历年导数压轴经典题目
- 格式:doc
- 大小:672.00 KB
- 文档页数:8
导数压轴小题练习1. 【图像法】设函数f(a)=e²(2x-1)-ax+a,其中a<1,若存在唯一的整数ag使得f(x₀)<0,则a的取值范围是( )A.1)B.C.D.2. 【图像法】已知函数f(x)=xe²-mx+m,若f(a)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是( )A B. C. D.3. 【切线应用】若函数f(x)=w³+ax²+bx(a,b∈R)的图象与α轴相切于一点A(m,0)(m≠0),且f(a)的极大值为 ,则m 的值为34. 【导数的切线法】设函数f(x)= 2 x²-2ax(a>0)与g(a)=a²lnz+b有公共点,且在公共点处的切线方程相同,则实数b的最大值为( )A. B. C. D.5. 【导数的切线法】若对于函数f(x)=ln(x+1)+a²图象上任意一点处的切线l,在函数g(x)=asinxcosx-a的图象上总存在一条切线L2,使得l工L,则实数a的取值范围为( )A. C.B.D.(-w,- 1)U[1,+w)6. 【导数的切线法】已知实数a,b满足ln(b+1)+a-3b=0,实数c,d满足2d-c- √5=0,则(a-c)2+(b-d)²的最小值为( )A.1B.2C.3D.±7. 【导数的切线法】若直线kx-y-k+1=0(x∈R)和曲线E: 的图像交于A(aj,y),B(xz,yz),C(xg,y3)(x₁<a₂<a3)三点时,曲线E在点A,点C处的切线总是平行,则过点(b, a)可作曲线E的( )条切线.A.0B.1C.2D.38. 【导数的直接应用】若是定义在R上的可导函数,且满足(x-1)f'(a)≥0,则必有( )A.f(0)+f(2)<2f(1)B.f(0)+f(2)>2f(1)C.f(0)+f(2)≤2f(1)D.f(0)+f(2)≥2f(1)9. 【导数的直接应用】若函)上单调递增,则实数a的取值范围是()A.(-c1)B.(- 1)C.(1,+o)D.(1+c)10. 【利用对称中心破题】已知函则)的值为( )A.0B.504C.1008D.201611. 【利用对称中心破题】已知函则的值为( )A.2016B.1008C.504D.012. 【利用对称中心破题】已知函,且f(2017)= 2016,则f(-2017)=( )A.-2014B.-2015C.-2016D.-201713. 【利用对称中心破题】已知函)的图象上存在关于(1,0)对称的点,则实数m的取值范围是( )A.(-o,1-ln2)B.(-w,1-ln2)C.(1-ln2,+o)D.(1-ln2,+c)14. 【通过构造函数破题】已知函数f(a)=e²+mlnx(m∈R,e为自然对数的底数),若对任意的正数ai,αz2,当ai>a2时,都有f(a₁)-f(a₂)>x-az恒成立,则实数m的取值范围为.15. 【通过构造函数破题】已知函数f(a)=aln(a+1) -q²,在区间(0,1)内任取两个实数p,g,且p<q,若不等式恒成立,则实数a的取值范围是( B )A. 15,+α)B.(15,+c)C.(-w,6)D.(-o,6)16. 【直接法】已知直线l与函数f(a)=ln( √e x)-ln(1-x)的图象交于A,B两点,若AB中点为则m的大小为( )A. B. C.1 D.217. 【函数性质+K法】已知函数f(a)=x+sinx(x ∈R),且f(y² - 2y+3)+f(x² - ±w+1)≤0,则当y≥1时,的取值范围是( )A. B.[0, C.. D.18. 【考查函数性质】已知函数f(a)=x²+(a+8)x+a²+a- 12(a<0),且f(a²-4)=f(2a-8),则的最小值为( )A. B. C. D.19【分离参数法+隐含零点】已知函数f(a)=x+alna,若k∈Z,并且h(x-1)<f(a)对任意的x>1恒成立,则k的最大值为( )A.2B.3C.4D.520. 【考查函数的零点+嵌套函数】已知函数,则方程,的实根个数不可能为( )A . 8个B . 7个C . 6个D . 5个21【考查函数的零点】定义在R上的偶函数f(a)满足f(2-a)=f(x),且当a∈[1,2]时,f(a) =lnx-a+1,若函数g(x)=f(x)+mx有7个零点,则实数m的取值范围为()B.D.22. 【考查函数的零点】设函 ),若存在唯二的αo.. 使得h(n)=min{f(x),g(x)}的最小值为h(xo). 则实数a的取值范围是( )A.a<-2B.a≤-2C.a<- 1D.a≤- 123. 【考查函数的零点】已知函数(e为自然对数的底数)有且只有一个零点,则实数k的取值范围是( )A.(0,2)B.(0,C.(0,e)D.(0,+c)24. 【转化法+零点】已知函数f(a)=alnx+a²+(a-6)a在(0,3)上不是单调函数,则实数a的取值范围是25. 【图像法+转化法+零点】函的图象上存在关于y轴对称的点,则实数a的取值范围是( )A.(-w,3-2ln2)B.[3-2ln2,+c)C.(√e,+o)D.(-w,-Ve)26. 【多变量转化+等与不等转化】已知函数f(a)=lna,g(x)=(2m+3)x+n,若对任意的x∈(0,+o),总有f(a)≤g(x)恒成立,记(2m+3)n的最小值为f(m,n),则f(m,n)最大值为( )A.1B.C.D.27. 【多变量转化+等与不等转化】已知不等式e²- (a+2)x≥b-2恒成立,则的最大值为( )A.-ln3B.-ln2C.- 1-ln3D.- 1-ln228.【多变量转化+等与不等转化】对于任意b>0,a∈R,不等式[b-(a-2)]²+[Inb- (a- 1)]²≥m²-m恒成立,则实数m的最大值为()A.√eB.2C.eD.329.嵌套函数+零点图像法】函.若方程af²(a)+bf(a)+c=0有8个不同的实根,则此8个实根之和是( )A. B.4 C. D.230. 【嵌套函数法】已知函,则f(f(w))<2的解集为( )A.(1-ln2,+o)B.(+o,1-ln2)C.(1-ln2,1)D.(1,1+ln2)31. 【导数+嵌套函数法+分离参数】函数f(x)=-a²+3w+a,g(a)=2³-w²,若flg(w)]≥0对a∈[0,1]恒成立,则实数a的取值范围是( )A.(-e,+c)B.(-ln2,+o)C.(-2,+o)D.32. 【导数+嵌套函数法+定义域与值域的关系】已知函数f(x)=e²+a-e- ²+2(a∈R,e为自然对数的底数),若y=f(x)与y=f(f(x))的值域相同,则a的取值范围是()A.a<0 B . a≤- 1 C.O<a≤4 D . a < 0或O < a ≤ 433. 【导数+嵌套函数法+分离参数】已知函),其中e为自然对数的底数.若函数y=f(a)与y=flf(x)]有相同的值域,则实数a的最大值为( )A.. eB.. 2C.1D..34. 【导数+嵌套函数法+导函数零点】已知函有两个极值点ai,αz,若αi<f(x₁)<z2,则关于n方程(f(a))²-2af(a)-b=0的实根个数不可能为( )A.2B.3C.4D.535. 【导数+嵌套函数法+导函数零点】已知函数,有两个极值点ai,x2,若,则关于a方程(f(x))²-2af(a)-b=0的实根个数为( )A.. 2B.. 3C.4D.536. 【嵌套函数法+零点】已知偶函数f(a)满足f(x+4)=f(±-x),且当x∈(0,4)时,关于a的不等式f(a)+af(a)>0在[-200,200]上有且只有300个整数解,则实数a的取值范围是( )C. D.37. 【导数极值点常规处理手段-转化法】已知函数f(a)=xlnx-ae²(e为自然对数的底数)有两个极值点,则实数a的取值范围是( )A. B.(0,e) C. D.(-c,e)38. 【分析法】已知函数f(x)=e²-ax- 1,g(x)=lnx-ax-a,若存在ap ∈(1,2),使得f(x₀)g(x₀)<0,则实数a的取值范围为( )A.(ln2,B.(ln2,e- 1)C.(1,e- 1)D.[1,39. 【导函数构造法】设f(x)定义在R上的可导函数,若f(3)=1,且3f(a)+af(n)>ln(x+1),则不等式(x-2017)f(α-2017)-27>0的解集为( )A.(2014,+o)B.(0,2014)C.(0,2020)D.(2020,+c)40. 【导函数2次构造法】已知f(x)是定义在R上的可导函数,且满足(x+2)f(a)+af'(a)>0,则( )A.f(x)>0B.f(x)<0C.f(x)为减函数D.f(a)为增函数41. 【导函数2次构造法】定义在R上的函数f(x)满足:f"(a) -f(a)=w ·e²,且, 则的最大值为( )A.0B.C.1D.242. 【导函数构造法】设函数f(a)满足2x²f(x)+x³f'(x)=e²,,则w∈(2,+o)时,f(a)的最小值为( )A. B. C. D.43. 【导函数构造法】已知函数f(x)是定义在R上的奇函数,其导函数为f(x),若对任意的正实数z,都有af"(x)+2f(a)>0恒成立,且f( √②)=1,则使a²f(x)<2成立的实数α的集合为( )A.(-w,-√2)U(√2,+c)B.(-√2,√2)C.(-w,√2)D.(√2,+α)44.已知函数f(a)为R上的可导函数,其导函数为f(x),且满足f(x)+f(a)<1恒成立,f(0)=2018,则不等式f(x)<2017e-3+1的解集为( )A.f(a)=x-sinzB.f(a-2)+f(a²)≥0D.f(x)=x³+a45. 【导函数构造法】已知定义在f(x)=x³+a上的可导函数f(a-2)+f(a²)≥0的导函数为f'(a),对任意实数z均有(1-x)f(a)+af'(x)>0成立,且y=f(x+1)-e是奇函数,则不等式af(x)-e³>0的解集是( )A.(-w,e)B.(e,+c)C.(-α,1)D.(1,+o)46. 【导函数构造法】已知定义域为R的函数的导函数为f'(x),并且满足f"(a)>f(a)+1,则下列正确的是()A.f(2018)-ef(2017)>e- 1B.f(2018)-ef(2017)<e- 1C.f(2018)-ef(2017)>e+1D.f(2018)-ef(2017)<e+147.(50)16【导函数类极值零点最值】 .关于a的方有两个不等实根,则实数k的取值范围是48. 【导函数类极值零点最值】已知函数f(a)=x(lnx-ax)有极值,则实数a的取值范围是( )B. D.49. 【导函数类极值零点最值】已知函数f(x)=e²>-ax²+bw-1,其中a,b∈R,e为自然对数的底数.若f(1)=0.f'(a)是f(x)的导函数,函数f(a)在区间(0,1)内有两个零点,则a的取值范围是( )A.(e²-3,e²+1)B.(e²-3,+o)C.(-w,2e²+2)D.(2e²-6,2e²+2)50. 【导函数类极值零点最值】已知a∈R,若区间(0,1)上有且只有一个极值点,则a的取值范围是( )A.a<0B.a>0C.a≤1D.a≥051. 【分析结构+换元法】若存在正实数m,使得关于α的方程α+a(2x+2m-tex)[ln(x+m)-lna]=0有两个不同的根,其中e为自然对数的底数,则实数a的取值范围是( D )A.(-α,0)B.(0,D. 152. 【函数性质+单调性】定义在w∈R上的函数f(x)在(-w,-2)上单调递增,且f(α-2)是偶函数,若对一切实数α,不等式f(2sinx-2)>f(sinx-1-m)恒成立,则实数m的取值范围为53. 【函数性质法-单调性+奇偶性】已知函,若f( - a)+f(a)≤2f(w),则实数的取值范围是( )A.(-w1)U[1,+o)B.[- 1,0]C.[0,1]D.[- 1,1]54. 【函数性质法】已知函数f(x)是偶函数,f(x)是奇函数,且对于任意αi,Xz∈[0,1],且ai≠α2,都有(x₁-x2)[f(a₁)-f'(x2)]<0, 则下列结论正确的是( )A.a>b>CB.b>a>cC.b>c>aD.c>a>b55. 【函数性质-周期函数法】设函数fo(n)=sing,定义fa(m)=f[fo(n)],fo(n)=f[fa(z)], …, fn(a)=f[fn-y(a)],则fa(15°)+fg(15°)+fo(15°)+…+foom(15°)的值是()B. C.0 D.156. 【函数性质-周期函数法】若函数y=f(x),A∈M对于给定的非零实数a,总存在非零常数T,使得定义域M内的任意实数α,都有af(a)=f(x+T)恒成立,此时T为f(a)的假周期,函数f(a)是M上的a 级假周期函数.若函数f(w)是定义在区间(0,+o)内的3级假周期且T=2,当a∈(0,2),有:,若3αi∈[6,8],3αz∈(0,+w)使g(a2)-f(a₁)≤0成立,则实数m的取值范围是( )A. B.(-c,12) C.(-c,39) D.(12,+c)57. 【图像法十零点】已 ,若函数f(a)有四个零点,则实数a 的取值范围是( )A. B . (一w, - e) C.(e,+c) D.58. 【图像法+零点】已知函,若函数y=f(f(a)-a)- 1有三个零点,则实数 a 的取值范围是( B ).. 59. 【导数十零点】若函岁有三个不同的零点,则实数a 的取值范围是( ) A.(1 B. C. D.60. 【零点】已知关于的方程x²e²+t -a=0,m∈[-1,1],若对任意的t∈[1,3],该方程总存在唯一的实数解,则实数a 的取值范围是( )B. C. D. 1,e]61. 【零点】已知当a∈(1,+α)时,关于a 的方程有唯一实数解,则k 的范围为 ( )A.3,4)B.(4,5)C.(5,6)D.(6,7)62. 【考查三次函数值域】已知函数f(x)=(w-a)³ -3m+a(a>0)在[- 1,b]上的值域为[-2-2a,0],则b的取值范围是( )A..[0,3]B.[0,2]C.[2,3]D.(- 1,3)63. (【外接球与内切球】 .如图,圆形纸片的圆心为○,半径为6cm,该纸片上的正方形ABCD 的中心为O . E,F,G,H 为圆O 上的点,△ABE, △BCF, △CDG,△ADH 分别是以AB,BC,CD,DA 为底边的等腰三角形,沿虚线剪开后,分别以AB,BC,CD,DA 为折痕折起△ABE, △BCF, △CDG, △ADH,使得E ,F ,G ,H 重合,得到一个四棱锥,当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为64. 【导数法】设函数f(a)=e² -3w,则关于函数y=f(x)说法错误的是( )A. 在区间(0,1),(1,+o)内均有零点B. 与y=lng 的图象有两个交点C . Vx ₁ ∈R,3x ₂ ∈R 使得f(a)在x=xi,x=az 处的切线互相垂直D . f(a)≥ - 1恒成立65. 【极值点偏移】已知函数y=e² -ax 有两个零点ai,Zz ,α₁<x2,则下面说法正确的是( )A.Qi+α₂<2B.a<eC.αjα₂>1D.有极小值点xg,且aj+x ₂<2o66. 【恒成立-分离参数法】已知函数f(a)=ax+alnx (a∈R)的图像在点处的切线斜率为1,当k∈Z 时,不等式f(x)-kx+k 在x∈(1,+o)上恒成立,则k 的最大值是( C )A.1B. 2C.3D.4 D C67.已知函数f(a)=ax,g(x)=lnz,存在t∈(0,e),使得f(t)-g(t)最小值为3,则函数g(a)=lnx图象上一点P到函数发f(a)=ax图象上一点Q的最短距离为( )A. B..√5 C.2√2 D.368. 【存在与任意】设函数f(a)=a²-wlnx+2,若存在区间,使f(a)在[a,b]上的值域为[k(a+2),k(b+2)],则k的取值范围是( )A. B. C. D.69.【存在与任意】已知函,g(a)=-ex²+aa(e是自然对数的底数),对任意的x∈R,存在],有f(x₁)≤g(x2),则a的取值范围为70. 【导数综合】已知函数f(x)=sinα-xcosx,现有下列结论:①当x ∈[0,π]时,f(x)≥0;②当0<a<β<π时,a-sinB>β ·s ina;③若对)恒成立,则m-n的最小值等于④已知k∈[0,1],当x;∈(0,2π)时,满足的个数记为n,则n的所有可能取值构成的集合为{0,1,2,3}.其中正确的个数为( )A.1B.2C.3D.471.(105)12【导数+隐含零点】已知函2,ag是函数f(a)的极值点。
