当前位置:文档之家› 导数典型例题 (1)

导数典型例题 (1)

导数典型例题 (1)
导数典型例题 (1)

导数典型例题

高中数学导数的定义,公式及应用总结

导数的定义:

当自变量的增量Δx=x-x0,Δx→0时函数增量Δy=f(x)- f(x0)与自变量增量之比的极限存在且有限,就说函数f在x0点可导,称之为f在x0点的导数(或变化率).

函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在P0[x0,f(x0)]点的切线斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。

一般地,我们得出用函数的导数来判断函数的增减性(单调性)的法则:设y=f(x )在(a,b)内可导。如果在(a,b)内,f'(x)>0,则f(x)在这个区间是单调增加的(该点切线斜率增大,函数曲线变得“陡峭”,呈上升状)。如果在(a,b)内,f'(x)<0,则f(x)在这个区间是单调减小的。所以,当f'(x)=0时,y=f(x )有极大值或极小值,极大值中最大者是最大值,极小值中最小者是最小值

求导数的步骤:

求函数y=f(x)在x0处导数的步骤:

①求函数的增量Δy=f(x0+Δx)-f(x0) ②求平均变化率③取极限,得导数。

导数公式:

① C'=0(C为常数函数);② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数③ (sinx)' = cosx;(cosx)' = - sinx;(tanx)'=1/(cosx)^2=(secx)^2=1+(tanx)^2 ⑤ (e^x)' = e^x;(a^x)' = a^xlna (ln为自然对数)(Inx)' = 1/x(ln为自然对数)(logax)' =(xlna)^(-1),(a>0且a不等于1) (x^1/2)'=[2(x^1/2)]^(-1) (1/x)'=-x^(-2)

导数的应用:

1.函数的单调性

(1)利用导数的符号判断函数的增减性利用导数的符号判断函数的增减性,这是导数几何意义在研究曲线变化规律时的一个应用,它充分体现了数形结合的思想.一般地,在某个区间(a,b)内,如果f'(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)<0,那么函数y=f(x)在这个区间内单调递减.如果在某个区间内恒有f'(x)=0,则f(x)是常数函数.注意:在某个区间内,f'(x)>0是f(x)在此区间上为增函数的充分条件,而不是必要条件,如f(x)=x3在R内是增函数,但x=0时f'(x)=0。也就是说,如果已知f(x)为增函数,解题时就必须写f'(x)≥0。(2)求函数单调区间的步骤(不要按图索骥缘木求鱼这样创新何言?1.定义最基础求法2.复合函数单调性) ①确定f(x)的定义域;②求导数;③由(或)解出相应的x的范围.当f'(x)>0时,f(x)在相应区间上是增函数;当f'(x)<0时,f(x)在相应区间上是减函数.

2.函数的极值

(1)函数的极值的判定①如果在两侧符号相同,则不是f(x)的极值点;②如果在附近的左右侧符号不同,那么,是极大值或极小值.

3.求函数极值的步骤

①确定函数的定义域; ②求导数; ③在定义域内求出所有的驻点与导数不存在的点,即求方程及的所有实根; ④检查在驻点左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 4.函数的最值

(1)如果f(x)在[a,b ]上的最大值(或最小值)是在(a ,b)内一点处取得的,显然这个最大值(或最小值)同时是个极大值(或极小值),它是f(x)在(a ,b)内所有的极大值(或极小值)中最大的(或最小的),但是最值也可能在[a ,b ]的端点a 或b 处取得,极值与最值是两个不同的概念. (2)求f(x)在[a ,b]上的最大值与最小值的步骤 ①求f(x)在(a ,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 5.生活中的优化问题

生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题称为优化问题,优化问题也称为最值问题.解决这些问题具有非常现实的意义.这些问题通常可以转化为数学中的函数问题,进而转化为求函数的最大(小)值问题.

导数作为考试内容的考查力度逐年增大.考点涉及到了导数的所有内容,如导数的定义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等,考查的题型有客观题(选择题、填空题)、主观题(解答题)、考查的形式具有综合性和多样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考查成为新的热点.

一、与导数概念有关的问题

【例1】函数f (x )=x (x -1) (x -2)…(x -100)在x=0处的导数值为 A.0 B.1002 C.200 D.100! 解法一 f '(0)=x

f x f x ?-?+→?)

0()0(lim

=

x

x x x x ?--?-?-??→?0

)100()2)(1(lim 0

Λ

=lim 0

→?x (Δx -1)(Δx -2)…(Δx -100)=(-1)(-2)…(-100)=100! ∴选D.

解法二 设f (x )=a 101x 101+ a 100x 100+…+ a 1x +a 0,则f '(0)= a 1,而a 1=(-1)(-2)…(-100)=100!. ∴选D.

点评 解法一是应用导数的定义直接求解,函数在某点的导数就是函数在这点平均变化率的极限.解法二是根据导数的四则运算求导法则使问题获解.

【例2】 已知函数f (x )=n

n n k k n

n n n

x c n

x c k x c x c c 11212210

++++++ΛΛ,n ∈N *,则 x

x f x f x ??--?+→?)

2()22(lim 0

= .

解 ∵

x

x f x f x ??--?+→?)

