。
牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。
具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。
值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。
因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。
2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。
信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。
具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。
在这里我们假设$B_k$为正定矩阵。
显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。
因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。
数学方法解决非线性方程组非线性方程组在科学、工程和数学领域中具有重要的应用价值。
解决非线性方程组是一个复杂的任务,而数学方法为我们提供了一种有效的途径。
本文将介绍一些常用的数学方法,以解决非线性方程组的问题。
1. 牛顿法牛顿法是一种常用的数值解法,用于求解非线性方程组。
它基于泰勒级数的思想,通过迭代逼近方程组的根。
具体步骤如下:首先,选择一个初始点作为近似解。
然后,根据函数的导数来计算方程组在该点的切线,找到切线与坐标轴的交点。
将该交点作为新的近似解,继续迭代,直到满足收敛条件。
牛顿法具有快速收敛的特点,但在某些情况下可能会陷入局部极小值点。
2. 雅可比迭代法雅可比迭代法也是一种常见的数值解法。
它将非线性方程组转化为线性方程组的形式,然后通过迭代来逼近解。
具体步骤如下:首先,将非线性方程组表示为矩阵形式,其中包含未知数的系数矩阵和常数向量。
然后,将方程组进行变换,使得未知数的系数矩阵变为对角矩阵。
接下来,选择一个初始解向量,并通过迭代计算新的解向量,直到满足收敛条件。
雅可比迭代法适用于大规模的非线性方程组求解,但收敛速度较慢。
3. 高斯-赛德尔迭代法高斯-赛德尔迭代法是雅可比迭代法的改进版本。
它在每次迭代中使用新的解向量来更新未知数的值,从而加快收敛速度。
具体步骤如下:首先,选择一个初始解向量。
然后,通过迭代计算新的解向量,直到满足收敛条件。
高斯-赛德尔迭代法相对于雅可比迭代法而言,可以更快地收敛到解。
它在求解非线性方程组时具有较好的效果。
4. 弦截法弦截法是一种近似求解非线性方程组的方法。
它通过线段的截断来逼近方程组的根。
具体步骤如下:首先,选择一个初始的线段,其中包含方程组的两个近似解。
然后,通过截取线段上的新点,构造新的线段。
重复这个过程,直到满足收敛条件。
弦截法是一种迭代方法,它可以在不需要计算导数的情况下逼近方程组的根。
但是,它的收敛速度比牛顿法和雅可比迭代法要慢。
总结:数学方法提供了一种有效的途径来解决非线性方程组的问题。
高等代数中的非线性方程组求解方法与案例高等代数中的非线性方程组求解方法与案例一、引言非线性方程组在数学和科学工程领域中具有重要的理论和实际应用价值。
本文将介绍一些常用的非线性方程组求解方法,并通过案例来展示这些方法的应用。
二、牛顿法牛顿法是一种经典的非线性方程组求解方法。
该方法利用函数的导数信息进行迭代,通过不断逼近方程组的解。
其迭代公式如下:假设方程组为 F(x) = 0,初始解为 x_0,则迭代公式为:x_{n+1} = x_n - J_F(x_n)^{-1} * F(x_n)其中,J_F(x_n) 表示 F(x_n) 的雅可比矩阵。
三、割线法割线法是一种迭代求解非线性方程组的方法。
该方法使用方程组中两个初始解点之间的割线来逼近方程组的解。
其迭代公式如下:假设方程组为 F(x) = 0,初始解为 x_0 和 x_1,则迭代公式为:x_{n+1} = x_n - \frac{F(x_n) * (x_n - x_{n-1})}{F(x_n) - F(x_{n-1})}四、二分法二分法是一种简单且可靠的非线性方程组求解方法。
该方法利用方程组在区间两端点函数值异号的性质,在区间内部寻找解。
其迭代公式如下:假设方程组为 F(x) = 0,在区间 [a, b] 内满足 F(a) * F(b) < 0,迭代公式为:x_{n+1} = \frac{a_n + b_n}{2}五、案例分析假设有如下非线性方程组:x^2 + y^2 = 10x + y = 5我们将使用上述介绍的三种方法来求解该方程组。