⑦1 >e A x (1-x )(1)试用含a 的代数式表示b,并求f(x)的单调区间;P(m, f (m)), x-i m x 2,请仔细观察曲线f (x)在点P 处的切线与线段 MP 的位置变化趋势,并解释以下问题:(I )若对任意的m (t, x 2 ),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你 的结论; (II )若存在点Q(n ,f(n)), x n< m,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出 m 的取值范围(不必给岀求解过程)/(x) =2.本小题满分14分)已知函数I 此 5 ,^) = eln(-x)^,且斗二—J2是函数y = f{y)的极值点。
(I)求实数冈的值;(n)若方程 |'有两个不相等的实数根,求实数 ’的取值范围;(川)若直线/是函数y = f^的图象在点))处的切线,且直线'与函数⑴历年导数压轴经典题目证题中常用的不等式 ① Inx x 1 (x 0)x②x+1w in(x+1) x (x 1)⑤In x x 1(x1)x④e1 x⑥ ln x2x 1212x 2(x 0)1•已知函数f (x)ax 2 bx ,且 f'( 1)(2)令 a 1,设函数 f (x)在 x 1,x 2(x 1x 2)处取得极值,记点M (捲,f (Xj ), N( X 2, f (X 2)),的图象相切于点 ,求实数力 的取值范围。
3.已知函数f x ax2bx c e x且f 0 1, f 1 0.(I)若f x在区间0,1上单调递减,求实数a的取值范围;(II)当a=0时,是否存在实数m使不等式2f x 4xe x mx 1 x24x 1对任意x R恒成立?若存在,求出m的值,若不存在,请说明理由4. 已知:二次函数g(x)是偶函数,且g (1) 0,对x R,有g (x) x 1恒成立,令1f (x) g(x) mlnx ,(m R)(I)求g(x)的表达式;(II )当m 0时,若x>0,使f(x) 0成立,求m的最大值;(III)设1 m 2, H (x) f (x) (m 1)x,证明:对捲必[1,m],恒有|H(xJ H(X2)| 1.5. 已知函数fx ax l nxa > 0 , g x .x 2(I)求证f x 1 ln a;1 2 1(II)若对任意的x1—,—,总存在唯一的x2—2 , e (e为自然对数的底数),使得2 3 eg x1 f x2,求实数a的取值范围.26. 已知函数f(x) x 8x,g(x) 6ln x m.(I)求f (x)在区间t,t 1上的最大值h(t);(II)是否存在实数m,使得y f (x)的图象与y g(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;若不存在,说明理由。
导数压轴题题型归纳1.高考命题回顾例1已知函数千3=6*—小&十巾).(2013全国新课标11卷)(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;⑵当mW2时,证明f(x)>0.例2已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(2013全国新课标I卷)(I)求a,b,c,d的值(II)若x2—2时,f(x)-kg(x),求k的取值范围。
2. 在解题中常用的有关结论※⑴曲线产f (x )在X =X 0处的切线的斜率等于f (x 0),且切线方程为产f'(X 0)(x -X 0)+f (x 0)。
(2)若可导函数y =f(x)在X =X 0处取得极值,则f (x 0)=0。
反之,不成立。
(3)对于可导函数f (x ),不等式f ,(x )>0(<0)的解集决定函数f (x )的递增(减)区间。
(4)函数f (x )在区间I 上递增(减)的充要条件是:v x e I f (x )>0(<0)恒成立(f (x )不恒为0).(5)函数f(x )(非常量函数)在区间I 上不单调等价于f (x )在区间I 上有极值,则可等价转化为方程尸(x )=0在区间I 上有实根且为非二重根。
(若f (x )为二次函数且I=R ,则有A>0)。
(6) f(x )在区间I 上无极值等价于f (x )在区间在上是单调函数,进而得到f (x )>0或f (x )<0在I 上恒成立 ⑺若V x G I ,f (x )>0恒成立,则fx )min >0;若V x G I ,f (x )<0恒成立,则f (x )max<0 ⑻若三x 0G l ,使得f (x 0)>0,则^>0;若三x 0Gl ,使得f(x 0)<0,则)皿<0. (9)设f (x )与g (x )的定义域的交集为D ,若V x G D f (x )>g (x )恒成立,贝第[f (x )-g (x )]>0.min(10)若对V X|G I、匕e1,f(x J>g(x)恒成立,则f(x).>g(x).112212minmax若对V x e I3x e I,使得f(x)>g(x),则f(x)>g(x).112212minmin若对V x]e I,3x2G I2,使得f(x)<g(x),则f(x)<g(x).112212maxmax(11)已知f(x)在区间11上的值域为A,,g(x)在区间I2上值域为B,若对V x1e11,3x2e I2,使得f(x1)=g(x2)成立,则A之B。
高考压轴导数大题例1.已知函数3211()32f x x ax bx =++在区间[11)-,,(13],内各有一个极值点. (I )求24a b -的最大值;(II )当248a b -=时,设函数()y f x =在点(1(1))A f ,处的切线为l ,若l 在点A 处穿过函数()y f x =的图象(即动点在点A 附近沿曲线()y f x =运动,经过点A 时,从l 的一侧进入另一侧),求函数()f x 的表达式.例3已知函数()θθcos 163cos 3423+-=x x x f ,其中θ,R x ∈为参数,且πθ20≤≤.(1)当时0cos =θ,判断函数()x f 是否有极值;(2)要使函数()f x 的极小值大于零,求参数θ的取值范围;例4.已知函数32()f x ax bx cx =++在点0x 处取得极大值5,其导函数'()y f x =的图象经过点(1,0),(2,0).求:(Ⅰ)0x 的值;(Ⅱ),,a b c 的值.例5设3=x 是函数()()()R x e b ax x x f x ∈++=-32的一个极值点.(Ⅰ)求a 与b 的关系式(用a 表示b ),并求()x f 的单调区间;(Ⅱ)设0>a ,()x e a x g ⎪⎭⎫ ⎝⎛+=4252.若存在[]4,0,21∈εε使得()()121<-εεg f 成立, 求a 的取值范围例6已知函数321()(2)13f x ax bx b x =-+-+ 在1x x =处取得极大值,在2x x =处取得极小值,且12012x x <<<<.(1)证明0a >;(2)若z =a +2b ,求z 的取值范围。
1. 已知函数21()22f x ax x =+,()g x lnx =.(Ⅰ)如果函数()y f x =在[1,)+∞上是单调增函数,求a 的取值范围;(Ⅱ)是否存在实数0a >,使得方程()()(21)g x f x a x '=-+在区间1(,)e e 内有且只有两个不相等的实数根?若存在,请求出a 的取值范围;若不存在,请说明理由.2. 如果()0x f 是函数()x f 的一个极值,称点()()00,x f x 是函数()x f 的一个极值点.已知函数()()()00≠≠-=a x e b ax x f x a 且(1)若函数()x f 总存在有两个极值点B A ,,求b a ,所满足的关系;(2)若函数()x f 有两个极值点B A ,,且存在R a ∈,求B A ,在不等式1<x 表示的区域内时实数b 的范围.(3)若函数()x f 恰有一个极值点A ,且存在R a ∈,使A 在不等式⎩⎨⎧<<e y x 1表示的区域内,证明:10<≤b .3 已知函数3221()ln ,()3(,,R)32f x x x g x x ax bx c a b c ==-+-+∈.(1)若函数()()()h x f x g x ''=-是其定义域上的增函数,求实数a 的取值范围;(2)若()g x 是奇函数,且()g x 的极大值是3g ,求函数()g x 在区间[1,]m -上的最大值;(3)证明:当0x >时,12()1x f x e ex '>-+.4已知实数a 满足0<a ≤2,a ≠1,设函数f (x )=13x 3-12a +x 2+ax . (Ⅰ) 当a =2时,求f (x )的极小值;(Ⅱ) 若函数g (x )=x 3+bx 2-(2b +4)x +ln x (b ∈R )的极小值点与f (x )的极小值点相同.求证:g (x )的极大值小于等于5/4例1解(I )因为函数3211()32f x x ax bx =++在区间[11)-,,(13],内分别有一个极值点,所以2()f x x ax b '=++0=在[11)-,,(13],内分别有一个实根, 设两实根为12x x ,(12x x <),则2214x x a b -=-2104x x <-≤.于是2044a b <-,20416a b <-≤,且当11x =-,23x =,即2a =-,3b =-时等号成立.故24a b -的最大值是16. (II )解法一:由(1)1f a b '=++知()f x 在点(1(1))f ,处的切线l 的方程是(1)(1)(1)y f f x '-=-,即21(1)32y a b x a =++--, 因为切线l 在点(1())A f x ,处空过()y f x =的图象,所以21()()[(1)]32g x f x a b x a =-++--在1x =两边附近的函数值异号,则 1x =不是()g x 的极值点. 而()g x 321121(1)3232x ax bx a b x a =++-++++,且 22()(1)1(1)(1)g x x ax b a b x ax a x x a '=++-++=+--=-++.若11a ≠--,则1x =和1x a =--都是()g x 的极值点.所以11a =--,即2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--. 解法二:同解法一得21()()[(1)]32g x f x a b x a =-++-- 2133(1)[(1)(2)]322a x x x a =-++-+. 因为切线l 在点(1(1))A f ,处穿过()y f x =的图象,所以()g x 在1x =两边附近的函数值异号,于是存在12m m ,(121m m <<). 当11m x <<时,()0g x <,当21x m <<时,()0g x >;或当11m x <<时,()0g x >,当21x m <<时,()0g x <.设233()1222a a h x x x ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,则当11m x <<时,()0h x >,当21x m <<时,()0h x >;或当11m x <<时,()0h x <,当21x m <<时,()0h x <.由(1)0h =知1x =是()h x 的一个极值点,则3(1)21102a h =⨯++=, 所以2a =-,又由248a b -=,得1b =-,故321()3f x x x x =--.例3解(Ⅰ)当cos 0θ=时,3()4f x x =,则()f x 在(,)-∞+∞内是增函数,故无极值.(Ⅱ)2'()126cos f x x x θ=-,令'()0f x =,得12cos 0,2x x θ==. 由(Ⅰ),只需分下面两种情况讨论.①当cos 0θ>时,随x 的变化'()f x 的符号及()f x 的变化情况如下表: x(,0)-∞ 0 cos (0,)2θ cos 2θ cos (,)2θ+∞ '()f x + 0 - 0 + ()f x ↗ 极大值↘ 极小值 ↗因此,函数()f x 在2x =处取得极小值f()2,且3cos 13()cos 2416f θθθ=-+.要使cos ()02f θ>,必有213cos (cos )044θθ-->,可得30cos θ<<由于30cos θ≤≤3116226ππππθθ<<<<或. ②当时cos 0θ<,随x 的变化,'()f x 的符号及()f x 的变化情况如下表: xcos (,)2θ-∞ cos 2θ cos (,0)2θ 0 (0,)+∞ '()f x+ 0 - 0 + ()f x 极大值 极小值因此,函数()0f x x =在处取得极小值(0)f ,且3(0)cos .16f θ= 若(0)0f >,则cos 0θ>.矛盾.所以当cos 0θ<时,()f x 的极小值不会大于零.综上,要使函数()f x 在(,)-∞+∞内的极小值大于零,参数θ的取值范围为311(,)(,)6226ππππ⋃.例4解法一:(Ⅰ)由图像可知,在(),1-∞上()'0f x >,在()1,2上()'0f x <,在()2,+∞上()'0f x >,故()f x 在∞∞(-,1),(2,+)上递增,在(1,2)上递减, 因此()f x 在1x =处取得极大值,所以01x =(Ⅱ)'2()32,f x ax bx c =++由'''f f f (1)=0,(2)=0,(1)=5,得320,1240,5,a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩ 解得2,9,12.a b c ==-=解法二:(Ⅰ)同解法一(Ⅱ)设'2()(1)(2)32,f x m x x mx mx m =--=-+又'2()32,f x ax bx c =++所以3,,232m a b m c m ==-= 32|3()2,32m f x x mx mx =-+ 由(1)5f =,即325,32m m m -+=得6,m =所以2,9,12a b c ==-=例5解(Ⅰ)f `(x)=-[x 2+(a -2)x +b -a ]e 3-x ,由f `(3)=0,得 -[32+(a -2)3+b -a ]e 3-3=0,即得b =-3-2a ,则 f `(x)=[x 2+(a -2)x -3-2a -a ]e 3-x =-[x 2+(a -2)x -3-3a ]e 3-x =-(x -3)(x +a+1)e 3-x .令f `(x)=0,得x 1=3或x 2=-a -1,由于x =3是极值点,所以x+a+1≠0,那么a ≠-4.当a <-4时,x 2>3=x 1,则在区间(-∞,3)上,f `(x)<0, f (x)为减函数;在区间(3,―a ―1)上,f `(x)>0,f (x)为增函数;在区间(―a ―1,+∞)上,f `(x)<0,f (x)为减函数.当a >-4时,x 2<3=x 1,则在区间(-∞,―a ―1)上,f `(x)<0, f (x)为减函数;在区间(―a ―1,3)上,f `(x)>0,f (x)为增函数;在区间(3,+∞)上,f `(x)<0,f (x)为减函数.(Ⅱ)由(Ⅰ)知,当a >0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间[0,4]上的值域是[min(f (0),f (4) ),f (3)], 而f (0)=-(2a +3)e 3<0,f (4)=(2a +13)e -1>0,f (3)=a +6,那么f (x)在区间[0,4]上的值域是[-(2a +3)e 3,a +6].又225()()4x g x a e =+在区间[0,4]上是增函数,且它在区间[0,4]上的值域是[a 2+425,(a 2+425)e 4], 由于(a 2+425)-(a +6)=a 2-a +41=(21-a )2≥0,所以只须仅须(a 2+425)-(a +6)<1且a >0,解得0<a <23. 故a 的取值范围是(0,23).例6解(Ⅰ)由函数()f x 在1x x =处取得极大值,在2x x =处取得极小值,知12x x ,是()0f x '=的两个根.所以12()()()f x a x x x x '=--当1x x <时,()f x 为增函数,()0f x '>,由10x x -<,20x x -<得0a >.(Ⅱ)在题设下,12012x x <<<<等价于(0)0(1)0(2)0f f f '>⎧⎪'<⎨⎪'>⎩ 即202204420b a b b a b b ->⎧⎪-+-<⎨⎪-+->⎩.化简得203204520b a b a b ->⎧⎪-+<⎨⎪-+>⎩.