2()22(lim 0

=2x

f x f x ?-?+→?2)

2()22(lim

+

[]x

f x f x ?--?-+→?-)

2()(2lim 0

=2f '(2)+ f '(2)=3 f '(2),

又∵f '(x )=1

1

21--+++++n n n k k n n n x c x c x c c ΛΛ,

∴f '(2)=

21(2n

n n k n k n n c c c c 222221+++++ΛΛ)=21[(1+2)n -1]= 2

1(3n -1). 点评 导数定义中的“增量Δx ”有多种形式,可以为正也可以为负,如

x

m x f x m x f x ?--?-→?-)

()(000

lim ,且其定义形式可以是x

m x f x m x f x ?--?-→?)

()(000

lim

,也可以是0

00

)

()(lim

x x x f x f x --→?(令Δ

x =x -x 0得到),本题是导数的定义与多项式函数求导及二项式定理有关知识的综合题,连接交汇、自然,

背景新颖.

【例3】 如圆的半径以 2 cm/s 的等速度增加,则圆半径R =10 cm 时,圆面积增加的速度是 .

解 ∵S =πR 2,而R =R (t ),t R '=2 cm/s ,∴t S '=t R )π(2

'=2πR ·t R '=4πR ,

∴t S '/R =10=4πR/R =10=40π cm 2/s.

点评 R 是t 的函数,而圆面积增加的速度是相当于时间t 而言的(R 是中间变量),此题易出现“∵S =πR 2,S '=2πR ,S '/R =10=20π cm 2/s ”的错误.本题考查导数的物理意义及复合函数求导法则,须注意导数的物理意义是距离对时间的变化率,它是表示瞬时速度,因速度是向量,故变化率可以为负值.2004年高考湖北卷理科第16题是一道与实际问题结合考查导数物理意义的填空题,据资料反映:许多考生在求出距离对时间的变化率是负值后,却在写出答案时居然将其中的负号舍去,以致痛失4分.

二、与曲线的切线有关的问题

【例4】 以正弦曲线y =sin x 上一点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 A.??????4π,

0∪??????π,4π3 B. []π,0 C.??

?

???4

π

3,4π D. ??????4π,0∪??

?

???4

π

3,2π 解 设过曲线y =sin x 上点P 的切线斜率角为α,由题意知,tan α=y '=cos x . ∵cos x ∈[-1,1], ∴tan α∈[-1,1],又α∈[

)π,0,∴α∈??????4π,0∪??

????π,4π3. 故选A.

点评 函数y =f (x )在点x 0处的导数f '(x 0)表示曲线,y =f (x )在点(x 0,f (x 0))处的切线斜率,即k =tan α(α为切线的倾斜角),这就是导数的几何意义.本题若不同时考虑正切函数的图像及直线倾斜角的范围,极易出错.

【例5】 曲线y =x 3-ax 2的切线通过点(0,1),且过点(0,1)的切线有两条,求实数a 的值. 解 ∵点(0,1)不在曲线上,∴可设切点为(m ,m 3-am 2).而y '=3x 2-2ax , ∴k 切=3m 3-2am ,则切线方程为y =(3m 3-2am )x -2m 3-am 2. ∵切线过(0,1),∴2m 3-am 2+1=0.(*)

设(*)式左边为f (m ),∴f (m )=0,由过(0,1)点的切线有2条,可知f (m )=0有两个实数解,其等价于“f (m )有极值,且极大值乘以极小值等于0,且a ≠0”.

由f (m )=2m 3-am 2+1,得f '(m )= 6m 3-am 2=2m (3m -a ),令f '(m )=0,得m =0,m =3

a , ∴a ≠0,f (0)·f (

3a )=0,即a ≠0,-27

1a 3+1=0,∴a =3.

点评 本题解答关键是把“切线有2条”的“形”转化为“方程有2个不同实根”的“数”,即数形结合,然后把三次方程(*)有两个不同实根予以转化.三次方程有三个不同实根等价于“极大值大于0,且极小值小于0”.另外,对于求过某点的曲线的切线,应注意此点是否在曲线上.

三、与函数的单调性、最(极)值有关的问题

【例6】 以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不正确的序号是

A.①、②

B.①、③

C.③、④

D.①、④

解 由题意知导函数的图像是抛物线.导函数的值大于0,原函数在该区间为增函数;导函数的值小于0,原函数在该区间为减函数,而此抛物线与x 轴的交点即是函数的极值点,把极值点左、右导数值的正负与三次函数在极值点左右的递增递减结合起来考虑,可知一定不正确的图形是③、④,故选C.

点评 f '(x )>0(或<0)只是函数f '(x )在该区间单递增(或递减)的充分条件,可导函数f '(x )在(a ,b )上单调递增(或递减)的充要条件是:对任意x ∈(a ,b ),都有f '(x )≥0(或≤0)且f '(x )在(a ,b )的任意子区间上都不恒为零.利用此充要条件可以方便地解决“已知函数的单调性,反过来确定函数解析式中的参数的值域范围”问题.本题考查函数的单调性可谓新颖别致.

【例7】函数y =f (x )定义在区间(-3,7)上,其导函数如图所示,则函数y =f (x )在区间(-3,7)上极小值的个数是 个.

解 如图,A 、O 、B 、C 、E 这5个点是函数的极值点,观察这5个极值点左、右导数的正、负,可知O 点、C 点是极小值点,故在

区间(-3,7)上函数y =f (x )的极小值个数是2个.