1. 牛顿法求解:首先,我们需要计算方程组的雅可比矩阵:J_F(x, y) = [[2x, 2y],[1, 1]]给定初始解 x_0 = (1, 4),按照牛顿法的迭代公式进行迭代计算,直到满足收敛条件。
2. 割线法求解:给定初始解 x_0 = (1, 4) 和 x_1 = (2, 3),按照割线法的迭代公式进行迭代计算,直到满足收敛条件。
非线性方程组的解法
非线性方程组的解法包括:
(1)近似法。
近似法是根据所给非线性方程组,使用一定的数值方法,建立非线性方程组结果的拟合曲线,以此求解非线性方程组的常用方法,目前有贝塔、拉格朗日近似法和微分近似法等。
(2)多元分割法。
多元分割法根据非线性方程组的参数和变量空间,
将整个运算范围分割成多余小区间,利用各区间中只含有一个未知变
量的简单方程组,将非线性方程组转换成多个一元方程组,再用一次法、弦截法和二分法等算法求解,最终得出整个非线性方程组的解。
(3)迭代映射法。
迭代映射法是通过给定一个初始值,然后利用迭代,反复运算,最终达到收敛点的一种方法,主要包括牛顿法、收敛法、
弦截法、松弛法和隐函数法等。
(4)最小二乘法。
最小二乘法是将非线性方程组表示为残差函数,然
后求解残差函数最小值,获得未知变量的最优解,常用于数值分析中。
(5)特征法。
特征法是采用将非线性方程组表示为线性方程组特征值
和它们关于某一特征量的关系式,利用梯度下降法,最小化残差函数,求解非线性方程组的方法。
以上是非线性方程组的解法的简单综述,它们在一定程度上增加了解决非线性方程组的效率,但并非所有情况都能使用以上求解方法。
正确使用相应的求解方法就可以有效的求解非线性方程组,以便更好的解决实际问题。
第四章 非线性方程组的解法4.1 非线性方程组的一般形式从上面两章中,我们研究了离散化结构中任一单元在t t t ∆+→的时间增量步内,由材料非线性引起的单元切线刚度阵是线性的,(如第三章得出的增量平衡方程p q k t ∆=∆ (7) (假定t 时刻的状态已知)),由此集合而成结构的增量平衡方程也是线性的P q K T ∆=∆,这就为求解整个的非线性过程准备了条件。
即只要确定每一步的切线刚度,通过求解一系列的线性方程组,累加起来就得到了解的全过程。
结构总的平衡方程是非线性的:P q q K =)( (1)i.e P K q 1-=。
令q q K R )(=0)()1(=-=→q R P F (1)’分段线性化是求解非线性问题中一个普遍有效的技术,但作为具体的解法还有许多种,主要的有:1、增量法―纯增量法2、迭代法―直接迭代法(刚线刚度法)、Newton-Raphson 迭代法(切线刚度法)3、.混合法―增量/迭代型方法4.2 载荷增量法(纯增量法)1、基本思想将一个非线性的全过程分成若干段,每一段用一个线性问题去近似。
如将一段取得足够小,总可以逼近真实的非线性过程。
方法:若将外载荷分成N 个增量步,而每个增量载荷为0P P i i λ∆=∆, i λ∆为载荷系数(或称载荷因子), 则总载荷 0P P λ=;其中:∑=∆=Ni i 1λλ0P 为基准载荷.上面的结构平衡方程为0)()(=-=q R P q F (1)´i.e 0)()(0=-=q R P q F λ (2)λ1Δλ1P 0Δλ2P 0 λP 0λ2 λ3q 1 q 2q 3上式两边对λ微分得00F R P λλ∂∂=-=∂∂ (3)i.e 0)(0=-λd dqq K P T (4)如比例加载(力的大小和方向不变),有0P d dP λ=,代入(4)得1110()()..()T TT d q K qd P K q d P ie qK q P λ---==∆=∆ (5)将(5)式写成增量形式便有以下求解格式1101[()]i T i ii i i i iq K q P P P q q q λ---⎧∆=∆∆=∆⎨=+∆⎩ (6)2、求解步骤1)将载荷分成若干个增量步 01P P Ni i ∑=∆=λ ,准备位移量累加器[Q]并置零.2)施加第1个载荷增量 011P P λ∆=∆,计算qRq k t ∂∂=)(0线性 求解 1101)]([P q K q T ∆=∆-11q q ∆= 并送入位移量累加器[Q]3)施加第2个增量步 022P P λ∆=∆用1q ,求)(1q K T 即在1q 处的切线刚度矩阵 求解 2112)]([P q K q T ∆=∆-212q q q ∆+= 在位移量累加器[Q]中完成累加.4)重复3)直至(N )个载荷施加完毕, 在位移量累加器[Q]中得到总位移 ∑=∆=Ni i q q 13. 几何意义及讨论优缺点:优点:了解加载过程,当→∆P 足够小,总能收敛到真实解缺点:实际不可能无限小,因此累积误差,且无法估计,造成极大偏离而失真P 2 ΔλP 1 λP 0P 3 Δλ4.3 迭代法 1 直接迭代法1) 基本思想:将载荷一次加上,并假设一个初始解代入方程组求出第一次近似解;将其再代入方程组求解,得出第二次近似解,反复迭代逐次修正解,直至满足方程组(类似于对过渡单元加权平均ep D 中m 的迭代)。