此不等式组表示的区域为平面aOb 上三条直线:203204520b a b a b -=-+=-+=,,.所围成的ABC △的内部,其三个顶点分别为:46(22)(42)77A B C ⎛⎫ ⎪⎝⎭,,,,,. z 在这三点的值依次为16687,,. 所以z 的取值范围为1687⎛⎫ ⎪⎝⎭,. 1解:(Ⅰ)当0a =时,()2f x x =在[1,)+∞上是单调增函数,符合题意. 当0a >时,()y f x =的对称轴方程为2x a =-,由于()y f x =在[1,)+∞上是单调增函数, 所以21a -≤,解得2a ≤-或0a >,所以0a >. 当0a <时,不符合题意.综上,a 的取值范围是0a ≥.(Ⅱ)把方程()()(21)g x f x a x '=-+整理为2(21)lnx ax a x =+-+,即为方程2(12)0ax a x lnx +--=. b a 21 2 4 O 4677A ⎛⎫ ⎪⎝⎭,(42)C , (22)B ,设2()(12)H x ax a x lnx =+-- (0)x >, 原方程在区间(1,e e )内有且只有两个不相等的实数根, 即为函数()H x 在区间(1,e e )内有且只有两个零点.1()2(12)H x ax a x '=+--22(12)1(21)(1)ax a x ax x x x +--+-==令()0H x '=,因为0a >,解得1x =或12x a =-(舍)当(0,1)x ∈时, ()0H x '<, ()H x 是减函数;当(1,)x ∈+∞时, ()0H x '>,()H x 是增函数.()H x 在(1,e e )内有且只有两个不相等的零点, 只需min 1()0,()0,()0,H e H x H e ⎧>⎪⎪<⎨⎪>⎪⎩即2222212(12)10,(1)(12)10,(12)1(2)(1)0,a a a e a e e e e H a a a ae a e e e a e ⎧--++++=>⎪⎪⎪=+-=-<⎨⎪+--=-+->⎪⎪⎩ ∴22,211,1,2e e a e a e a e e ⎧+<⎪-⎪⎪>⎨⎪-⎪>-⎪⎩ 解得2121e e a e +<<-, 所以a 的取值范围是(21,21e e e +-) .2(1)x a x a e x a b ax e a x f ⋅--+⋅=))(()('2令()0f x '=得20x ax b -+= 240a b ∴-> 又 00a x ≠≠且204a b b ∴<≠且(2)20x ax b -+=在(1,1)-有两个不相等的实根. 即2401121010a b a a b a b ⎧∆=->⎪⎪-<<⎪⎨⎪++>⎪-+>⎪⎩ 得 22441b a a b ⎧>⎪<⎨⎪<-⎩110b b ∴-<<≠且(3)由①2()00f x x ax b '=⇒-+=(0)x ≠ ①当()220a xx ax b b f x a e x -+'==⋅⋅在x a =左右两边异号(,())a f a ∴是()y f x =的唯一的一个极值点 由题意知2110()a a e a b e e <<≠⎧⎨-<-<⎩且- 即 220111a a ⎧<<⎨-<<⎩ 即 201a <<存在这样的a 的满足题意 0b ∴=符合题意②当0b ≠时,240a b ∆=-=即24b a = 这里函数()y f x =唯一的一个极值点为(,())22a a f由题意12102()2a a a e b e e ⎧<≠⎪⎪⎨⎪-<-<⎪⎩且即 211222042a a e b e ⎧<<⎪⎨-<-<⎪⎩ 即 1122044b e b e <<⎧⎪⎨⎪-<<⎩01b ∴<<综上知:满足题意 b 的范围为[0,1)b ∈.3解:(1)()ln 1f x x '=+ ,2()23g x x ax b '=-+-,所以2()ln 231h x x x ax b =+-++, 由于()h x 是定义域内的增函数,故1()40x h x x a '=+-≥恒成立,即14x a x ≤+对0x ∀>恒成立,又144xx +≥(2x =时取等号),故(,4]a ∈-∞. (2)由()g x 是奇函数,则()()0g x g x +-=对0x ∀>恒成立,从而0a c ==, 所以323()3g x x bx =--,有2()23g x x b '=--. 由()g x 极大值为3g ,即3(0g '=,从而29b =-;因此32233()g x x x =--,即23323()22(g x x x x '=-+=--+, 所以函数()g x 在3(,-∞和3()+∞上是减函数,在33(上是增函数.由()0g x =,得1x =±或0x =,因此得到:当10m -<<时,最大值为(1)0g -=; 当30m ≤<32233()g m m m =-+; 当3m ≥时,最大值为343(g =.(3)问题等价于证明2()ln x xe ef x x x =>-对0x >恒成立;()ln 1f x x '=+,所以当1(0,)e x ∈时,()0f x '<,()f x 在1(0,)e 上单调减;当1(,)e x ∈+∞时,()0f x '>,()f x 在1(,)e+∞上单调增; 所以()f x 在(0,)+∞上最小值为1e -(当且仅当1e x =时取得) 设2()(0)x xe e m x x =->,则1()x x e m x -'=,得()m x 最大值1(1)e m =-(当且仅当1x =时取得), 又()f x 得最小值与()m x 的最大值不能同时取到,所以结论成立.4(Ⅰ) 解: 当a =2时,f ′(x )=x 2-3x +2=(x -1)(x -2).列表如下:x(-∞,1) 1 (1,2) 2 (2,+∞) f ′(x )+ 0 - 0 + f (x )单调递增 极大值 单调递减 极小值 单调递增所以,f (x )极小值为f (2)=23.(Ⅱ) 解:f ′(x )=x 2-(a +1)x +a =(x -1)(x -a ).g ′(x )=3x 2+2bx -(2b +4)+1x =2(1)[3(23)1]x x b x x -++-.令p (x )=3x 2+(2b +3)x -1,(1) 当 1<a ≤2时,f (x )的极小值点x =a ,则g (x )的极小值点也为x =a ,所以p (a )=0,即3a 2+(2b +3)a -1=0,即b =21332a a a --,此时g(x)极大值=g(1)=1+b-(2b+4)=-3-b=-3+23312a aa+-=313222aa--.由于1<a≤2,故313222aa--≤32⨯2-14-32=54.(2) 当0<a<1时,f (x)的极小值点x=1,则g(x)的极小值点为x=1,由于p(x)=0有一正一负两实根,不妨设x2<0<x1,所以0<x1<1,即p(1)=3+2b+3-1>0,故b>-52.此时g(x)的极大值点x=x1,有g(x1)=x13+bx12-(2b+4)x1+ln x1<1+bx12-(2b+4)x1=(x12-2x1)b-4x1+1(x12-2x1<0)<-52(x12-2x1)-4x1+1=-52x12+x1+1=-52(x1-15)2+1+110(0<x1<1)≤11 10<54.综上所述,g(x)的极大值小于等于54.。
专治学霸不服——导数压轴小题1. 已知函数f(x)=xe x−m2x2−mx,则函数f(x)在[1,2]上的最小值不可能为( )A. e−32m B. −12mln2m C. 2e2−4m D. e2−2m2. 已知函数f(x)=sinxx ,若π3<a<b<2π3,则下列结论正确的是( )A. f(a)<f(√ab)<f(a+b2) B. f(√ab)<f(a+b2)<f(b)C. f(√ab)<f(a+b2)<f(a) D. f(b)<f(a+b2)<f(√ab)3. 已知e为自然对数的底数,对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,则实数a的取值范围是( )A. [1,e]B. (1,e]C. (1+1e ,e] D. [1+1e,e]4. 若存在正实数x,y,z满足z2≤x≤ez且zln yz=x,则ln yx的取值范围为( )A. [1,+∞)B. [1,e−1]C. (−∞,e−1]D. [1,12+ln2]5. 已知方程ln∣x∣−ax2+32=0有4个不同的实数根,则实数a的取值范围是( )A. (0,e 22) B. (0,e22] C. (0,e23) D. (0,e23]6. 设函数f(x)=e x(sinx−cosx)(0≤x≤2016π),则函数f(x)的各极小值之和为( )A. −e 2π(1−e2016π)1−e2πB. −e2π(1−e1008π)1−eπC. −e 2π(1−e1008π)1−e2πD. −e2π(1−e2014π)1−e2π7. 若函数f(x)满足f(x)=x(fʹ(x)−lnx),且f(1e )=1e,则ef(e x)<fʹ(1e)+1的解集为( )A. (−∞,−1)B. (−1,+∞)C. (0,1e)D. (1e,+∞)8. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,且 a ≠1);② g (x )≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若f (1)g (1)+f (−1)g (−1)=52,则 a 等于 ( )A. 12B. 2C. 54D. 2 或 129. 已知函数 f (x )=1+lnx x,若关于 x 的不等式 f 2(x )+af (x )>0 有两个整数解,则实数 a 的取值范围是 ( ) A. (−1+ln22,−1+ln33) B. (1+ln33,1+ln22) C. (−1+ln22,−1+ln33] D. (−1,−1+ln33]10. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 f (x )−m (x −1)>0 对任意的 x >1 恒成立,则 m 的最大值为 ( ) A. 2B. 3C. 4D. 511. 已知函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0,若 f (−a )+f (a )≤2f (1),则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357A. (−∞,−1]∪[1,+∞)B. [−1,0]C. [0,1]D. [−1,1]12. 已知 fʹ(x ) 是定义在 (0,+∞) 上的函数 f (x ) 的导函数,若方程 fʹ(x )=0 无解,且 ∀x ∈(0,+∞),f [f (x )−log 2016x ]=2017,设 a =f (20.5),b =f (log π3),c =f (log 43),则 a ,b ,c 的大小关系是 ( )A. b >c >aB. a >c >bC. c >b >aD. a >b >c13. 已知函数 f (x )={lnx,x ≥11−x 2,x <1,若 F (x )=f [f (x )+1]+m 有两个零点 x 1,x 2,则 x 1⋅x 2 的取值范围是 ( ) A. [4−2ln2,+∞) B. (√e,+∞)C. (−∞,4−2ln2]D. (−∞,√e)14. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x <0 时,f (x )=(x +1)e x , 则对任意的 m ∈R ,函数 F (x )=f(f (x ))−m 的零点个数至多有 ( )A. 3 个B. 4 个C. 6 个D. 9 个15. 设 f (x )=∣lnx∣,若函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点,则实数 a 的取值范围是 ( )A. (0,1e ) B. (ln33,e) C. (0,ln33] D. [ln33,1e)16. 已知 f (x ) 是定义在 R 上的偶函数,其导函数为 fʹ(x ),若 fʹ(x )<f (x ),且 f (x +1)=f (3−x ),f (2015)=2,则不等式 f (x )<2e x−1 的解集为 ( )高中数学资料共享群QQ 群号:734924357A. (1,+∞)B. (e,+∞)C. (−∞,0)D. (−∞,1e)17. 设函数 f (x ) 的导函数为 fʹ(x ),对任意 x ∈R 都有 fʹ(x )>f (x ) 成立,则 ( ) A. 3f (ln2)>2f (ln3) B. 3f (ln2)=2f (ln3) C. 3f (ln2)<2f (ln3)D. 3f (ln2) 与 2f (ln3) 的大小不确定18. 已知函数 f (x )=x 33+12ax 2+2bx +c ,方程 fʹ(x )=0 两个根分别在区间 (0,1) 与 (1,2) 内,则 b−2a−1的取值范围为 ( )A. (14,1)B. (−∞,14)∪(1,∞)C. (−1,−14)D. (14,2)19. 已知 f (x )=∣xe x ∣,又 g (x )=f 2(x )−tf (x )(t ∈R ),若满足 g (x )=−1 的 x 有四个,则 t 的取值范围是 ( )A. (−∞,−e 2+1e) B. (e 2+1e,+∞) C. (−e 2+1e,−2) D. (2,e 2+1e)20. 已知 f (x ) 是定义在 (0,+∞) 上的单调函数,且对任意的 x ∈(0,+∞),都有 f [f (x )−log 2x ]=3,则方程 f (x )−fʹ(x )=2 的解所在的区间是 ( ) A. (0,12)B. (12,1)C. (1,2)D. (2,3)21. 已知函数 f (x )={√1+9x 2,x ≤01+xe x−1,x >0,点 A ,B 是函数 f (x ) 图象上不同两点,则 ∠AOB (O 为坐标原点)的取值范围是 ( )A. (0,π4) B. (0,π4] C. (0,π3) D. (0,π3]22. 定义:如果函数 f (x ) 在 [a,b ] 上存在 x 1,x 2 (0<x 1<x 2<a) 满足 fʹ(x 1)=f (b )−f (a )b−a ,fʹ(x 2)=f (b )−f (a )b−a,则称函数 f (x ) 是 [a,b ] 上的“双中值函数”.已知函数 f (x )=x 3−x 2+a 是 [0,a ] 上的“双中值函数”,则实数 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (13,12)B. (32,3)C. (12,1)D. (13,1)23. 已知函数 f (x )=2mx 2−2(4−m )x +1,g (x )=mx ,若对于任意实数 x ,函数 f (x ) 与 g (x ) 的值至少有一个为正值,则实数 m 的取值范围是 ( )A. (2,8)B. (0,2)C. (0,8)D. (−∞,0)24. 已知 a,b ∈R ,且 e x+1≥ax +b 对 x ∈R 恒成立,则 ab 的最大值是( )A. 12e 3B. √22e 3 C.√32e 3 D. e 325. 函数 f (x ) 是定义在区间 (0,+∞) 上的可导函数 , 其导函数为 fʹ(x ),且满足 xfʹ(x )+2f (x )>0,则不等式 (x+2016)f (x+2016)5<5f (5)x+2016的解集为 ( ) A. {x >−2011} B. {x ∣x <−2011} C. {x ∣−2011<x <0}D. {x∣∣−2016<x <−2011}26. 设 D =√(x −a )2+(lnx −a 24)2+a 24+1(a ∈R ),则 D 的最小值为( ) A. √22B. 1C. √2D. 227. 已知定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,且当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),若 a =0.76f (0.76),b =log 1076f (log 1076),c =60.6f (60.6),则 a ,b ,c 的大小关系是 ( )A. a >b >cB. b >a >cC. c >a >bD. a >c >b28. 对任意的正数 x ,都存在两个不同的正数 y ,使 x 2(lny −lnx )−ay 2=0 成立,则实数 a 的取值范围为 ( )A. (0,12e ) B. (−∞,12e ) C. (12e ,+∞) D. (12e,1)29. 