点评 导数f '(x )=0的点不一定是函数y =f (x )的极值点,如使f '(x )=0的点的左、右的导数值异号,则是极值点,其中左正右负点是极大值点,左负右正点是极小值点.本题考查函数的极值可以称得上是匠心独运.

【例8】 设函数f (x )与数列{a n }满足关系:①a 1>α,其中α是方程f (x )=x 的实数根;②a n+1=f (a n ),n ∈N *;③f (x )的导数f '(x )∈(0,1).

(1)证明:a n >α,n ∈N *;

(2)判断a n 与a n+1的大小,并证明你的结论. (1)证明:(数学归纳法)

当n =1时,由题意知a 1>α,∴原式成立. 假设当n =k 时,a k >α,成立. ∵f '(x )>0,∴f (x )是单调递增函数.

∴a k+1= f (a k )> f (α)=α,(∵α是方程f (x )= x 的实数根) 即当n =k +1时,原式成立.

故对于任意自然数N *,原式均成立.

(2)解:g (x )=x -f (x ),x ≥α,∴g '(x )=1-f '(x ),又∵0< f '(x )<1,∴g '(x )>0. ∴g '(x )在[

)+∞,α上是单调递增函数.

而g '(α)=α-f (α)=0,∴g '(x )>g (α) (x >α),即x >f (x ). 又由(1)知,a n >α,∴a n >f (a n )=a n+1.

点评 本题是函数、方程、数列、导数等知识的自然链接,其中将导数知识融入数学归纳法,令人耳目一新.

四、与不等式有关的问题

【例9】 设x ≥0,比较A =xe -

x ,B =lg(1+x ),C =

x

x +1的大小.

解 令f (x )=C -B=

x

x +1-lg(1+x ),则f '(x )=

x

x x ++-+1)1(2)11(2>0,

∴f (x )为[

)+∞,0上的增函数,∴f (x )≥f (0)=0,∴C ≥B . 令g (x )=B -A =lg(1+x )-xe -x

,则当x ≥0时,g '(x )=x

x e x +---1)1(12≥0,

∴g (x )为[)+∞,0上的增函数,∴g (x )≥g (0)=0,∴B ≥A .

因此,C ≥B ≥A (x =0时等号成立).

点评 运用导数比较两式大小或证明不等式,常用设辅助函数法,如f (a )=φ(a ),要证明当x >a 时,有f (a )=φ(a ),则只要设辅助函数F (x )= f (a )-φ(a ),然后证明F (x )在x >a 单调递减即可,并且这种设辅助函数法有时可使用多次,2004年全国卷Ⅱ的压轴题就考查了此知识点.

五、与实际应用问题有关的问题

【例10】 某汽车厂有一条价值为a 万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值y 万元与技术改造投入x 万元之间满足:①y 与(a -x )和x 2的乘积成正比;②当2

a

x =

时,y =a 3.并且技术改造投入比率:)(2x a x -∈(]t ,0,其中t 为常

数,且t ∈(]

2,0.

(1)求y =f (x )的解析式及定义域;

(2)求出产品的增加值y 的最大值及相应的x 值. 解:(1)由已知,设y =f (x )=k (a -x )x 2,

∵当2a x =时,y = a 3,即a 3

=k ·2

a ·42

a ,∴k =8,则f (x )=8-(a -x )x 2.

∵0<

)(2x a x -≤t ,解得0

22+t at

.

(2)∵f '(x )= -24x 2+16ax =x (-24x +16a ),令f '(x )=0,则x =0(舍去),3

2a

x =

, 当00,此时f (x )在(0,32a )上单调递增; 当x >32a 时,f '(x )<0,此时f (x )是单调递减.

∴当122+t at ≥32a 时,即1≤t ≤2时,y max =f (32a )=3

27

32a ;

当122+t at <32a 时,即0

2

3)12(32+t t a . 综上,当1≤t ≤2时,投入

32a 万元,最大增加值是32732a ,当0

22+t at

万元,最大增加值是3

2

3)

12(32+t t a . 点评 f '(x 0)=0,只是函数f (x )在x 0处有极值的必要条件,求实际问题的最值应先建立一个目标函数,并根据实际意义确定其定义域,然后根据问题的性质可以断定所建立的目标函数f (x )确有最大或最小值,并且一定在定义区间内取得,这时f (x )在定义区间内部又只有一个使f '(x 0)=0的点x 0,那么就不必判断x 0是否为极值点,取什么极值,可断定f (x 0)就是所求的最大或最小值.

高考数学 导数及其应用的典型例题

第二部分 导数、微分及其导数的应用 知识汇总 一、求导数方法 1.利用定义求导数 2.导数的四则运算法则 3.复合函数的求导法则 若)(u f y =与)(x u φ=均可导,则[])(x f y φ=也可导,且dx du du dy dx dy ? = 即 [])()(x x f y φφ'?'=' 4.反函数的求导法则 若)(x f y =与)(y x φ=互为反函数,且)(y φ单调、可导,则 )(1)(y x f φ'= ',即dy dx dx dy 1 = 5.隐函数求导法 求由方程0),(=y x F 确定的隐函数 )(x f y =的导数dx dy 。只需将方程0),(=y x F 两边同时对x 求导(注意其中变量y 是x 的函数),然后解出 dx dy 即可。 6.对数求导法 对数求导法是先取对数,然后按隐函数求导数的方法来求导数。对数求导法主要解决两类函数的求导数问题: (1)幂指数函数y=)()(x v x u ;(2)由若干个因子的乘积或商的显函数,如 y= 3 4 )3(52)2)(1(---++x x x x x ,3 ) 2)(53() 32)(1(--+-=x x x x y ,5 5 2 2 5 +-=x x y 等等。 7.由参数方程所确定函数的求导法则 设由参数方程 ? ? ?==)() (t y t x ?φ ),(βα∈t 确定的函数为y=f(x),其中)(),(t t ?φ