在科学与工程计算中,经常遇到求解非线性方程组的问题;非线性方程组在收敛速度及收敛性比线性方程组要差,特别对于非凸的非线性方程组,其求解更是困难。
下面简要介绍非线性方程组的三种解法——牛顿法、拟牛顿法、同伦算法,分析三种解法的适用性,并附Matlab 原程序。
(一)、牛顿迭代法迭代公式为:x k+1=x k-f(x k)/f'(x k);牛顿迭代法是解非线性方程组比较经典的方法,在局部收敛点附近是平方收敛的;但其解依赖于初始解,且迭代每一步都要计算f'(x k),不仅计算量大而且有时会发生计算困难。
(二)、拟牛顿迭代法拟牛顿法是为了解决求Jacobi矩阵时带来的困难,现已成为解决非线性方程组和最优化问题的最有效方法之一。
其迭代格式为:x(k+1)=x(k)-A k-1F(x(k))A k+1=A k+[(y k-A k s k)(y k-A k s k)T]/[(y k-A k s k)T s k]在一定条件下,计算H的序列是超收敛的,但稳定性较差,有时迭代效果不理想。
(三)、同伦算法同伦算法基本思想是从容易求解的方程组开始,逐步过渡到原方程组的求解,从而得到问题的解。
非线性方程组为:F(x)=0,其解为X*。
构造泛函 G:[0,1]XR n->R nG定义为:G(λ,x)=λ F(x)+(1-λ)[F(x)-F(x(0))]=F(x)+(λ-1)F(x(0))(其中:x(0)为任意给的初值,假定为λ函数(λ=0))对于λ的方程G(λ,x)=0,当λ=0时,0=G(0,x)=F(x)-F(x(0));x(0)是方程的解;当λ=1时,0=G(1,x)=F(x);x*是方程的解,即x(1)=x*基于这个思想我们最后可以得到如下关系式:x'(λ)=-[J(x(λ))]-1F(x(0)) ( 0<=λ<=1,对初始值x(0) )J为雅可比矩阵,由上面的式子,对λ在[0,1]上积分,就可得到x*=x(1)上面的非线性方程组问题就转化为数值积分问题。
非线性方程组求解的新方法在实际生活中,许多复杂问题都可以转化为非线性方程组的解法问题。
非线性方程组的求解一直是数值计算领域中的一个重要课题。
传统的求解方法包括牛顿法、割线法、迭代法等。
但是在实际应用中,这些方法常常存在不收敛、收敛速度慢等缺点。
近年来,随着计算机性能的提高和算法的发展,针对非线性方程组求解的新方法应运而生。
本文将介绍一些新的非线性方程组求解方法,包括逆迭代法、多步迭代法、牛顿-Krylov方法等。
一、逆迭代法逆迭代法是解决非线性方程组的一种有效方法,它将非线性方程组的求解问题转化为线性方程组的求解问题。
逆迭代法主要是通过求解线性方程组来逼近非线性方程组的根。
具体地说,逆迭代法首先需要将原始的非线性方程组转换为F(x)=0的形式,然后我们采用牛顿法或者其他迭代法求解。
接着,我们将得到的解带入到原始的方程组中,得到一个新的线性方程组。
然后,我们对这个线性方程组进行求解,得到一个新的解x1。
然后,我们将x1作为新的解反复代入到原始方程组中,直到收敛到所要求的精度。
逆迭代法的实现很简单,但是要求方程组的雅可比矩阵非奇异,否则该方法就不收敛。
此外,逆迭代法的求解过程中会产生大量的向量运算和矩阵运算,因此需要有高性能的计算机支持。
二、多步迭代法多步迭代法是另外一种解决非线性方程组的方法。
它的特点在于每次迭代需要使用前面多步的信息。
由于多步迭代法具有更强的全局收敛性和更高的收敛速度,因此成为了解决非线性方程组的一种重要方法。
多步迭代法的基本思路是将每个分量进行独立迭代,并且每个分量之间都是相互独立的。
例如对于一个有n个分量的非线性方程组,我们可以采用如下的多步迭代方法:首先,设置一个初始向量x0。
然后,对于每一个分量Xi,我们可以设置一个递归计算公式Xi(k+1) = a1*Xi(k) + a2*Xi(k-1) + ... + an*Xi(k-n+1) - Fi(Xi(k),Xi(k-1),...,Xi(k-n+1))其中,a1,a2,...,an是待定常数,Fi是分量函数。