已知函数 f (x )=x 3−6x 2+9x ,g (x )=13x 3−a+12x 2+ax −13(a >1) 若对任意的 x 1∈[0,4],总存在 x 2∈[0,4],使得 f (x 1)=g (x 2),则实数 a 的取值范围为 ( )高中数学资料共享群QQ 群号:734924357 A. (1,94]B. [9,+∞)C. (1,94]∪[9,+∞)D. [32,94]∪[9,+∞)30. 定义在 R 上的偶函数 f (x ) 满足 f (2−x )=f (x ),且当 x ∈[1,2] 时,f (x )=lnx −x +1,若函数g (x )=f (x )+mx 有 7 个零点,则实数 m 的取值范围为 ( )A. (1−ln28,1−ln26)∪(ln2−16,ln2−18)B. (ln2−16,ln2−18) C. (1−ln28,1−ln26) D. (1−ln28,ln2−16)31. 已知函数 f (x )={e x ,x ≥0ax,x <0,若方程 f (−x )=f (x ) 有五个不同的根,则实数 a 的取值范围为 ( ) A. (−∞,−e )B. (−∞,−1)C. (1,+∞)D. (e,+∞)32. 已知 fʹ(x ) 是奇函数 f (x ) 的导函数,f (−1)=0,当 x >0 时,xfʹ(x )−f (x )>0,则使得 f (x )>0 成立的 x 的取值范围是 ( ) A. (−∞,−1)∪(0,1) B. (−1,0)∪(1,+∞) C. (−1,0)∪(0,1)D. (−∞,−1)∪(1,+∞)33. 已知函数 f (x ) 在定义域 R 上的导函数为 fʹ(x ),若方程 fʹ(x )=0 无解,且 f [f (x )−2017x ]=2017,当 g (x )=sinx −cosx −kx 在 [−π2,π2] 上与 f (x ) 在 R 上的单调性相同时,则实数 k 的取值范围是 ( )A. (−∞,−1]B. (−∞,√2]C. [−1,√2]D. [√2,+∞)34. 已知函数 f (x )=e x ∣x∣,关于 x 的方程 f 2(x )−2af (x )+a −1=0(a ∈R )有 3 个相异的实数根,则 a 的取值范围是 ( ) A. (e 2−12e−1,+∞)B. (−∞,e 2−12e−1) C. (0,e 2−12e−1) D. {e 2−12e−1}35. 函数 y =f (x ) 图象上不同两点 A (x 1,y 1),B (x 2,y 2) 处的切线的斜率分别是 k A ,k B ,规定 φ(A,B )=∣k A −k B ∣∣AB∣叫做曲线在点 A 与点 B 之间的“弯曲度”.设曲线 y =e x 上不同的两点 A (x 1,y 1),B (x 2,y 2),且 x 1−x 2=1,若 t ⋅φ(A,B )<3 恒成立,则实数 t 的取值范围是 ( )A. (−∞,3]B. (−∞,2]C. (−∞,1]D. [1,3]36. 已知函数 f (x )=ax 3+3x 2+1,若至少存在两个实数 m ,使得 f (−m ),f (1),f (m +2) 成等差数列,则过坐标原点作曲线 y =f (x ) 的切线可以作 ( ) A. 3 条B. 2 条C. 1 条D. 0 条37. 已知整数对排列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),⋯,则第 60 个整数对是 ( ) A. (5,7)B. (4,8)C. (5,8)D. (6,7)38. 已知函数 f (x )={∣log 3x ∣,0<x <3,−cos (π3x),3≤x ≤9.若存在实数 x 1,x 2,x 3,x 4,当 x 1<x 2<x 3<x 4 时,满足 f (x 1)=f (x 2)=f (x 3)=f (x 4),则 x 1⋅x 2⋅x 3⋅x 4 的取值范围是 ( ) A. (7,294)B. (21,1354) C. [27,30)D. (27,1354)39. 已知函数 f (x )=e 2x ,g (x )=lnx +12的图象分别与直线 y =b 交于 A ,B 两点,则 ∣AB∣ 的最小值为 ( )A. 1B. e 12C. 2+ln22D. e −ln3240. 设 A ,B 分别为双曲线 C :x 2a 2−y 2b 2=1(a >0,b >0) 的左、右顶点,P ,Q 是双曲线 C 上关于 x 轴对称的不同两点,设直线 AP ,BQ 的斜率分别为 m ,n ,则2b a+a b+12∣mn∣+ln ∣m ∣+ln ∣n ∣ 取得最小值时,双曲线 C 的离心率为 ( ) A. √2B. √3C. √6D. √6241. 已知 f (x ),g (x ) 都是定义在 R 上的函数,且满足以下条件:① f (x )=a x ⋅g (x )(a >0,a ≠1);② g (x ) ≠0;③ f (x )⋅gʹ(x )>fʹ(x )⋅g (x ).若 f (1)g (1)+f (−1)g (−1)=52,则使 log a x >1 成立的 x 的取值范围是 ( )A. (0,12)∪(2,+∞)B. (0,12)C. (−∞,12)∪(2,+∞)D. (2,+∞)42. 已知函数 f (x )=∣sinx ∣(x ∈[−π,π]),g (x )=x −2sinx (x ∈[−π,π]),设方程 f(f (x ))=0,f(g (x ))=0,g(g (x ))=0 的实根的个数分别为 m ,n ,t ,则 m +n +t = ( )A. 9B. 13C. 17D. 2143. 设 f (x ) 是定义在 R 上的奇函数,且 f (2)=0,当 x >0 时,有xfʹ(x )−f (x )x 2<0 恒成立,则不等式 x 2f (x )>0 的解集是 ( )A. (−2,0)∪(2,+∞)B. (−∞,−2)∪(0,2)C. (−∞,−2)∪(2,+∞)D. (−2,0)∪(0,2)44. 已知函数 f (x )={−x 2+2x,x ≤0ln (x +1),x >0,若 ∣f (x )∣≥ax ,则 a 的取值范围是 ( ) A. (−∞,0]B. (−∞,1]C. [−2,1]D. [−2,0]45. 已知函数 f (x )(x ∈R ) 满足 f (−x )=2−f (x ),若函数 y =x+1x与 y =f (x ) 图象的交点为 (x 1,y 1),(x 2,y 2),⋯,(x m ,y m ),则 ∑(x i +m i=1y i )= ( )A. 0B. mC. 2mD. 4m46. 若函数 f (x )=x −13sin2x +asinx 在 (−∞,+∞) 单调递增,则 a 的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. [−1,1]B. [−1,13]C. [−13,13]D. [−1,−13]47. 已知两曲线 y =x 3+ax 和 y =x 2+bx +c 都经过点 P (1,2),且在点 P处有公切线,则当 x ≥12 时,log bax 2−c 2x的最小值为 ( )A. −1B. 1C. 12D. 048. 直线 y =m 分别与 y =2x +3 及 y =x +lnx 交于 A ,B 两点,则 ∣AB∣的最小值为 ( ) A. 1B. 2C. 3D. 449. 设函数 f (x )=x 2−2x +1+alnx 有两个极值点 x 1,x 2,且 x 1<x 2,则 f (x 2) 的取值范围是 ( ) A. (0,1+2ln24) B. (1−2ln24,0)C. (1+2ln24,+∞) D. (−∞,1−2ln24)50. 设直线 l 1,l 2 分别是函数 f (x )={−lnx,0<x <1,lnx,x >1,图象上点 P 1,P 2处的切线,l 1 与 l 2 垂直相交于点 P ,且 l 1,l 2 分别与 y 轴相交于点 A ,B ,则 △PAB 的面积的取值范围是 ( )A. (0,1)B. (0,2)C. (0,+∞)D. (1,+∞)51. 已知定义在 R 上的奇函数 f (x ),其导函数为 fʹ(x ),对任意正实数 x 满足 xfʹ(x )>2f (−x ),若 g (x )=x 2f (x ),则不等式 g (x )<g (1−3x ) 的解集是 ( ) A. (14,+∞)B. (−∞,14)C. (0,14)D. (−∞,14)∪(14,+∞)52. 已知函数 f (x )=x (lnx −ax ) 有两个极值点,则实数 a 的取值范围是( )A. (−∞,0)B. (0,12)C. (0,1)D. (0,+∞)53. 已知函数 f (x )=x +xlnx ,若 m ∈Z ,且 (m −2)(x −2)<f (x ) 对任意的 x >2 恒成立,则 m 的最大值为 ( ) A. 4B. 5C. 6D. 854. 已知函数 f (x )=a x+xlnx ,g (x )=x 3−x 2−5,若对任意的 x 1,x 2∈[12,2],都有 f (x 1)−g (x 2)≥2 成立,则 a 的取值范围是 ( )A. (0,+∞)B. [1,+∞)C. (−∞,0)D. (−∞,−1]55. 设函数 f (x )=e x (2x −1)−ax +a ,其中 a <1,若存在唯一的整数x 0 使得 f (x 0)<0,则 a 的取值范围是 ( )A. [−32e,1) B. [−32e ,34) C. [32e ,34)D. [32e,1)56. 函数 f (x )={(x −a )2+e,x ≤2xlnx+a +10,x >2(e 是自然对数的底数),若 f (2) 是函数 f (x ) 的最小值,则 a 的取值范围是 ( ) A. [−1,6]B. [1,4]C. [2,4]D. [2,6]57. f (x ),g (x )(g (x )≠0) 分别是定义在 R 上的奇函数和偶函数,当 x <0时,fʹ(x )g (x )<f (x )gʹ(x ),且 f (−3)=0,f (x )g (x )<0 的解集为 ( )A. (−∞,−3)∪(3,+∞)B. (−3,0)∪(0,3)C. (−3,0)∪(3,+∞)D. (−∞,−3)∪(0,3)58. 已知函数 f (x )=x 3+bx 2+cx +d (b ,c ,d 为常数),当 x ∈(0,1) 时 f (x ) 取得极大值,当 x ∈(1,2) 时 f (x ) 取得极小值,则 (b +12)2+(c −3)2的取值范围是 ( )高中数学资料共享群QQ 群号:734924357 A. (√372,5) B. (√5,5)C. (374,25)D. (5,25)59. 若关于 x 的方程 ∣x 4−x 3∣=ax 在 R 上存在 4 个不同的实根,则实数a 的取值范围为 ( ) A. (0,427)B. (0,427]C. (427,23)D. (427,23]60. 设函数 f (x ) 在 R 上存在导函数 fʹ(x ),若对 ∀x ∈R ,有 f (−x )+f (x )=x 2,且当 x ∈(0,+∞) 时,fʹ(x )>x .若 f (2−a )−f (a )≥2−2a ,则 a 的取值范围是 ( )A. (−∞,1]B. [1,+∞)C. (−∞,2]D. [2,+∞)61. 已知 e 为自然对数的底数,若对任意的 x ∈[1e,1],总存在唯一的 y ∈[−1,1],使得 lnx −x +1+a =y 2e y 成立,则实数 a 的取值范围是 ( ) A. [1e ,e]B. (2e,e]C. (2e,+∞)D. (2e ,e +1e)62. 设函数 f (x )={2x +1,x >0,0,x =0,2x −1,x <0.若不等式 f (x −1)+f (mx)>0 对任意x >0 恒成立,则实数 m 的取值范围是 ( ) A. (−14,14)B. (0,14)C. (14,+∞)D. (1,+∞)63. 若 0<x 1<x 2<1,则 ( )A. e x 2−e x 1>lnx 2−lnx 1B. e x 1−e x 2<lnx 2−lnx 1C. x 2e x 1>x 1e x 2D. x 2e x 1<x 1e x 264. 函数f(x)在定义域R内可导,若f(x)=f(2−x),且(x−1)fʹ(x)<0,若a=f(0),b=f(12),c=f(3),则a,b,c的大小关系是( )A. a>b>cB. b>a>cC. c>b>aD. a>c>b65. 已知函数f(x)=x−4+9x+1,x∈(0,4).当x=a时,f(x)取得最小值b,则函数g(x)=(1a )∣x+b∣的图象为( )A. B.C. D.66. f(x)是定义在(0,+∞)上的单调函数,且对∀x∈(0,+∞)都有f(f(x)−lnx)=e+1,则方程f(x)−fʹ(x)=e的实数解所在的区间是( )高中数学资料共享群QQ群号:734924357A. (0,1e ) B. (1e,1) C. (1,e) D. (e,3)67. 已知R上的奇函数f(x)满足fʹ(x)>−2,则不等式f(x−1)<x2(3−2lnx)+3(1−2x)的解集是( )A. (0,1e) B. (0,1) C. (1,+∞) D. (e,+∞)68. 已知函数f(x)=sinxx,给出下面三个结论:①函数f(x)在区间(−π2,0)上单调递增,在区间(0,π2)上单调递减;②函数f(x)没有最大值,而有最小值;③函数f(x)在区间(0,π)上不存在零点,也不存在极值点.其中,所有正确结论的序号是( )A. ①②B. ①③C. ②③D. ①②③69. 已知函数 f (x ) 是定义在 R 上的可导函数,fʹ(x ) 为其导函数,若对于任意实数 x ,有 f (x )−fʹ(x )>0,则 A. ef (2015)>f (2016) B. ef (2015)<f (2016) C. ef (2015)=f (2016)D. ef (2015) 与 f (2016) 大小不能确定70. 若存在正实数 m ,使得关于 x 的方程 x +a (2x +2m −4ex )[ln (x +m )−lnx ]=0 有两个不同的根,其中 e 为自然对数的底数,则实数 a 的取值范围是 ( ) A. (−∞,0)B. (0,12e )C. (−∞,0)∪(12e ,+∞)D. (12e ,+∞)71. 定义在 (0,π2) 上的函数 f (x ),fʹ(x ) 是它的导函数,且恒有 f (x )⋅tanx <fʹ(x ) 成立,则 ( ) A. √3f (π4)>√2f (π3)B. f (1)<2f (π6)sin1C. √2f (π6)>f (π4) D. √3f (π6)<f (π3)72. 已知函数 f (x )=x 3+ax 2+bx +c ,下列结论中错误的是 ( )A. ∃x 0∈R ,f (x 0)=0B. 函数 y =f (x ) 的图象是中心对称图形C. 若 x 0 是 f (x ) 的极小值点,则 f (x ) 在区间 (−∞,x 0) 单调递减D. 若 x 0 是 f (x ) 的极值点,则 fʹ(x 0)=073. 已知函数 f (x )=ln x2+12,g (x )=e x−2,若 g (m )=f (n ) 成立,则 n −m 的最小值为 ( )A. 1−ln2B. ln2C. 2√e −3D. e 2−374. 设函数 f (x )=e x (x 3−3x +3)−ae x −x (x ≥−2),若不等式 f (x )≤0有解.则实数 a 的最小值为 ( )A. 2e −1 B. 2−2eC. 1+2e2D. 1−1e75. 设函数f(x)=2lnx−12mx2−nx,若x=2是f(x)的极大值点,则m 的取值范围为( )A. (−12,+∞) B. (−12,0)C. (0,+∞)D. (−∞,−12)∪(0,+∞)76. 已知函数f(x)=ax3+bx2−2(a≠0)有且仅有两个不同的零点x1,x2,则( )A. 当a<0时,x1+x2<0,x1x2>0B. 当a<0时,x1+x2>0,x1x2<0C. 当a>0时,x1+x2<0,x1x2>0D. 当a>0时,x1+x2>0,x1x2<077. 已知函数f(x)=ax3−3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围为( )A. (2,+∞)B. (1,+∞)C. (−∞,−2)D. (−∞,−1)78. 