可导,且)(t φ'≠0,则y=f(x)可导,且 dt dx dt dy t t dx dy =''=)()(φ? 8.求高阶导数的方法 二、求导数公式 1.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 2.常见函数的高阶导数 (1) n n x n x -+-?-?-?=αα αααα)1()2()1()() ( (2) x n x e e =) () ( (3) ()()ln x n x n a a a = (4) () (sin ) sin 2n x x n π? ?=+? ??? (5) ??? ? ??+=2cos )(cos )(πn x x n (6) () 1 (1)!ln()(1) ()n n n n a x a x --+=-+ (7) 1 )() (!)1()1(++-=+n n n n b ax a n b ax

导数经典专题整理版

导数在研究函数中的应用 知识点一、导数的几何意义 函数()y f x =在0x x =处导数()0f x '是曲线()y f x =在点()()00,P x f x 处切线的 ,即_______________;相应地,曲线()y f x =在点()()00,P x f x 处的切线方程是 例1.(1)曲线x e x y +=sin 在点)1,0(处的切线方程为( ) A.033=+-y x B.022=+-y x C.012=+-y x D.013=+-y x (2)若曲线x x y ln =上点P 处的切线平行于直线012=+-y x ,则点P 的坐标是( ) A.),(e e B.)2ln 2,2( C.)0,1( D.),0(e 【变式】 (1)曲线21x y xe x =++在点)1,0(处的切线方程为( ) A.13+=x y B.12+=x y C.13-=x y D.12-=x y (2)若曲线x ax y ln 2-=在点),1(a 处的切线平行于x 轴,则a 的值为( ) A.1 B.2 C.21 D.2 1- 知识点二、导数与函数的单调性 (1)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x >,那么函数()y f x =在这个区间内为 且该区间为函数)(x f 的单调_______区间; (2)如果函数)(x f y =在定义域内的某个区间(,)a b 内,使得'()0f x <,那么函数()y f x =在这个区间内为 ,且该区间为函数)(x f 的单调_______区间.

例1.(1)函数x e x x f )3()(2-=的单调递增区间为( ) A.)0,(-∞ B.),0(+∞ C.)1,3(- D.),1()3,(+∞--∞和 (2)函数x x y ln 2 12-=的单调递减区间为( ) A.(]1,1- B.(]1,0 C.[)+∞,1 D.),0(+∞ 例2.求下列函数的单调区间,并画出函数)(x f y =的大致图像. (1)3)(x x f = (2)x x x f 3)(3+= (3)1331)(23+--=x x x x f (4)x x x x f 33 1)(23++-= 知识点三、导数与函数的极值 函数)(x f y =在定义域内的某个区间(,)a b 内,若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数)(x f '异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的 ,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是 (熟练掌握求函数极值的步骤以及一些注意点) 例1.(1)求函数133 1)(23+--=x x x x f 的极值 (2)求函数x x x f ln 2)(2-=的极值

导数及其应用高考题精选含答案

导数及其应用高考题精选 1.(2010·海南高考·理科T3)曲线2 x y x = +在点()1,1--处的切线方程为() (A )21y x =+(B )21y x =-(C )23y x =--(D )22y x =-- 【命题立意】本题主要考查导数的几何意义,以及熟练运用导数的运算法则进行求解. 【思路点拨】先求出导函数,解出斜率,然后根据点斜式求出切线方程. 【规范解答】选 A.因为22 (2) y x '= +,所以,在点()1,1--处的切线斜率12 2 2(12)x k y =-' == =-+,所以,切线方程为12(1)y x +=+,即21y x =+,故选A. 2.(2010·山东高考文科·T8)已知某生产厂家的年利润y (单位:万元) 与年产量x (单位:万件)的函数关系式为3 1812343 y x x =-+-,则使该生产厂 家获得最大年利润的年产量为() (A)13万件(B)11万件 (C)9万件(D)7万件 【命题立意】本题考查利用导数解决生活中的优化问题,考查了考生的分析问题解决问题能力和运算求解能力. 【思路点拨】利用导数求函数的最值. 【规范解答】选C ,2'81y x =-+,令0y '=得9x =或9x =-(舍去),当9x <时'0y >;当9x >时'0y <,故当9x =时函数有极大值,也是最大值,故选C. 3.(2010·山东高考理科·T7)由曲线y=2 x ,y=3 x 围成的封闭图形面积为() (A ) 1 12 (B)14 (C)13 (D) 712 【命题立意】本题考查定积分的基础知识,由定积分求曲线围成封闭图形的