设f(x)、g(x)是定义域为R的恒大于零的可导函数,且fʹ(x)g(x)−f(x)gʹ(x)<0,则当a<x<b时,有( )A. f(x)g(x)>f(b)g(b)B. f(x)g(a)>f(a)g(x)C. f(x)g(b)>f(b)g(x)D. f(x)g(x)>f(a)g(a)79. 设函数fʹ(x)是函数f(x)(x∈R)的导函数,f(0)=1,且3f(x)=fʹ(x)−3,则4f(x)>fʹ(x)的解集为( )A. (ln43,+∞) B. (ln23,+∞) C. (√32,+∞) D. (√e3,+∞)80. 下列关于函数f(x)=(2x−x2)e x的判断正确的是( )①f(x)>0的解集是{x∣0<x<2};②f(−√2)是极小值,f(√2)是极大值;③f(x)没有最小值,也没有最大值;④f(x)有最大值,没有最小值.A. ①③B. ①②③C. ②④D. ①②④参考答案,仅供参考啊1. D 【解析】fʹ(x)=e x+xe x−m(x+1)=(x+1)(e x−m),因为1≤x≤2,所以e≤e x≤e2,①当m≤e时,e x−m≥0,由x≥1,可得fʹ(x)≥0,此时函数f(x)单调递增.高中数学资料共享群QQ群号:734924357所以当x=1时,函数f(x)取得最小值,f(1)=e−32m.②当m≥e2时,e x−m≤0,由x≥1,可得fʹ(x)≤0,此时函数f(x)单调递减.所以当x=2时,函数f(x)取得最小值,f(2)=2e2−4m.③当e2>m>e时,由e x−m=0,解得x=lnm.当1≤x<lnm时,fʹ(x)<0,此时函数f(x)单调递减;当lnm<x≤1时,fʹ(x)>0,此时函数f(x)单调递增.所以当x=lnm时,函数f(x)取得极小值即最小值,f(lnm)=−m2ln2m.2. D 【解析】fʹ(x)=xcosx−sinxx2(0<x<π).(i)当x=π2时,fʹ(x)=−4π2<0;(ii)当0<x<π,且x≠π2时,fʹ(x)=xcosx−sinxx2=cosx(x−tanx)x2.①当0<x<π2时,根据三角函数线的性质,得x<tanx,又cosx>0,所以fʹ(x)<0;②当π2<x<π时,tanx<0,则x−tanx>0,又cosx<0,所以fʹ(x)< 0.综合(i)(ii),当0<x<π时,fʹ(x)<0.所以f(x)在(0,π)上是减函数.若π3<a<b<2π3,则π3<a<√ab<a+b2<b<2π3,所以f(a)>f(√ab)>f(a+b2)>f(b).3. C 【解析】令f(x1)=a−x1,则f(x1)=a−x1在x1∈[0,1]上单调递减,且f(0)=a,f(1)=a−1.令g(x2)=x22e x2,则gʹ(x2)=2x2e x2+x22e x2=x2e x2(x2+2),且g(0)=0,g(−1)=1e,g(1)=e.若对任意的x1∈[0,1],总存在唯一的x2∈[−1,1],使得x1+x22e x2−a=0成立,即f(x1)=g(x2),则f(x1)=a−x1的最大值不能大于g(x2)的最大值,即f(0)=a≤e,因为g(x2)在[−1,0]上单调递减,在(0,1]上单调递增,所以当g(x2)∈(0,1e]时,有两个x2使得f(x1)=g(x2).若只有唯一的x2∈[−1,1],使得f(x1)=g(x2),则f(x1)的最小值要比1e大,所以f(1)=a−1>1e,所以a>1+1e,故实数a的取值范围是(1+1e,e].4. B 【解析】zln yz=x,所以xz=lny−lnz,所以lny=xz+lnz,所以ln yx =lny−lnx=xz+lnz−lnx=xz+ln zx,令zx =t,则ln yx=1t+lnt,又因为z2≤x≤ez,所以12≤xz≤e,即t∈[1e ,2],令ln yx=1t+lnt=f(t),则fʹ(t)=t−1t2,令fʹ(t)=0即t=1,又因为1e≤t≤2,所以t∈[1e,1]时fʹ(t)<0,f(t)单调减,t∈[1,2]时fʹ(t)>0,f(t)单调增,所以t=1时f(t)取极小值,即f(1)=1,f(2)=12+ln2,f(1e)=e+ln1e=e−1f(1e )−f(2)=e−ln2−32>e−lne−32=e−52>0,所以f(t)最大值为e−1,所以f(t)∈[1,e−1],高中数学资料共享群QQ群号:734924357所以ln yx∈[1,e−1].5. A【解析】由ln∣x∣−ax2+32=0得ax2=ln∣x∣+32,因为x≠0,所以方程等价为a=ln∣x∣+32x2,设f(x)=ln∣x∣+32x2,则函数f(x)是偶函数,当x>0时,f(x)=lnx+32x2,则fʹ(x)=1x⋅x2−(lnx+32)⋅2xx4=x−2xlnx−3xx4=−2x(1+lnx)x4,由fʹ(x)>0得−2x(1+lnx)>0,得1+lnx<0,即lnx<−1,得0<x<1e,此时函数单调递增,由fʹ(x)<0得−2x(1+lnx)<0,得1+lnx>0,即lnx>−1,得x>1e,此时函数单调递减,即当 x >0 时,x =1e 时,函数 f (x ) 取得极大值 f (1e)=ln 1e +32(1e)2=(−1+32)e 2=12e 2, 作出函数f (x ) 的图象如图:要使 a =ln∣x∣+32x 2,有 4 个不同的交点,则满足 0<a <12e 2.6. D 【解析】提示:令 fʹ(x )=2sinx ⋅e x =0,得 x =kπ,易知当 x =2kπ(k ∈Z ),1≤k ≤1007 时 f (x ) 取到极小值,故各极小值之和为f (2π)+f (4π)+⋯+f (2014π)=−(e 2π+e 4π+⋯+e 2014π)=−e 2π(1−e 2014π)1−e 2π.7. A 【解析】因为 f (x )=x (fʹ(x )−lnx ), 所以 xfʹ(x )−f (x )=xlnx , 所以xfʹ(x )−f (x )x 2=lnx x,所以 [f (x )x]ʹ=lnxx,令 F (x )=f (x )x ,则 Fʹ(x )=lnx x,f (x )=xF (x ),所以 fʹ(x )=F (x )+xFʹ(x )=F (x )+lnx , 所以 fʺ(x )=Fʹ(x )+1x=lnx+1x,因为 x ∈(0,1e ),fʺ(x )<0,fʹ(x ) 单减,x ∈(1e ,+∞),fʺ(x )>0,fʹ(x ) 单增,所以 fʹ(x )≥fʹ(1e )=F (1e )+ln 1e =ef (1e )−1=0,所以 fʹ(x )≥0,所以 f (x ) 在 (0,+∞) 上单增,因为 e ⋅f (e x )<fʹ(1e )+1,fʹ(1e )=−1+e ⋅f (1e )=0, 所以 e ⋅f (e x )<1, 所以 f (e x )<1e ,所以 f (e x )<f (1e ), 所以 0<e x <1e ,所以不等式的解集为 x <−1. 8. A 9. C 【解析】因为 fʹ(x )=1−(1+lnx )x 2=−lnx x 2,所以 f (x ) 在 (0,1) 上单调递增,在 (1,,+∞) 上单调递减,当 a >0 时,f 2(x )+af (x )>0⇔f (x )<−a 或 f (x )>0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a =0 时,f 2(x )+af (x )>0⇔f (x )≠0,此时不等式 f 2(x )+af (x )>0 有无数个整数解,不符合题意;当 a <0 时,f 2(x )+af (x )>0⇔f (x )<0 或 f (x )>−a ,要使不等式 f 2(x )+af (x )>0 恰有两个整数解,必须满足 f (3)≤−a <f (2),得 −1+ln22<a ≤−1+ln33.10. B【解析】因为 f (x )=x +xlnx ,所以 f (x )−m (x −1)>0 对任意 x >1 恒成立,即 m (x −1)<x +xlnx , 因为 x >1,也就是 m <x⋅lnx+x x−1对任意 x >1 恒成立.令 ℎ(x )=x⋅lnx+x x−1,则 ℎʹ(x )=x−lnx−2(x−1)2,令 φ(x )=x −lnx −2(x >1),则 φʹ(x )=1−1x=x−1x>0,所以函数 φ(x ) 在 (1,+∞) 上单调递增.因为 φ(3)=1−ln3<0,φ(4)=2−2ln2>0,所以方程 φ(x )=0 在 (1,+∞) 上存在唯一实根 x 0,且满足 x 0∈(3,4). 当 1<x <x 0 时,φ(x )<0,即 ℎʹ(x )<0, 当 x >x 0 时,φ(x )>0,即 ℎʹ(x )>0,所以函数 ℎ(x ) 在 (1,x 0) 上单调递减,在 (x 0,+∞) 上单调递增. 所以 [ℎ(x )]min =ℎ(x 0)=x 0(1+x 0−2)x 0−1=x 0∈(3,4).所以 m <[g (x )]min =x 0,因为 x 0∈(3,4),故整数 m 的最大值是 3. 11. D 【解析】函数 f (x )={xln (1+x )+x 2,x ≥0−xln (1−x )+x 2,x <0, 将 x 换为 −x ,函数值不变,即有 f (x ) 图象关于 y 轴对称,即 f (x ) 为偶函数,有 f (−x )=f (x ),当 x ≥0 时,f (x )=xln (1+x )+x 2 的导数为 fʹ(x )=ln (1+x )+x 1+x+2x ≥0,则 f (x ) 在 [0,+∞) 递增,f (−a )+f (a )≤2f (1),即为 2f (a )≤2f (1), 可得 f (∣a∣)≤f (1),可得 ∣a∣≤1,解得 −1≤a ≤1.12. D 【解析】由题意,可知 f (x )−log 2016x 是定值,不妨令 t =f (x )−log 2016x ,则 f (x )=log 2016x +t ,又 f (t )=2017,所以 log 2016t +t =2017⇒t =2016,即 f (x )=log 2016x +2016,则 fʹ(x )=1xln2016,显然当x ∈(0,+∞) 时,有 fʹ(x )>0,即函数 f (x ) 在 (0,+∞) 上为单调递增,又 20.5>1>log π3>log 43,所以 f (20.5)>f (log π3)>f (log 43). 13. D 【解析】当 x ≥1 时,f (x )=lnx ≥0, 所以 f (x )+1≥1,所以 f [f (x )+1]=ln (f (x )+1),当 x <1,f (x )=1−x2>12,f (x )+1>32,f [f (x )+1]=ln (f (x )+1),综上可知:F[f(x)+1]=ln(f(x)+1)+m=0,则f(x)+1=e−m,f(x)=e−m−1,有两个根x1,x2,(不妨设x1<x2),当x≥1是,lnx2=e−m−1,当x<1时,1−x12=e−m−1,令t=e−m−1>12,则lnx2=t,x2=e t,1−x12=t,x1=2−2t,所以x1x2=e t(2−2t),t>12,设g(t)=e t(2−2t),t>12,求导gʹ(t)=−2te t,t∈(12,+∞),gʹ(t)<0,函数g(t)单调递减,所以g(t)<g(12)=√e,所以g(x)的值域为(−∞,√e),所以x1x2取值范围为(−∞,√e).14. A 【解析】当x<0时,f(x)=(x+1)e x,可得fʹ(x)=(x+2)e x,可知x∈(−∞,−2),函数是减函数,x∈(−2,0)函数是增函数,f(−2)=−1e2,f(−1)=0,且x→0时,f(x)→1,又f(x)是定义在R上的奇函数,f(0)=0,而x∈(−∞,−1)时,f(x)<0,所以函数的图象如图:令t=f(x)则f(t)=m,由图象可知:当t∈(−1,1)时,方程f(x)=t至多3个根,当t∉(−1,1)时,方程没有实数根,而对于任意m∈R,方程f(t)=m至多有一个根,t∈(−1,1),从而函数F(x)=f(f(x))−m的零点个数至多有3个.15. D【解析】函数g(x)=f(x)−ax在区间(0,3]上有三个零点即函数f(x)=∣lnx∣与y=ax在区间(0,3]上有三个交点.画图如下.当 a ≤0 时,显然,不合乎题意,当 a >0 时,由图知,当 x ∈(0,1] 时,存在一个交点,当 x >1 时,f (x )=lnx ,可得 g (x )=lnx −ax (x ∈(1,3]),gʹ(x )=1x−a =1−ax x,若 gʹ(x )<0,可得 x >1a,g (x ) 为减函数,若 gʹ(x )>0,可得 x <1a,g (x ) 为增函数,此时 y =f (x ) 与 y =ax 必须在 [1,3] 上有两个交点,即 y =g (x ) 在 [1,3] 上有两个零点,所以 {g (1a)>0,g (3)≤0,g (1)≤0,解得ln33≤a <1e,故函数 g (x )=f (x )−ax 在区间 (0,3] 上有三个零点时,ln33≤a <1e.16. A 【解析】因为函数 f (x ) 是偶函数, 所以 f (x +1)=f (3−x )=f (x −3).所以 f (x +4)=f (x ),即函数 f (x ) 是周期为 4 的周期函数. 因为 f (2015)=f (4×504−1)=f (−1)=f (1)=2, 所以 f (1)=2. 设 g (x )=f (x )e x,则 gʹ(x )=fʹ(x )e x −f (x )e xe 2x=fʹ(x )−f (x )e x<0,所以 g (x ) 在 R 上单调递减. 不等式 f (x )<2e x−1 等价于 f (x )e x<2e,即 g (x )<g (1),所以 x >1,所以不等式 f (x )<2e x−1 的解集为 (1,+∞). 17. C 【解析】构造函数 g (x )=f (x )e x,则函数求导得 gʹ(x )=fʹ(x )−f (x )e x.由已知 fʹ(x )>f (x ),所以 gʹ(x )>0,即 g (x ) 在实数范围内单调递增, 所以 g (ln2)<g (ln3),即f (ln2)e ln2<f (ln3)e ln3,解得 3f (ln2)<2f (ln3).18. A 【解析】由题意,fʹ(x )=x 2+ax +2b ,因为 fʹ(x ) 是开口朝上的二次函数,所以 {fʹ(0)>0fʹ(1)<0fʹ(2)>0,得 {b >0,a +a +2b <0,2+a +b >0, 由此可画出可行域,如图,b−2a−1表示可行域内的点 (a,b ) 和点 P (1,2) 连线的斜率,显然 PA 的斜率最小,PC 的斜率最大.19. B 【解析】令 y =xe x ,则 yʹ=(1+x )e x ,由 yʹ=0,得 x =−1,当 x ∈(−∞,−1) 时,yʹ<0,函数 y 单调递减,当 x ∈(−1,∞) 时,yʹ>0 函数单调递增.做出 y =xe x 图象,利用图象变换得 f (x )=∣xe x ∣ 图象(如图),令 f (x )=m ,则关于 m 方程 ℎ(m )=m 2−tm +1=0 两根分别在 (0,1e ),(1e ,+∞) 时(如图),满足 g (x )=−1 的 x 有 4 个,由 ℎ(1e )=1e 2−1e t +1<0 解得 t >e 2+1e.20. C【解析】根据题意,对任意的x∈(0,+∞),都有f[f(x)−log2x]=3,又由f(x)是定义在(0,+∞)上的单调函数,则f(x)−log2x为定值,设t=f(x)−log2x,则f(x)=log2x+t,又由f(t)=3,即log2t+t=3,解可得,t=2;则f(x)=log2x+2,fʹ(x)=1ln2⋅x,将f(x)=log2x+2,fʹ(x)=1ln2⋅x代入f(x)−fʹ(x)=2,可得log2x+2−1ln2⋅x=2,即log2x−1ln2⋅x=0,令ℎ(x)=log2x−1ln2⋅x,分析易得ℎ(1)=−1ln2<0,ℎ(2)=1−12ln2>0,则ℎ(x)=log2x−1ln2⋅x的零点在(1,2)之间,则方程log2x−1ln2⋅x=0,即f(x)−fʹ(x)=2的根在(1,2)上.21. A 【解析】当x≤0时,由y=√1+9x2得y2−9x2=1(x≤0),此时对应的曲线为双曲线,双曲线的渐近线为y=−3x,此时渐近线的斜率k1=−3,当x>0时,f(x)=1+xe x−1,当过原点的直线和f(x)相切时,设切点为(a,1+ae a−1),函数的导数fʹ(x)=e x−1+xe x−1=(x+1)e x−1,则切线斜率k2=fʹ(a)=(a+1)e a−1,则对应的切线方程为y−(1+ae a−1)=(1+a)e a−1(x−a),即y=(1+a)e a−1(x−a)+1+ae a−1,当x=0,y=0时,(1+a)e a−1(−a)+1+ae a−1=0,即a2e a−1+ae a−1=1+ae a−1,即a2e a−1=1,得a=1,此时切线斜率k2=2,则切线和y=−3x的夹角为θ,则tanθ=∣∣−3−21−2×3∣∣=55=1,则θ=π4,故∠AOB(O为坐标原点)的取值范围是(0,π4).22. C 【解析】由题意可知,因为 f (x )=x 3−x 2+a 在区间 [0,a ] 存在 x 1,x 2 (a <x 1<x 2<b),满足 fʹ(x 1)=fʹ(x 2)=f (a )−f (0)a=a 2−a ,因为 f (x )=x 3−x 2+a , 所以 fʹ(x )=3x 2−2x ,所以方程 3x 2−2x =a 2−a 在区间 (0,a ) 有两个不相等的解. 令 g (x )=3x 2−2x −a 2+a ,(0<x <a ). 则 {Δ=4−12(−a 2+a )>0,g (0)=−a 2+a >0,g (a )=2a 2−a >0,0<16<a. 解得:12<a <1.所以实数 a 的取值范围是 (12,1). 23. C 【解析】当 m <0 时,函数 f (x ) 的图象为开口向下的抛物线,所以在 x >0 时,f (x )>0 不恒成立. 函数 g (x )=mx 当 x >0 时,g (x )<0. 所以不满足题意.当 m =0 时,f (x )=−8x +1,g (x )=0,不满足题意. 当 m >0 时,需 f (x )>0 在 x <0 时恒成立,所以令 Δ<0 或 {Δ≥0,−b2a ≥0,f (0)>0,即 4(4−m )2−8m <0 或 {4(4−m )2−8m ≥0,4−m 2m≥0.解得 2<m <8 或 0<m ≤2.综合得:0<m <8.24. A 【解析】若 a <0,由于一次函数 y =ax +b 单调递减,不能满足且 e x+1≥ax +b 对 x ∈R 恒成立,则 a ≥0. 若 a =0,则 ab =0.若 a >0,由 e x+1≥ax +b 得 b ≤e x+1−ax ,则 ab ≤ae x+1−a 2x . 设函数 f (x )=ae x+1−a 2x ,所以 fʹ(x )=ae x+1−a 2=a (e x+1−a ),令 fʹ(x )=0 得 e x+1−a =0,解得 x =lna −1,因为 x <lna −1 时,x +1<lna ,则 e x+1<a ,则 e x+1−a <0, 所以 fʹ(x )<0,所以函数 f (x ) 递减;同理,x >lna −1 时,fʹ(x )>0,所以函数 f (x ) 递增;所以当 x =lna −1 时,函数取最小值,f (x ) 的最小值为 f (lna −1)=2a 2−a 2lna .设 g (a )=2a 2−a 2lna (a >0),gʹ(a )=a (3−2lna )(a >0),由 gʹ(a )=0 得 a =e 32,不难得到 a <e 32时,gʹ(a )>0;a >e 32时,gʹ(a )<0;所以函数 g (a ) 先增后减,所以 g (a ) 的最大值为 g (e 32)=12e 3,即 ab 的最大值是 12e 3,此时 a=e 32,b =12e 32.25. D【解析】构造函数 g (x )=x 2f (x ),gʹ(x )=x(2f (x )+xfʹ(x )), 当 x >0 时,因为 2f (x )+xfʹ(x )>0, 所以 gʹ(x )>0,所以g(x)在(0,+∞)上单调递增,因为不等式(x+2016)f(x+2016)5<5f(5)x+2016,所以x+2016>0时,即x>−2016时,(x+2016)2f(x+2016)<52f(5),所以g(x+2016)<g(5),所以x+2016<5,所以−2016<x<−2011.26. C 【解析】S=(x−a)2+(lnx−a24)2(a∈R),其几何意义为:两点(x,lnx),(a,a 24)的距离的平方,由y=lnx的导数为yʹ=1x,所以k=1x1,点(a,a24)在曲线y=14x2上,所以yʹ=12x,所以k=12x2,令f(x)=lnx,g(x)=14x2,则D(x)=√(x1−x2)2+[f(x1)−g(x2)]2+g(x2)+1,而g(x2)+1是抛物线y=14x2上的点到准线y=−1的距离,即抛物线y=14x2上的点到焦点(0,1)的距离,则D可以看作抛物线上的点(x2,g(x2))到焦点距离和到f(x)=lnx上的点的距离的和,即∣AF∣+∣AB∣,由两点之间线段最短,得D最小值是点F(0,1)到f(x)=lnx上的点的距离的最小值,由点到直线上垂线段最短,这样就最小,即取B(x0,lnx0),则fʹ(x0)⋅lnx0−1x0=−1,垂直,则 lnx 0−1=−x 02,解得 x 0=1,所以 F 到 B (1,0) 的距离就是点 F (0,1) 到 f (x )=lnx 上的点的距离的最小值, 所以 D 的最小值为 ∣DF ∣=√2.27. D 【解析】定义在 R 上的函数 y =f (x ) 满足:函数 y =f (x +1) 的图象关于直线 x =−1 对称,可知函数 f (x ) 是偶函数, 所以 y =xf (x ) 是奇函数,又因为当 x ∈(−∞,0) 时,f (x )+xfʹ(x )<0 成立(fʹ(x ) 是函数 f (x ) 的导函数),所以函数 y =xf (x ) 在 R 上既是奇函数又是减函数; 0.76∈(0,1),60.6<912∈(2,4),log 1076≈log 1.56∈(4,6).所以 a >c >b .28. A 【解析】由 x 2(lny −lnx )−ay 2=0(x,y >0),可得:a =ln y x (y x)2,令y x=t >0,所以 a =lnt t2,设 g (t )=lnt t2,gʹ(t )=1t×t 2−2tlnt t 4=1−2lnt t 3.令 gʹ(t )>0.解得 0<t <√e ,此时函数 g (t ) 单调递增; 令 gʹ(t )<0.解得 t >√e ,此时函数 g (t ) 单调递减.又t>1时,g(t)>0;1>t>0时,g(t)<0.可得函数g(t)的图象.因此当a∈(0,12e )时,存在两个正数,使得a=lntt2成立,即对任意的正数x,都存在两个不同的正数y,使x2(lny−lnx)−ay2=0成立.29. C 【解析】函数f(x)=x3−6x2+9x,导数为f′(x)=3x2−12x+9=3(x−1)(x−3),可得f(x)的极值点为1,3,由f(0)=0,f(1)=4,f(3)=0,f(4)=4,可得f(x)在[0,4]的值域为[0,4];g(x)=13x3−a+1 2x2+ax−13(a>1),导数为g′(x)=x2−(a+1)x+a=(x−1)(x−a),当1<x<a时,g′(x)<0,g(x)递减;当x<1或x>a时,g′(x)> 0,g(x)递增.由g(0)=−13,g(1)=12(a−1),g(a)=−16a3−12a2−13>−13,g(4)=13−4a,当3≤a≤4时,13−4a≤12(a−1),g(x)在[0,4]的值域为[−13,12(a−1)],由对任意的x1∈[0,4],总存在x2∈[0,4],使得f(x1)=g(x2),可得[0,4]⊆[−13,12(a−1)],即有4≤12(a−1),解得a≥9不成立;当1<a<3时,13−4a>12(a−1),g(x)在[0,4]的值域为[−13,13−4a],由题意可得[0,4]⊆[−13,13−4a],即有4≤13−4a,解得a≤94,即为1<a≤94;当 a >4 时,可得 g (1) 取得最大值,g (4)<−3 为最小值,即有 [0,4]⊆[13−4a,12(a −1)],可得 13−4a ≤0,4≤12(a −1),即 a ≥134,且 a ≥9,解得 a ≥9.综上可得,a 的取值范围是 (1,94]∪[9,+∞).30. A【解析】因为函数 f (2−x )=f (x ) 可得图象关于直线 x =1 对称,且函数为偶函数则其周期为 T =2, 又因为 fʹ(x )=1x −1=1−x x,当 x ∈[1,2] 时有 fʹ(x )≤0,则函数在 x ∈[1,2]为减函数,作出其函数图象如图所示:其中 k OA =ln2−16,k OB =ln2−18,当 x <0 时 , 要使符合题意则 m ∈(ln2−16,ln2−18),根据偶函数的对称性,当 x >0 时,要使符合题意则 m ∈(1−ln28,1−ln26).综上所述,实数 m 的取值范围为 (1−ln28,1−ln26)∪(ln2−16,ln2−18).31. A 【解析】因为 f (x )={e x ,x ≥0ax,x <0,所以 f (−x )={−ax,x >01,x =0e −x ,x <0. 显然 x =0 是方程 f (−x )=f (x ) 的一个根, 当 x >0 时,e x =−ax, ⋯⋯① 当 x <0 时,e −x =ax, ⋯⋯②显然,若 x 0 为方程 ① 的解,则 −x 0 为方程 ② 的解, 即方程 ①,② 含有相同个数的解, 因为方程 f (−x )=f (x ) 有五个不同的根, 所以方程 ① 在 (0,+∞) 上有两解,。
函数与导数高考压轴题选一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.62.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b224.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.25.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.函数与导数高考压轴题选参考答案与试题解析一.选择题共2小题1.2013安徽已知函数fx=x3+ax2+bx+c有两个极值点x1,x2,若fx1=x1<x2,则关于x的方程3fx2+2afx+b=0的不同实根个数为A.3 B.4 C.5 D.6解答解:∵函数fx=x3+ax2+bx+c有两个极值点x1,x2,∴f′x=3x2+2ax+b=0有两个不相等的实数根,∴△=4a2﹣12b>0.解得=.∵x1<x2,∴,.而方程3fx2+2afx+b=0的△1=△>0,∴此方程有两解且fx=x1或x2.不妨取0<x1<x2,fx1>0.①把y=fx向下平移x1个单位即可得到y=fx﹣x1的图象,∵fx1=x1,可知方程fx=x1有两解.②把y=fx向下平移x2个单位即可得到y=fx﹣x2的图象,∵fx1=x1,∴fx1﹣x2<0,可知方程fx=x2只有一解.综上①②可知:方程fx=x1或fx=x2.只有3个实数解.即关于x的方程3fx2+2afx+b=0的只有3不同实根.故选:A.2.2012福建函数fx在a,b上有定义,若对任意x1,x2∈a,b,有则称fx在a,b上具有性质P.设fx在1,3上具有性质P,现给出如下命题:①fx在1,3上的图象是连续不断的;②fx2在1,上具有性质P;③若fx在x=2处取得最大值1,则fx=1,x∈1,3;④对任意x1,x2,x3,x4∈1,3,有fx1+fx2+fx3+fx4其中真命题的序号是A.①②B.①③C.②④D.③④解答解:在①中,反例:fx=在1,3上满足性质P,但fx在1,3上不是连续函数,故①不成立;在②中,反例:fx=﹣x在1,3上满足性质P,但fx2=﹣x2在1,上不满足性质P,故②不成立;在③中:在1,3上,f2=f≤,∴,故fx=1,∴对任意的x1,x2∈1,3,fx=1,故③成立;在④中,对任意x1,x2,x3,x4∈1,3,有=≤≤=fx1+fx2+fx3+fx4,∴fx1+fx2+fx3+fx4,故④成立.故选D.二.选择题共1小题3.2012新课标设函数fx=的最大值为M,最小值为m,则M+m=2.解答解:函数可化为fx==,令,则为奇函数,∴的最大值与最小值的和为0.∴函数fx=的最大值与最小值的和为1+1+0=2.即M+m=2.故答案为:2.三.选择题共23小题4.2014陕西设函数fx=lnx+,m∈R.Ⅰ当m=ee为自然对数的底数时,求fx的极小值;Ⅱ讨论函数gx=f′x﹣零点的个数;Ⅲ若对任意b>a>0,<1恒成立,求m的取值范围.解答解:Ⅰ当m=e时,fx=lnx+,∴f′x=;∴当x∈0,e时,f′x<0,fx在0,e上是减函数;当x∈e,+∞时,f′x>0,fx在e,+∞上是增函数;∴x=e时,fx取得极小值为fe=lne+=2;Ⅱ∵函数gx=f′x﹣=﹣﹣x>0,令gx=0,得m=﹣x3+xx>0;设φx=﹣x3+xx>0,∴φ′x=﹣x2+1=﹣x﹣1x+1;当x∈0,1时,φ′x>0,φx在0,1上是增函数,当x∈1,+∞时,φ′x<0,φx在1,+∞上是减函数;∴x=1是φx的极值点,且是极大值点,∴x=1是φx的最大值点,∴φx的最大值为φ1=;又φ0=0,结合y=φx的图象,如图;可知:①当m>时,函数gx无零点;②当m=时,函数gx有且只有一个零点;③当0<m<时,函数gx有两个零点;④当m≤0时,函数gx有且只有一个零点;综上,当m>时,函数gx无零点;当m=或m≤0时,函数gx有且只有一个零点;当0<m<时,函数gx有两个零点;Ⅲ对任意b>a>0,<1恒成立,等价于fb﹣b<fa﹣a恒成立;设hx=fx﹣x=lnx+﹣xx>0,则hb<ha.∴hx在0,+∞上单调递减;∵h′x=﹣﹣1≤0在0,+∞上恒成立,∴m≥﹣x2+x=﹣+x>0,∴m≥;对于m=,h′x=0仅在x=时成立;∴m的取值范围是,+∞.5.2013新课标Ⅱ已知函数fx=e x﹣lnx+mΙ设x=0是fx的极值点,求m,并讨论fx的单调性;Ⅱ当m≤2时,证明fx>0.解答Ⅰ解:∵,x=0是fx的极值点,∴,解得m=1.所以函数fx=e x﹣lnx+1,其定义域为﹣1,+∞.∵.设gx=e x x+1﹣1,则g′x=e x x+1+e x>0,所以gx在﹣1,+∞上为增函数,又∵g0=0,所以当x>0时,gx>0,即f′x>0;当﹣1<x<0时,gx<0,f′x<0.所以fx在﹣1,0上为减函数;在0,+∞上为增函数;Ⅱ证明:当m≤2,x∈﹣m,+∞时,lnx+m≤lnx+2,故只需证明当m=2时fx>0.当m=2时,函数在﹣2,+∞上为增函数,且f′﹣1<0,f′0>0.故f′x=0在﹣2,+∞上有唯一实数根x0,且x0∈﹣1,0.当x∈﹣2,x0时,f′x<0,当x∈x0,+∞时,f′x>0,从而当x=x0时,fx取得最小值.由f′x0=0,得,lnx0+2=﹣x0.故fx≥=>0.综上,当m≤2时,fx>0.6.2013四川已知函数,其中a是实数,设Ax1,fx1,Bx2,fx2为该函数图象上的点,且x1<x2.Ⅰ指出函数fx的单调区间;Ⅱ若函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;Ⅲ若函数fx的图象在点A,B处的切线重合,求a的取值范围.解答解:I当x<0时,fx=x+12+a,∴fx在﹣∞,﹣1上单调递减,在﹣1,0上单调递增;当x>0时,fx=lnx,在0,+∞单调递增.II∵x1<x2<0,∴fx=x2+2x+a,∴f′x=2x+2,∴函数fx在点A,B处的切线的斜率分别为f′x1,f′x2,∵函数fx的图象在点A,B处的切线互相垂直,∴,∴2x1+22x2+2=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣2x1+2=2x2+2=1,即,时等号成立.∴函数fx的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.III当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数fx在点Ax1,fx1,处的切线方程为,即.当x2>0时,函数fx在点Bx2,fx2处的切线方程为,即.函数fx的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln2x1+2在区间﹣1,0上单调递减,∴ax1=在﹣1,0上单调递减,且x1→﹣1时,ln2x1+2→﹣∞,即﹣ln2x1+2→+∞,也即ax1→+∞.x1→0,ax1→﹣1﹣ln2.∴a的取值范围是﹣1﹣ln2,+∞.7.2013湖南已知函数fx=.Ⅰ求fx的单调区间;Ⅱ证明:当fx1=fx2x1≠x2时,x1+x2<0.解答解:Ⅰ易知函数的定义域为R.==,当x<0时,f′x>0;当x>0时,f′x<0.∴函数fx的单调递增区间为﹣∞,0,单调递减区间为0,+∞.Ⅱ当x<1时,由于,e x>0,得到fx>0;同理,当x>1时,fx<0.当fx1=fx2x1≠x2时,不妨设x1<x2.