(完整版)导数有关知识点总结、经典例题及解析、近年高考题带答案

导数及其应用 【考纲说明】 1、了解导数概念的某些实际背景(如瞬时速度,加速度,光滑曲线切线的斜率等);掌握函数在一点处的导数的定义和导数的几何意义;理解导函数的概念。 2、熟记八个基本导数公式;掌握两个函数和、差、积、商的求导法则,了解复合函数的求导法则,会求某些简单函数的导数。 3、理解可导函数的单调性与其导数的关系;了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。 【知识梳理】 一、导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们 就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函数在点x 0处不可导, 或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤: (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 二、导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 三、几种常见函数的导数 ①0;C '= ②() 1;n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦ ()1ln x x '= ; ⑧()1 l g log a a o x e x '=. 四、两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)' ''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数, 即: .)('''uv v u uv += 若C 为常数,则' ''''0)(Cu Cu Cu u C Cu =+=+=.即常数与函数的积的导数等于常数乘以函数的导数: .)(''Cu Cu = 法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除以分母的平方: ? ?? ??v u ‘=2' 'v uv v u -(v ≠0)。 形如y=f [x (?])的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y '|x = y '|u ·u '|x 五、导数应用 1、单调区间: 一般地,设函数)(x f y =在某个区间可导,

导数及其应用经典题型总结

《导数及其应用》经典题型总结 一、知识网络结构 题型一 求函数的导数及导数的几何意义 考 点一 导数的概念,物理意义的应用 例 1.(1)设函数()f x 在 2x =处可 导,且(2)f '=, 求 0(2)(2) lim 2h f h f h h →+--; (2)已知()(1)(2) (2008)f x x x x x =+++,求(0)f '. 考点二 导数的几何意义的应用 例2: 已知抛物线y=ax 2+bx+c 通过点P(1,1),且在点Q(2,-1)处与直线y=x-3相切,求实数a 、b 、c 的值 例3:已知曲线y=.3 43 13+x (1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程. 题型二 函数单调性的应用 考点一 利用导函数的信息判断f(x)的大致形状 例1 如果函数y =f(x)的图象如图,那么导函数y =f(x)的图象可能是( ) 考点二 求函数的单调区间及逆向应用 例1 求函数522 4 +-=x x y 的单调区间.(不含参函数求单调区间) 例2 已知函数f (x )=1 2x 2+a ln x (a ∈R ,a ≠0),求f (x )的单调区间.(含参函数求单调区间) 练习:求函数x a x x f + =)(的单调区间。 例3 若函数f(x)=x 3 -ax 2 +1在(0,2)内单调递减,求实数a 的取值范围.(单调性的逆向应用) 练习1:已知函数0],1,0(,2)(3 >∈-=a x x ax x f ,若)(x f 在]1,0(上是增函数,求a 的取值范围。 2. 设a>0,函数ax x x f -=3 )(在(1,+∞)上是单调递增函数,求实数a 的取值范围。 导 数 导数的概念 导数的运算 导数的应用 导数的几何意义、物理意义 函数的单调性 函数的极值 函数的最值 常见函数的导数 导数的运算法则

高中数学导数典型例题精讲

高中数学导数典型例题 精讲 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)0 0lim x x x x →=,00 11lim x x x x →=. 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞ ?=?(3)()lim 0n n n a a b b b →∞=≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1)(ln =';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且'''x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念.

(完整)高中数学导数典型例题

高中数学导数典型例题 题型一:利用导数研究函数的单调性、极值、最值 1. 已知函数32()f x x ax bx c =+++ 过曲线()y f x =上的点(1,(1))P f 的切线方程为y=3x +1 。 (1)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (2)在(1)的条件下,求函数)(x f y =在[-3,1]上的最大值; (3)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)极值的求法与极值的性质 (2)由导数求最值 (3)单调区间 零点 驻点 拐点————草图 2. 已知).(3232)(23R a x ax x x f ∈--= (1)当4 1||≤ a 时, 求证:)x (f 在)1,1( -内是减函数; (2)若)x (f y =在)1,1( -内有且只有一个极值点, 求a 的取值范围. 解:(1)单调区间 零点 驻点 拐点————草图 (2)草图——讨论 题型二:利用导数解决恒成立的问题 例1:已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围.

例2:已知函数222()2()21x x f x e t e x x t =-++++,1()()2 g x f x '=. (1)证明:当22t <时,()g x 在R 上是增函数; (2)对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b , 上是减函数; (3)证明:3()2 f x ≥. 解:g(x)=2e^(2x)-te^x+1 令a=e^x 则g(x)=2a^2-ta+1 (a>0) (3)f(x)=(e^x-t)^2+(x-t)^2+1 讨论太难 分界线即1-t^2/8=0 做不出来问问别人,我也没做出来 例3:已知3)(,ln )(2-+-==ax x x g x x x f (1)求函数)(x f 在)0](2,[>+t t t 上的最小值 (2)对(0,),2()()x f x g x ?∈+∞≥恒成立,求实数a 的取值范围 解:讨论点x=1/e 1/e

最新导数及其应用知识点经典习题集

导数及其应用 1、函数的平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111 212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念:函数在0x x =处的瞬时变化率是 ,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即= . 3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。 )(x f y =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000)(x f y =0x )(x f y =0x )(0'x f 0|'x x y =)(0'x f x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000