由Ⅰ可知:x1∈﹣∞,0,x2∈0,1.下面证明:x∈0,1,fx<f﹣x,即证<.此不等式等价于.令gx=,则g′x=﹣xe﹣x e2x﹣1.当x∈0,1时,g′x<0,gx单调递减,∴gx<g0=0.即.∴x∈0,1,fx<f﹣x.而x2∈0,1,∴fx2<f﹣x2.从而,fx1<f﹣x2.由于x1,﹣x2∈﹣∞,0,fx在﹣∞,0上单调递增,∴x1<﹣x2,即x1+x2<0.8.2013辽宁已知函数fx=1+xe﹣2x,gx=ax++1+2xcosx,当x∈0,1时,I求证:;II若fx≥gx恒成立,求实数a的取值范围.解答I证明:①当x∈0,1时,1+xe﹣2x≥1﹣x1+xe﹣x≥1﹣xe x,令hx=1+xe﹣x﹣1﹣xe x,则h′x=xe x﹣e﹣x.当x∈0,1时,h′x≥0,∴hx在0,1上是增函数,∴hx≥h0=0,即fx≥1﹣x.②当x∈0,1时,e x≥1+x,令ux=e x﹣1﹣x,则u′x=e x﹣1.当x∈0,1时,u′x≥0,∴ux在0,1单调递增,∴ux≥u0=0,∴fx.综上可知:.II解:设Gx=fx﹣gx=≥=.令Hx=,则H′x=x﹣2sinx,令Kx=x﹣2sinx,则K′x=1﹣2cosx.当x∈0,1时,K′x<0,可得H′x是0,1上的减函数,∴H′x≤H′0=0,故Hx在0,1单调递减,∴Hx≤H0=2.∴a+1+Hx≤a+3.∴当a≤﹣3时,fx≥gx在0,1上恒成立.下面证明当a>﹣3时,fx≥gx在0,1上不恒成立.fx﹣gx≤==﹣x.令vx==,则v′x=.当x∈0,1时,v′x≤0,故vx在0,1上是减函数,∴vx∈a+1+2cos1,a+3.当a>﹣3时,a+3>0.∴存在x0∈0,1,使得vx0>0,此时,fx0<gx0.即fx≥gx在0,1不恒成立.综上实数a的取值范围是﹣∞,﹣3.9.2013陕西已知函数fx=e x,x∈R.Ⅰ若直线y=kx+1与f x的反函数gx=lnx的图象相切,求实数k的值;Ⅱ设x>0,讨论曲线y=f x 与曲线y=mx2m>0公共点的个数.Ⅲ设a<b,比较与的大小,并说明理由.解答解:I函数fx=e x的反函数为gx=lnx,∴.设直线y=kx+1与gx的图象相切于点Px0,y0,则,解得,k=e﹣2, ∴k=e﹣2.II当x>0,m>0时,令fx=mx2,化为m=,令hx=,则,则x∈0,2时,h′x<0,hx单调递减;x∈2,+∞时,h′x>0,hx单调递增.∴当x=2时,hx取得极小值即最小值,.∴当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为0;当时,曲线y=f x 与曲线y=mx2m>0公共点的个数为1;当时,曲线y=f x 与曲线y=mx2m>0公共点个数为2.Ⅲ===,令gx=x+2+x﹣2e x x>0,则g′x=1+x﹣1e x.g′′x=xe x>0,∴g′x在0,+∞上单调递增,且g′0=0,∴g′x>0,∴gx在0,+∞上单调递增,而g0=0,∴在0,+∞上,有gx>g0=0.∵当x>0时,gx=x+2+x﹣2e x>0,且a<b,∴,即当a<b时,.10.2013湖北设n是正整数,r为正有理数.Ⅰ求函数fx=1+x r+1﹣r+1x﹣1x>﹣1的最小值;Ⅱ证明:;Ⅲ设x∈R,记x为不小于x的最小整数,例如.令的值.参考数据:.解答解;Ⅰ由题意得f'x=r+11+x r﹣r+1=r+11+x r﹣1,令f'x=0,解得x=0.当﹣1<x<0时,f'x<0,∴fx在﹣1,0内是减函数;当x>0时,f'x>0,∴fx在0,+∞内是增函数.故函数fx在x=0处,取得最小值为f0=0.Ⅱ由Ⅰ,当x∈﹣1,+∞时,有fx≥f0=0,即1+x r+1≥1+r+1x,且等号当且仅当x=0时成立,故当x>﹣1且x≠0,有1+x r+1>1+r+1x,①在①中,令这时x>﹣1且x≠0,得.上式两边同乘n r+1,得n+1r+1>n r+1+n r r+1,即,②当n>1时,在①中令这时x>﹣1且x≠0,类似可得,③且当n=1时,③也成立.综合②,③得,④Ⅲ在④中,令,n分别取值81,82,83, (125)得,,,…,将以上各式相加,并整理得.代入数据计算,可得由S的定义,得S=211.11.2012辽宁设fx=lnx+1++ax+ba,b∈R,a,b为常数,曲线y=fx与直线y=x在0,0点相切.I求a,b的值;II证明:当0<x<2时,fx<.解答I解:由y=fx过0,0,∴f0=0,∴b=﹣1∵曲线y=fx与直线在0,0点相切.∴y′|x=0=∴a=0;II证明:由I知fx=lnx+1+由均值不等式,当x>0时,,∴①令kx=lnx+1﹣x,则k0=0,k′x=,∴kx<0∴lnx+1<x,②由①②得,当x>0时,fx<记hx=x+6fx﹣9x,则当0<x<2时,h′x=fx+x+6f′x﹣9<<=∴hx在0,2内单调递减,又h0=0,∴hx<0∴当0<x<2时,fx<.12.2012福建已知函数fx=axsinx﹣a∈R,且在上的最大值为,1求函数fx的解析式;2判断函数fx在0,π内的零点个数,并加以证明.解答解:I由已知得f′x=asinx+xcosx,对于任意的x∈0,,有sinx+xcosx>0,当a=0时,fx=﹣,不合题意;当a<0时,x∈0,,f′x<0,从而fx在0,单调递减,又函数在上图象是连续不断的,故函数在上上的最大值为f0=﹣,不合题意;当a>0时,x∈0,,f′x>0,从而fx在0,单调递增,又函数在上图象是连续不断的,故函数在上上的最大值为f==,解得a=1,综上所述,得II函数fx在0,π内有且仅有两个零点.证明如下:由I知,,从而有f0=﹣<0,f=>0,又函数在上图象是连续不断的,所以函数fx在0,内至少存在一个零点,又由I知fx在0,单调递增,故函数fx在0,内仅有一个零点.当x∈,π时,令gx=f′x=sinx+xcosx,由g=1>0,gπ=﹣π<0,且gx在,π上的图象是连续不断的,故存在m∈,π,使得gm=0.由g′x=2cosx﹣xsinx,知x∈,π时,有g′x<0,从而gx在,π上单调递减.当x∈,m,gx>gm=0,即f′x>0,从而fx在,m内单调递增故当x∈,m时,fx>f=>0,从而x在,m内无零点;当x∈m,π时,有gx<gm=0,即f′x<0,从而fx在,m内单调递减.又fm>0,fπ<0且fx在m,π上的图象是连续不断的,从而fx在m,π内有且仅有一个零点.综上所述,函数fx在0,π内有且仅有两个零点.13.2012湖北设函数fx=ax n1﹣x+bx>0,n为正整数,a,b为常数,曲线y=fx在1,f1处的切线方程为x+y=1Ⅰ求a,b的值;Ⅱ求函数fx的最大值;Ⅲ证明:fx<.解答解:Ⅰ因为f1=b,由点1,b在x+y=1上,可得1+b=1,即b=0.因为f′x=anx n﹣1﹣an+1x n,所以f′1=﹣a.又因为切线x+y=1的斜率为﹣1,所以﹣a=﹣1,即a=1,故a=1,b=0.Ⅱ由Ⅰ知,fx=x n1﹣x,则有f′x=n+1x n﹣1﹣x,令f′x=0,解得x=在0,上,导数为正,故函数fx是增函数;在,+∞上导数为负,故函数fx是减函数;故函数fx在0,+∞上的最大值为f=n1﹣=,Ⅲ令φt=lnt﹣1+,则φ′t=﹣=t>0在0,1上,φ′t<0,故φt单调减;在1,+∞,φ′t>0,故φt单调增;故φt在0,+∞上的最小值为φ1=0,所以φt>0t>1则lnt>1﹣,t>1,令t=1+,得ln1+>,即ln1+n+1>lne所以1+n+1>e,即<由Ⅱ知,fx≤<,故所证不等式成立.14.2012湖南已知函数fx=e x﹣ax,其中a>0.1若对一切x∈R,fx≥1恒成立,求a的取值集合;2在函数fx的图象上取定点Ax1,fx1,Bx2,fx2x1<x2,记直线AB的斜率为K,证明:存在x0∈x1,x2,使f′x0=K恒成立.解答解:1f′x=e x﹣a,令f′x=0,解可得x=lna;当x<lna,f′x<0,fx单调递减,当x>lna,f′x>0,fx单调递增,故当x=lna时,fx取最小值,flna=a﹣alna,对一切x∈R,fx≥1恒成立,当且仅当a﹣alna≥1,①令gt=t﹣tlnt,则g′t=﹣lnt,当0<t<1时,g′t>0,gt单调递增,当t>1时,g′t<0,gt单调递减,故当t=1时,gt取得最大值,且g1=1,因此当且仅当a=1时,①式成立,综上所述,a的取值的集合为{1}.2根据题意,k==﹣a,令φx=f′x﹣k=e x﹣,则φx1=﹣﹣x2﹣x1﹣1,φx2=﹣x1﹣x2﹣1,令Ft=e t﹣t﹣1,则F′t=e t﹣1,当t<0时,F′t<0,Ft单调递减;当t>0时,F′t>0,Ft单调递增,则Ft的最小值为F0=0,故当t≠0时,Ft>F0=0,即e t﹣t﹣1>0,从而﹣x2﹣x1﹣1>0,且>0,则φx1<0,﹣x1﹣x2﹣1>0,>0,则φx2>0,因为函数y=φx在区间x1,x2上的图象是连续不断的一条曲线,所以存在x0∈x1,x2,使φx0=0, 即f′x0=K成立.15.2012四川已知a为正实数,n为自然数,抛物线与x轴正半轴相交于点A,设fn为该抛物线在点A处的切线在y轴上的截距.Ⅰ用a和n表示fn;Ⅱ求对所有n都有成立的a的最小值;Ⅲ当0<a<1时,比较与的大小,并说明理由.解答解:Ⅰ∵抛物线与x轴正半轴相交于点A,∴A对求导得y′=﹣2x∴抛物线在点A处的切线方程为,∴∵fn为该抛物线在点A处的切线在y轴上的截距,∴fn=a n;Ⅱ由Ⅰ知fn=a n,则成立的充要条件是a n≥2n3+1即知,a n≥2n3+1对所有n成立,特别的,取n=2得到a≥当a=,n≥3时,a n>4n=1+3n≥1+=1+2n3+>2n3+1当n=0,1,2时,∴a=时,对所有n都有成立∴a的最小值为;Ⅲ由Ⅰ知fk=a k,下面证明:首先证明:当0<x<1时,设函数gx=xx2﹣x+1,0<x<1,则g′x=xx﹣当0<x<时,g′x<0;当时,g′x>0故函数gx在区间0,1上的最小值gx min=g=0∴当0<x<1时,gx≥0,∴由0<a<1知0<a k<1,因此,从而=≥=>=16.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=fx﹣hx,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程log4fx﹣1﹣=log2ha﹣x﹣log2h4﹣x;Ⅲ试比较f100h100﹣与的大小.解答解:Ⅰ由Fx=fx﹣hx=x+﹣x≥0知,F′x=,令F′x=0,得x=.当x∈0,时,F′x<0;当x∈,+∞时,F′x>0.故x∈0,时,Fx是减函数;故x∈,+∞时,Fx是增函数.Fx在x=处有极小值且F=.Ⅱ原方程可化为log4x﹣1+log2 h4﹣x=log2ha﹣x,即log2x﹣1+log2=log2,①当1<a≤4时,原方程有一解x=3﹣;②当4<a<5时,原方程有两解x=3;③当a=5时,原方程有一解x=3;④当a≤1或a>5时,原方程无解.Ⅲ设数列{a n}的前n项和为s n,且s n=fngn﹣从而有a1=s1=1.当2<k≤100时,a k=s k﹣s k﹣1=,a k﹣=4k﹣3﹣4k﹣1==>0.即对任意的2<k≤100,都有a k>.又因为a1=s1=1,所以a1+a2+a3+…+a100>=h1+h2+…+h100.故f100h100﹣>.17.2011陕西设函数fx定义在0,+∞上,f1=0,导函数f′x=,gx=fx+f′x.Ⅰ求gx的单调区间和最小值;Ⅱ讨论gx与的大小关系;Ⅲ是否存在x0>0,使得|gx﹣gx0|<对任意x>0成立若存在,求出x0的取值范围;若不存在请说明理由.解答解:Ⅰ由题设易知fx=lnx,gx=lnx+,∴g′x=,令g′x=0,得x=1,当x∈0,1时,g′x<0,故gx的单调递减区间是0,1,当x∈1,+∞时,g′x>0,故gx的单调递增区间是1,+∞,因此x=1是gx的唯一极值点,且为极小值点,从而是最小值点,∴最小值为g1=1;Ⅱ=﹣lnx+x,设hx=gx﹣=2lnx﹣x+,则h′x=,当x=1时,h1=0,即gx=,当x∈0,1∪1,+∞时,h′x<0,h′1=0,因此,hx在0,+∞内单调递减,当0<x<1,时,hx>h1=0,即gx>,当x>1,时,hx<h1=0,即gx<,Ⅲ满足条件的x0 不存在.证明如下:证法一假设存在x0>0, 使|gx﹣gx0|<成立,即对任意x>0,有,但对上述x0,取时, 有Inx1=gx0,这与左边不等式矛盾,因此,不存在x0>0,使|gx﹣gx0|<成立.证法二假设存在x0>0,使|gx﹣gx0|成<立.由Ⅰ知,的最小值为gx=1.又>Inx,而x>1 时,Inx 的值域为0,+∞,∴x≥1 时,gx 的值域为1,+∞,从而可取一个x1>1,使gx1≥gx0+1,即gx1﹣gx0≥1,故|gx1﹣gx0|≥1>,与假设矛盾.∴不存在x0>0,使|gx﹣gx0|<成立.18.2011四川已知函数fx=x+,hx=.Ⅰ设函数Fx=18fx﹣x2hx2,求Fx的单调区间与极值;Ⅱ设a∈R,解关于x的方程lg fx﹣1﹣=2lgha﹣x﹣2lgh4﹣x;Ⅲ设n∈N n,证明:fnhn﹣h1+h2+…+hn≥.解答解:ⅠFx=18fx﹣x2hx2=﹣x3+12x+9x≥0所以F′x=﹣3x2+12=0,x=±2且x∈0,2时,F′x>0,当x∈2,+∞时,F′x<0所以Fx在0,2上单调递增,在2,+∞上单调递减.故x=2时,Fx有极大值,且F2=﹣8+24+9=25.Ⅱ原方程变形为lgx﹣1+2lg=2lg,,①当1<a<4时,原方程有一解x=3﹣,②当4<a<5时,原方程有两解x=3±,③当a=5时,原方程有一解x=3,④当a≤1或a>5时,原方程无解.Ⅲ由已知得h1+h2+…+hn=,fnhn﹣=,从而a1=s1=1,当k≥2时,a n=s n﹣s n﹣1=,又===>0即对任意的k≥2,有,又因为a1=1=,所以a1+a2+…+a n≥,则s n≥h1+h2+…+hn,故原不等式成立.19.2010四川设,a>0且a≠1,gx是fx的反函数.Ⅰ设关于x的方程求在区间2,6上有实数解,求t的取值范围;Ⅱ当a=e,e为自然对数的底数时,证明:;Ⅲ当0<a≤时,试比较||与4的大小,并说明理由.解答解:1由题意,得a x=>0故gx=,x∈﹣∞,﹣1∪1,+∞由得t=x﹣127﹣x,x∈2,6则t′=﹣3x2+18x﹣15=﹣3x﹣1x﹣5列表如下:x 2 2,5 5 5,6 6t' + ﹣t 5 递增极大值32 递减25所以t最小值=5,t最大值=32所以t的取值范围为5,325分Ⅱ=ln=﹣ln令uz=﹣lnz2﹣=﹣2lnz+z﹣,z>0则u′z=﹣=1﹣2≥0所以uz在0,+∞上是增函数又因为>1>0,所以u>u1=0即ln>0即9分3设a=,则p≥1,1<f1=≤3,当n=1时,|f1﹣1|=≤2<4,当n≥2时,设k≥2,k∈N时,则fk=,=1+所以1<fk≤1+,从而n﹣1<≤n﹣1+=n+1﹣<n+1,所以n<<f1+n+1≤n+4,综上所述,总有|﹣n|<4.20.2010全国卷Ⅱ设函数fx=1﹣e﹣x.Ⅰ证明:当x>﹣1时,fx≥;Ⅱ设当x≥0时,fx≤,求a的取值范围.解答解:1当x>﹣1时,fx≥当且仅当e x≥1+x令gx=e x﹣x﹣1,则g'x=e x﹣1当x≥0时g'x≥0,gx在0,+∞是增函数当x≤0时g'x≤0,gx在﹣∞,0是减函数于是gx在x=0处达到最小值,因而当x∈R时,gx≥g0时,即e x≥1+x 所以当x>﹣1时,fx≥2由题意x≥0,此时fx≥0当a<0时,若x>﹣,则<0,fx≤不成立;当a≥0时,令hx=axfx+fx﹣x,则fx≤当且仅当hx≤0因为fx=1﹣e﹣x,所以h'x=afx+axf'x+f'x﹣1=afx﹣axfx+ax﹣fxi当0≤a≤时,由1知x≤x+1fxh'x≤afx﹣axfx+ax+1fx﹣fx=2a﹣1fx≤0,hx在0,+∞是减函数,hx≤h0=0,即fx≤ii当a>时,由i知x≥fxh'x=afx﹣axfx+ax﹣fx≥afx﹣axfx+afx﹣fx=2a﹣1﹣axfx当0<x<时,h'x>0,所以h'x>0,所以hx>h0=0,即fx>综上,a的取值范围是0,21.2010陕西已知函数fx=,gx=alnx,a∈R,Ⅰ若曲线y=fx与曲线y=gx相交,且在交点处有共同的切线,求a的值和该切线方程;Ⅱ设函数hx=fx﹣gx,当hx存在最小值时,求其最小值φa的解析式;Ⅲ对Ⅱ中的φa和任意的a>0,b>0,证明:φ′≤≤φ′.