6、常见的导数和定积分运算公式:若()f x ,()g x 均可导(可积),则有: 7.用导数求函数单调区间的步骤:①求函数f (x )的导数'()f x ②令'()f x >0,解不等式,得x 的范围就是递增区间.③令'()f x <0,解不等式,得x 的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。 8.求可导函数f (x )的极值的步骤:(1)确定函数的定义域。(2) 求函数f (x )的导数 '()f x (3)求方程'()f x =0的根(4) 用函数的导数为0的点,顺次将函数的定义区 间分成若干小开区间,并列成表格,检查/()f x 在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号,那么f (x )在这个根处无极值 9.利用导数求函数的最值的步骤:求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ⑴求)(x f 在[]b a ,上的极值;⑵将)(x f 的各极值与(),()f a f b 比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

导数典型例题.doc

导数典型例题 导数作为考试内容的考查力度逐年增大 .考点涉及到了导数的所有内容,如导数的定 义,导数的几何意义、物理意义,用导数研究函数的单调性,求函数的最(极)值等等, 考查的题型有客观题(选择题、填空题) 、主观题(解答题)、考查的形式具有综合性和多 样性的特点.并且,导数与传统内容如二次函数、二次方程、三角函数、不等式等的综合考 查成为新的热点. 一、与导数概念有关的问题 【例1】函数f(x)=x(x-1) (x-2)…(x-100)在x= 0处的导数值为 2 A.0 B.100 C.200 D.100 ! 解法一 “(0、_ .. f (° tx) _f(o) .. .-xC-x-DO-2V'^-100)-0 解法 f (0)_叽 L _叽 - _ ||m (A x-1)( △ x-2)…(△ x-100)_ (-1) (-2)-( - 100) =100 ! ???选 D. .x _0 解法二 设 f(x)_a 101x 101 + a 100X 100+ …+ a 1X+a 0,则 f z (0)_ 而 a 1_ (-1)(-2 ) - (- 100) _100 ! . ???选 D. 点评解法一是应用导数的定义直接求解, 函数在某点的导数就是函数在这点平均变化 率的极限.解法二是根据导数的四则运算求导法则使问题获解 111 【例2】已知函数f(x)_ c ; c ^x ? — C ;X 2亠■亠— C ;X k 亠■亠一

(完整版)函数与导数经典例题(含答案)

函数与导数 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 【解析】(19)本小题主要考查导数的几何意义、利用导数研究函数的单调性、曲线的切线方程、 函数的零点、解不等式等基础知识,考查运算能力及分类讨论的思想方法,满分14分。 (Ⅰ)解:当1t =时,3 2 2 ()436,(0)0,()1266f x x x x f f x x x '=+-==+- (0) 6.f '=-所以曲线()y f x =在点(0,(0))f 处的切线方程为6.y x =- (Ⅱ)解:2 2 ()1266f x x tx t '=+-,令()0f x '=,解得.2 t x t x =-=或 因为0t ≠,以下分两种情况讨论: (1)若0,,2 t t t x <<-则 当变化时,(),()f x f x '的变化情况如下表: x ,2t ? ?-∞ ?? ? ,2t t ?? - ??? (),t -+∞ ()f x ' + - + ()f x 所以,()f x 的单调递增区间是(), ,,;()2t t f x ? ?-∞-+∞ ? ??的单调递减区间是,2t t ?? - ??? 。 (2)若0,2 t t t >-< 则,当x 变化时,(),()f x f x '的变化情况如下表: x (),t -∞ ,2t t ??- ?? ? ,2t ?? +∞ ??? ()f x ' + - + ()f x

导数及导数应用专题练习题

高二文科数学《变化率与导数及导数应用》专练(十) 一、选择题 1. 设函数f (x )存在导数且满足 ,则曲线y=f (x )在 点(2,f (2))处的切线斜率为( ) A .﹣1 B .﹣2 C .1 D .2 2. 函数()1x f x e =-的图像与x 轴相交于点P ,则曲线在点P 处的切线的方程为 ( ) A .1y e x =-?+ B .1y x =-+ C . y x =- D . y e x =-? 3. 曲线)0(1 )(3>-=x x x x f 上一动点))(,(00x f x P 处的切线斜率的最小值为() A .3 B .3 C. 32 D .6 4. 设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处的切线的倾斜角的取值范围为0,4π?????? ,则点P 的横坐标的取值范围为() A .[]0,1 B .[]1,0- C .11,2??--??? ? D .1,12?????? 5. 已知23 ()1(1)(1)(1)(1)n f x x x x x =+++++++ ++,则(0)f '=( ). A .n B .1n - C .(1)2 n n -D .1 (1)2n n + 6. 曲线y=2lnx 上的点到直线2x ﹣y+3=0的最短距离为( ) A . B .2 C .3 D .2 7. 过点(0,8)作曲线32()69f x x x x =-+的切线,则这样的切线条数为() A .0 B .1 C .2 D .3 8. 数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )= +6x ﹣1的极值点,则log 2(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2 B .3 C .4 D .5

导数典型例题包括答案.doc

导数典型例题 数作 考 内容的考 力度逐年增大 .考点涉及到了 数的所有内容,如 数的定 , 数的几何意 、物理意 ,用 数研究函数的 性,求函数的最(极) 等等,考 的 型有客 ( 、填空 ) 、主 (解答 ) 、考 的形式具有 合性和多 性的特 点 .并且, 数与 内容如二次函数、二次方程、三角函数、不等式等的 合考 成 新的 点 . 一、与导数概念有关的问题 【例 1】函数 f(x)=x(x-1) ( x-2)? (x-100) 在 x=0 的 数 .100 2 C ! f ( 0 x) f ( 0) x( x 1)( x 2) (100 ) 解法一 f ' (0)= lim x = lim x x 0 x 0 = lim ( x-1)( x-2)? ( x-100)= ( -1 )( -2)?( -100 ) =100 ! ∴ D. x 0 解法二 f(x)=a 101 x 101 + a 100 x 100 +? + a 1x+a 0, f '(0)= a 1,而 a 1 =( -1)( -2 )?( -100 ) =100 ! . ∴ D. 点 解法一是 用 数的定 直接求解,函数在某点的 数就是函数在 点平均 化 率的极限 .解法二是根据 数的四 运算求 法 使 解 . 【例 2】 已知函数 f (x)= c n 0 c 1 n x 1 c n 2 x 2 1 c n k x k 1 c n n x n , n ∈ N * , 2 k n f ( 2 2 x ) f ( 2x) lim x = . x 0 f (2 2 x) f ( 2 x) f ( 2 2 x) f (2) 解 ∵ lim x =2 lim 2 x + x x 0 f 2 ( x) f ( 2) lim x =2f ' (2)+ f '(2)=3 f ' (2), x 0 又∵ f '(x)= c n 1 c n 2 x c n k x k 1 c n n x n 1 , ∴ f '(2)= 1 ( 2 c n 1 22 c n 2 2k c n k 2 n c n n ) = 1 [(1+2) n -1]= 1 ( 3 n -1). 2 2 2 点 数定 中的“增量 x ”有多种形式,可以 正也可以 ,如 f ( x 0 m x) f ( x 0 ) , 且 其 定形 式 可 以 是 lim f ( x 0 m x) f ( x 0 ) lim m x m x , 也 可 以 是 x 0 x 0 f (x) f (x 0 ) (令 x=x-x 得到),本 是 数的定 与多 式函数求 及二 式定理有关 lim x x x 0 知 的 合 , 接交 、自然,背景新 . 【例 3】 如 的半径以 2 cm/s 的等速度增加, 半径 R=10 cm , 面 增加的速 度是 .

导数的应用 练习题

导数的应用 二、典型例题 题型一 未定式及其逆问题的求解 例1、求下列极限(∞∞): (1)0ln tan 2lim ln tan 3x x x +→ (2)0lim ln x x x +→  (3)arctan lim (1)x x x a x x a a x →∞->+ (4)ln(1)lim an n e n →∞+ (1)解:原式2'2002cot 2sec 22tan 3lim lim 13cot 3sec 33tan 2L H x x x x x x x x ++ →→===. (2)解:原式1'ln 1 lim lim 0t x L H t t t t t =→+∞→+∞-==-=. (3)提示:arctan 1()arctan lim lim 11() x x x x x x a x x x a x a x x a →+∞→+∞--==++; arctan ()arctan lim lim ()12 x x x x x x a x x a x x a x a x π →-∞→-∞--==++. (4)提示:0a ≤,原式0=;0a >,原式ln(1) lim an n an e a n -→∞++==(不能用'L H ). 注:ln (1),ln ,(1),ln()(1),ln ,,,x x x x x x x a b a x x a x ββαββα><+>无限增大之速渐快; ln (1),ln ,(1),ln()(1),ln ,,,!,n n n n n n n a b a n n a n n ββαββα><+>无限增大之速渐快. 例2、求下列极限(0 000,,1,,0∞ ?∞∞-∞∞,): (1)4301 sin sin lim tan x x x x x x →-+;(2)20(1)ln(1)lim 1 x x x x x e →-++-;(3)01lim(cot )1x x x e →--; (4)21lim[ln(1)]x x x x →∞-+;(5)2arctan lim ()x x x π→+∞;(6)101lim()x kx n x k e n →=∑; (7)2122lim()x x x a →∞+. (1)提示:原式3300 32000tan ~sin 11cos 1 lim lim sin lim 36 x x x x x x x x x x x x →→→--+==. (2)提示:解:原式2200 '2001~(1)ln(1)ln(1)1 lim lim 22x L H x x e x x x x x x x →→--++-+===-. (3)提示:原式2'20001tan 1tan sec 1 lim lim lim (1)tan 22x x x L H x x x x e x e x e x e x x x →→→-----====-. (4)提示:原式1'20ln(1)1 lim 2 t x L H t t t t =→-+==. (5)提示:原式22 2 2 ln arctan arctan 12[(1)]2 lim 1lim lim 111x x x x x x x x x e e e e ππ π π∞ →+∞ →+∞ →+∞ -+- -====(令 2 arctan 1x t π -=). (6)提示:原式1 1 00 11 ln( ) 11 1lim 1'lim lim 2 n n kx kx n kx k k x x x k e n e n n ke L H n x x e e e e ∞==→→→=-+∑∑ ∑ ====. (7)提示:原式0 ∞=22222ln()2() 'lim lim 21x x x a x x a L H x x e e →∞→∞++==. 注1 :对1n =,不能直接使用L’H 法则,先求0 1lim 1x x x ∞→+∞ =,而0 00 lim 1x x x + →=.

高中数学导数典型例题精讲(详细版)

导数经典例题精讲 导数知识点 导数是一种特殊的极限 几个常用极限:(1)1 lim 0n n →∞=,lim 0n n a →∞=(||1a <);(2)00lim x x x x →=,0011lim x x x x →= . 两个重要的极限 :(1)0sin lim 1x x x →=;(2)1lim 1x x e x →∞?? += ??? (e=2.718281845…). 函数极限的四则运算法则:若0 lim ()x x f x a →=,0 lim ()x x g x b →=,则 (1)()()0 lim x x f x g x a b →±=±????;(2)()()0 lim x x f x g x a b →?=?????;(3)()()()0 lim 0x x f x a b g x b →=≠. 数列极限的四则运算法则:若lim ,lim n n n n a a b b →∞→∞ ==,则(1)()lim n n n a b a b →∞±=±;(2)()lim n n n a b a b →∞?=?(3)()lim 0n n n a a b b b →∞ =≠(4)()lim lim lim n n n n n c a c a c a →∞→∞→∞?=?=?( c 是常数) )(x f 在0x 处的导数(或变化率或微商) 000000()()()lim lim x x x x f x x f x y f x y x x =?→?→+?-?''===??. .瞬时速度:00()() ()lim lim t t s s t t s t s t t t υ?→?→?+?-'===??. 瞬时加速度:00()() ()lim lim t t v v t t v t a v t t t ?→?→?+?-'===??. )(x f 在),(b a 的导数:()dy df f x y dx dx ''===00()() lim lim x x y f x x f x x x ?→?→?+?-==??. 函数)(x f y =在点0x 处的导数的几何意义 函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-. 几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nx n Q -=∈.(3) x x cos )(sin ='.x x sin )(cos -=' (4) x x 1 )(ln = ';e a x x a log 1)(log ='. (5) x x e e =')(; a a a x x ln )(='. 导数的运算法则 (1)' ' ' ()u v u v ±=±.(2)' ' ' ()uv u v uv =+.(3)'' '2 ()(0)u u v uv v v v -=≠. 复合函数的求导法则 设函数()u x ?=在点x 处有导数''()x u x ?=,函数)(u f y =在点x 处的对应点U处有导数 ''()u y f u =,则复合函数(())y f x ?=在点x 处有导数,且''' x u x y y u =?,或写作'''(())()()x f x f u x ??=. 【例题解析】 考点1 导数的概念 对概念的要求:了解导数概念的实际背景,掌握导数在一点处的定义和导数的几何意义,理解导函数的概念. 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 . [考查目的] 本题主要考查函数的导数和计算等基础知识和能力.

高数导数的应用习题及答案

一、是非题: 1. 函 数 ()x f 在 []b a , 上 连 续 ,且()()b f a f =,则 至 少 存 在 一 点 ()b a ,∈ξ,使()0=ξ'f . 错误 ∵不满足罗尔定理的条件。 2.若函数()x f 在0x 的某邻域内处处可微,且()00='x f ,则函数()x f 必在0x 处取得 极值. 错误 ∵驻点不一定是极值点,如:3 x y =,0=x 是其驻点,但不是极值点。 3.若函数()x f 在0x 处取得极值,则曲线()x f y =在点()()00,x f x 处必有平 行 于x 轴 的切线. 错误 ∵曲线3 x y =在0=x 点有平行于x 轴的切线,但0=x 不是极值点。 4.函数x x y sin +=在()+∞∞-,内无极值. 正确 ∵0cos 1≥+='x y ,函数x x y sin +=在()+∞∞-,内单调增,无极值。 5.若函数()x f 在()b a ,内具有二阶导数,且()()0,0>''<'x f x f ,则曲线()x f y =在()b a ,内单调减少且是向上凹. 正确 二、填空: 1.设()x bx x a x f ++=2 ln (b a ,为常数)在2,121==x x 处有极值,则=a ( 23 - ),=b ( 16 - ). ∵()12++= 'bx x a x f ,当2,121==x x 时, 012=++b a ,0142 =++b a ,解之得6 1,32- =- =b a 2.函数()()1ln 2 +=x x f 的极值点是( 0=x ). ∵()x x x f 2112 ?+= ',令()0='x f ,得0=x 。又0>x ,()0>'x f ; 0x ,()0>''x f ;0

导数大题经典练习及答案.pdf

导数大题专题训练 1.已知f(x)=xlnx-ax,g(x)=-x2-2, (Ⅰ)对一切x∈(0,+∞),f(x)≥g(x)恒成立,求实数a的取值范围; (Ⅱ)当a=-1时,求函数f(x)在[m,m+3](m>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有lnx+1>成立. 2、已知函数.(Ⅰ)若曲线y=f (x)在点P(1,f (1))处的切线与直线y=x+2垂直,求函数y=f (x)的单调区间;(Ⅱ)若对于都有 f (x)>2(a―1)成立,试求a的取值范围;(Ⅲ)记g (x)=f (x)+x―b(b∈R).当a=1时,函数g (x)在区间[e―1,e]上有两个零点,求实数b的取值范围. 3.设函数 f (x)=lnx+(x-a)2,a∈R.(Ⅰ)若a=0,求函数 f (x)在[1,e]上的最小值; (Ⅱ)若函数 f (x)在上存在单调递增区间,试求实数a的取值范围; (Ⅲ)求函数 f (x)的极值点. 4、已知函数. (Ⅰ)若曲线在和处的切线互相平行,求的值;(Ⅱ)求的单调区间;(Ⅲ)设,若对任意,均存在,使得,求的

取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间; (Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围. 6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上

相关主题
文本预览
相关文档 最新文档