解答解:Ⅰf'x=,g'x=有已知得解得:a=,x=e2∴两条曲线的交点坐标为e2,e切线的斜率为k=f'e2=∴切线的方程为y﹣e=x﹣e2Ⅱ由条件知hx=﹣alnxx>0,∴h′x=﹣=,①当a>0时,令h′x=0,解得x=4a2.∴当0<x<4a2时,h′x<0,hx在0,4a2上单调递减;当x>4a2时,h′x>0,hx在4a2,+∞上单调递增.∴x=4a2是hx在0,+∞上的惟一极值点,且是极小值点,从而也是hx的最小值点.∴最小值φa=h4a2=2a﹣aln4a2=2a1﹣ln 2a.②当a≤0时,h′x=>0,hx在0,+∞上单调递增,无最小值.故hx的最小值φa的解析式为φa=2a1﹣ln 2aa>0.Ⅲ证明:由Ⅱ知φ′a=﹣2ln2a对任意的a>0,b>0=﹣=﹣ln4ab,①φ′=﹣2ln2×=﹣lna+b2≤﹣ln4ab,②φ′=﹣2ln2×=﹣2ln=﹣ln4ab,③故由①②③得φ′≤≤φ′.22.2009全国卷Ⅱ设函数fx=x2+aln1+x有两个极值点x1、x2,且x1<x2,Ⅰ求a的取值范围,并讨论fx的单调性;Ⅱ证明:fx2>.解答解:I令gx=2x2+2x+a,其对称轴为.由题意知x1、x2是方程gx=0的两个均大于﹣1的不相等的实根,其充要条件为,得1当x∈﹣1,x1时,f'x>0,∴fx在﹣1,x1内为增函数;2当x∈x1,x2时,f'x<0,∴fx在x1,x2内为减函数;3当x∈x2,+∞时,f'x>0,∴fx在x2,+∞内为增函数;II由Ig0=a>0,∴,a=﹣2x22+2x2∴fx2=x22+aln1+x2=x22﹣2x22+2x2ln1+x2设hx=x2﹣2x2+2xln1+x,﹣<x<0则h'x=2x﹣22x+1ln1+x﹣2x=﹣22x+1ln1+x1当时,h'x>0,∴hx在单调递增;2当x∈0,+∞时,h'x<0,hx在0,+∞单调递减.∴故.23.2009湖北在R上定义运算:b、c∈R是常数,已知f1x=x2﹣2c,f2x=x﹣2b,fx=f1xf2x.①如果函数fx在x=1处有极值,试确定b、c的值;②求曲线y=fx上斜率为c的切线与该曲线的公共点;③记gx=|f′x|﹣1≤x≤1的最大值为M,若M≥k对任意的b、c恒成立,试求k的取值范围.参考公式:x3﹣3bx2+4b3=x+bx﹣2b2解答解:①依题意,解得或.若,,′x=﹣x2+2x﹣1=﹣x﹣12≤0fx在R上单调递减,在x=1处无极值;若,,f′x=﹣x2﹣2x+3=﹣x﹣1x+3,直接讨论知,fx在x=1处有极大值,所以为所求.②解f′t=c得t=0或t=2b,切点分别为0,bc、,相应的切线为y=cx+bc或.解得x=0或x=3b;解即x3﹣3bx2+4b3=0得x=﹣b或x=2b.综合可知,b=0时,斜率为c的切线只有一条,与曲线的公共点只有0,0,b≠0时,斜率为c的切线有两条,与曲线的公共点分别为0,bc、3b,4bc和、.③gx=|﹣x﹣b2+b2+c|.若|b|>1,则f′x在﹣1,1是单调函数,M=max{|f′﹣1|,|f′1|}={|﹣1+2b+c|,|﹣1﹣2b+c|},因为f′1与f′﹣1之差的绝对值|f′1﹣f′﹣1|=|4b|>4,所以M>2.若|b|≤1,f′x在x=b∈﹣1,1取极值,则M=max{|f′﹣1|,|f′1|,|f′b|},f′b﹣f′±1=b12.若﹣1≤b<0,f′1≤f′﹣1≤f′b;若0≤b≤1,f′﹣1≤f′1≤f′b,M=max{|f′﹣1|,|f′b|}=.当b=0,时,在﹣1,1上的最大值.所以,k的取值范围是.24.2009湖北已知关于x的函数fx=﹣x3+bx2+cx+bc,其导函数为f′x.令gx=|f′x|,记函数gx 在区间﹣1、1上的最大值为M.Ⅰ如果函数fx在x=1处有极值﹣,试确定b、c的值:Ⅱ若|b|>1,证明对任意的c,都有M>2Ⅲ若M≧K对任意的b、c恒成立,试求k的最大值.解答Ⅰ解:∵f'x=﹣x2+2bx+c,由fx在x=1处有极值可得解得,或若b=1,c=﹣1,则f'x=﹣x2+2x﹣1=﹣x﹣12≤0,此时fx没有极值;若b=﹣1,c=3,则f'x=﹣x2﹣2x+3=﹣x+3x﹣1当x变化时,fx,f'x的变化情况如下表:x ﹣∞,﹣3 ﹣3 ﹣3,1 11,+∞f'x ﹣0 + 0 ﹣↘fx ↘极小值﹣12 ↗极大值∴当x=1时,fx有极大值,故b=﹣1,c=3即为所求.Ⅱ证法1:gx=|f'x|=|﹣x﹣b2+b2+c|当|b|>1时,函数y=f'x的对称轴x=b位于区间﹣之外.∴f'x在﹣1,1上的最值在两端点处取得故M应是g﹣1和g1中较大的一个,∴2M≥g1+g﹣1=|﹣1+2b+c|+|﹣1﹣2b+c|≥|4b|>4,即M>2证法2反证法:因为|b|>1,所以函数y=f'x的对称轴x=b位于区间﹣1,1之外,∴f'x在﹣1,1上的最值在两端点处取得.故M应是g﹣1和g1中较大的一个假设M≤2,则M=maxg{﹣1,g1,gb}将上述两式相加得:4≥|﹣1﹣2b+c|+|﹣1+2b+c|≥4|b|>4,导致矛盾,∴M>2Ⅲ解法1:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知f'b﹣f'±1=b12≥0;2当|b|≤1时,函数y=f'x的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}由f'1﹣f'﹣1=4b,有f'b﹣f'±1=b12≥0①若﹣1≤b≤0,则f'1≤f'﹣1≤f'b,∴g﹣1≤max{g1,gb},于是②若0<b≤1,则f'﹣1≤f'1≤f'b,∴g1≤maxg﹣1,gb于是综上,对任意的b、c都有而当时,在区间﹣1,1上的最小值故M≥k对任意的b、c恒成立的k的最大值为.解法2:gx=|f'x|=|﹣x﹣b2+b2+c|1当|b|>1时,由Ⅱ可知M>22当|b|≤1y=f'x时,函数的对称轴x=b位于区间﹣1,1内,此时M=max{g﹣1,g1,gb}4M≥g﹣1+g1+2gb=|﹣1﹣2b+c|+|﹣1+2b+c|+2|b2+c|≥|﹣1﹣2b+c+﹣1+2b+c﹣2b2+c|=|2b2+2|≥2, 即下同解法125.2008江苏请先阅读:在等式cos2x=2cos2x﹣1x∈R的两边求导,得:cos2x′=2cos2x﹣1′,由求导法则,得﹣sin2x2=4cosx ﹣sinx,化简得等式:sin2x=2cosxsinx.1利用上题的想法或其他方法,结合等式1+x n=C n0+C n1x+C n2x2+…+C n n x n x∈R,正整数n≥2,证明:.2对于正整数n≥3,求证:i;ii;iii.解答证明:1在等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边对x求导得n1+x n﹣1=C n1+2C n2x+…+n ﹣1C n n﹣1x n﹣2+nC n n x n﹣1移项得2i在式中,令x=﹣1,整理得所以ii由1知n1+x n﹣1=C n1+2C n2x+…+n﹣1C n n﹣1x n﹣2+nC n n x n﹣1,n≥3两边对x求导,得nn﹣11+x n﹣2=2C n2+32C n3x+…+nn﹣1C n n x n﹣2在上式中,令x=﹣1,得0=2C n2+32C n3﹣1+…+nn﹣1C n2﹣1n﹣2即,亦即 1又由i知 2由1+2得iii将等式1+x n=C n0+C n1x+C n2x2+…+C n n x n两边在0,1上对x积分由微积分基本定理,得所以26.2008天津已知函数fx=x4+ax3+2x2+bx∈R,其中a,b∈R.Ⅰ当时,讨论函数fx的单调性;Ⅱ若函数fx仅在x=0处有极值,求a的取值范围;Ⅲ若对于任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,求b的取值范围.解答解:Ⅰf'x=4x3+3ax2+4x=x4x2+3ax+4.当时,f'x=x4x2﹣10x+4=2x2x﹣1x﹣2.令f'x=0,解得x1=0,,x3=2.当x变化时,f'x,fx的变化情况如下表:x ﹣∞,0 02 2,+∞0,,2f′x ﹣0 + 0 ﹣0 +fx ↘极小值↗极大值↘极小值↗所以fx在,2,+∞内是增函数,在﹣∞,0,内是减函数.Ⅱf'x=x4x2+3ax+4,显然x=0不是方程4x2+3ax+4=0的根.为使fx仅在x=0处有极值,必须4x2+3ax+4≥0成立,即有△=9a2﹣64≤0.解些不等式,得.这时,f0=b是唯一极值.因此满足条件的a的取值范围是.Ⅲ由条件a∈﹣2,2,可知△=9a2﹣64<0,从而4x2+3ax+4>0恒成立.当x<0时,f'x<0;当x>0时,f'x>0.因此函数fx在﹣1,1上的最大值是f1与f﹣1两者中的较大者.为使对任意的a∈﹣2,2,不等式fx≤1在﹣1,1上恒成立,当且仅当,即,在a∈﹣2,2上恒成立.所以b≤﹣4,因此满足条件的b的取值范围是﹣∞,﹣4.四.解答题共4小题27.2008福建已知函数fx=ln1+x﹣x1求fx的单调区间;2记fx在区间0,nn∈N上的最小值为b n令a n=ln1+n﹣b ni如果对一切n,不等式恒成立,求实数c的取值范围;ii求证:.解答解:1因为fx=ln1+x﹣x,所以函数定义域为﹣1,+∞,且f′x=﹣1=.由f′x>0得﹣1<x<0,fx的单调递增区间为﹣1,0;由f’x<0得x>0,fx的单调递减区间为0,+∞.2因为fx在0,n上是减函数,所以b n=fn=ln1+n﹣n,则a n=ln1+n﹣b n=ln1+n﹣ln1+n+n=n.i因为对n∈N恒成立.所以对n∈N恒成立.则对n∈N恒成立.设,n∈N,则c<gn对n∈N恒成立.考虑.因为=0,所以gx在1,+∞内是减函数;则当n∈N时,gn随n的增大而减小,又因为=1.所以对一切n∈N,gn>1因此c≤1,即实数c的取值范围是﹣∞,1.ⅱ由ⅰ知.下面用数学归纳法证明不等式n∈N+①当n=1时,左边=,右边=,左边<右边.不等式成立.②假设当n=k时,不等式成立.即.当n=k+1时,<===,即n=k+1时,不等式成立综合①、②得,不等式成立.所以,所以+<+…+=﹣1.即.28.2007福建已知函数fx=e x﹣kx,1若k=e,试确定函数fx的单调区间;2若k>0,且对于任意x∈R,f|x|>0恒成立,试确定实数k的取值范围;3设函数Fx=fx+f﹣x,求证:F1F2…Fn>n∈N.解答解:Ⅰ由k=e得fx=e x﹣ex,所以f'x=e x﹣e.由f'x>0得x>1,故fx的单调递增区间是1,+∞,由f'x<0得x<1,故fx的单调递减区间是﹣∞,1.Ⅱ由f|﹣x|=f|x|可知f|x|是偶函数.于是f|x|>0对任意x∈R成立等价于fx>0对任意x≥0成立.由f'x=e x﹣k=0得x=lnk.①当k∈0,1时,f'x=e x﹣k>1﹣k≥0x>0.此时fx在0,+∞上单调递增.故fx≥f0=1>0,符合题意.②当k∈1,+∞时,lnk>0.当x变化时f'x,fx的变化情况如下表:x 0,lnk lnk lnk,+∞f′x ﹣0 +fx 单调递减极小值单调递增由此可得,在0,+∞上,fx≥flnk=k﹣klnk.依题意,k﹣klnk>0,又k>1,∴1<k<e.综合①,②得,实数k的取值范围是0<k<e.Ⅲ∵Fx=fx+f﹣x=e x+e﹣x,∴Fx1Fx2=,∴F1Fn>e n+1+2,F2Fn﹣1>e n+1+2,FnF1>e n+1+2.由此得,F1F2Fn2=F1FnF2Fn﹣1FnF1>e n+1+2n故,n∈N.29.2006四川已知函数,fx的导函数是f′x.对任意两个不相等的正数x1、x2,证明:Ⅰ当a≤0时,;Ⅱ当a≤4时,|f′x1﹣f′x2|>|x1﹣x2|.解答解:证明:Ⅰ由得=而①又x1+x22=x12+x22+2x1x2>4x1x2∴②∵∴∵a≤0,aln≥aln③由①、②、③得x12+x22++aln>2++aln, 即.Ⅱ证法一:由,得∴=下面证明对任意两个不相等的正数x1,x2,有恒成立即证成立∵设,则,令u′x=0得,列表如下:tu′t ﹣0 +□ut □极小值∴∴对任意两个不相等的正数x1,x2,恒有|f'x1﹣f'x2|>|x1﹣x2|证法二:由,得∴=∵x1,x2是两个不相等的正数∴设,ut=2+4t3﹣4t2t>0则u′t=4t3t﹣2,列表:tu′t ﹣0 +□ut □极小值∴即∴即对任意两个不相等的正数x1,x2,恒有|f′x1﹣f′x2|>|x1﹣x2|30.2006辽宁已知f0x=x n,其中k≤nn,k∈N+,设Fx=C n0f0x2+C n1f1x2+…+C n n f n x2,x∈﹣1,1.1写出f k1;2证明:对任意的x1,x2∈﹣1,1,恒有|Fx1﹣Fx2|≤2n﹣1n+2﹣n﹣1.解答解:1由已知推得f k x=n﹣k+1x n﹣k,从而有f k1=n﹣k+12证法1:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数,所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F1﹣F0F1﹣F0=C n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1=nc n n﹣1+n﹣1c n n﹣2+…+n﹣k+1c n n﹣k+…+2c n1+c n0∵n﹣k+1c n n﹣k=n﹣kc n n﹣k+c n k=nc n﹣1k+c n k k=1,2,3,…,n﹣1F﹣F0=nc n﹣11+c n﹣12+…+c n﹣1k﹣1+c n1+c n2+…+c n n﹣1+c n0=n2n﹣1﹣1+2n﹣1=2n﹣1n+2﹣n﹣1因此结论成立.证法2:当﹣1≤x≤1 时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1又因F1﹣F0=2c n1+3c n2+…+kc n k﹣1+…+nc n n﹣1+c n0所以2F1﹣F0=n+2c n1+c n2+…+c n k﹣1+…+c n n﹣1+2c n0F1﹣F0=c n1+c n2+…+c n k﹣1+…+c n n﹣1+c n0=因此结论成立.证法3:当﹣1≤x≤1时,Fx=x2n+nc n1x2n﹣1+n﹣1c n2x2n﹣2+…+n﹣k+1c n k x2n﹣k+…+2c n n﹣1x2+1 当x>0时,F′x>0所以Fx在0,1上为增函数因函数Fx为偶函数所以Fx在﹣1,0上为减函数所以对任意的x1,x2∈﹣1,1,|Fx1﹣Fx2|≤F﹣F0F﹣F0=c n0+nc n1+n﹣1c n2+…+n﹣k+1c n k+…+2c n n﹣1由x1+x n﹣x n=xc n1x n﹣1+c n2x n﹣2+…+c n k x n﹣k+…+c n n﹣1+1=c n1x n+c n2x n﹣1+…+c n k x n﹣k+1+…+c n n﹣1x2+x对上式两边求导得1+x n﹣x n+nx1+x n﹣1﹣nx n=nc n1x n﹣1+n﹣1c n2x n﹣2+…+n﹣k+1c n k x n﹣k+…+2c n n﹣1x+1Fx=1+x2n+nx21+x2n﹣1﹣nx2n∴F1﹣F0=2n+n2n﹣1﹣n﹣1=n+22n﹣1﹣n﹣1.因此结论成立.。
导数题整理江苏镇江韩雨1.(2017 全国1 理)已知函数f (x)=a e2 x +(a - 2)e x -x .(1)讨论f (x)的单调性;(2)若f (x)有两个零点,求a 的取值范围.2.(2017 全国1 文)已知函数f (x)= e x (e x -a)-a2 x .(1)讨论f (x)的单调性;(2)若f (x) ≥ 0,求a 的取值范围.3.(2017 全国2 理)已知函数f (x)=ax2 -ax -x ln x ,且f (x) 0 .(1)求a ;(2)证明:f (x )存在唯一的极大值点x ,且e-2 <f (x )< 2-2 .0 04.(2017 全国2 文)设函数f (x)=(1-x2 )e x .(1)讨论f (x)的单调性;(2)当x ≥ 0 时,f (x) ≤ax +1,求a 的取值范围.5.(2017 全国 3 理)已知函数 f (x ) = x -1- a ln x .(1)若 f (x ) 0 ,求 a 的值;(2)设m 为整数,且对于任意正整数 n , ⎛1+1 ⎫⎛1+ 1 ⎫ ⎛1+ 1 ⎫< m ,求m 最小值.2 ⎪ 22 ⎪ 2n ⎪ ⎝ ⎭⎝ ⎭ ⎝ ⎭6.(2017 全国 3 文)已知函数 f (x )= ln x + ax 2+ (2a +1) x .(1)讨论 f (x )的单调性; (2)当a < 0 时,证明: f (x ) ≤ -3- 2 4a7.(2016 全国1 理)已知函数(1)求a 的取值范围;f (x) = (x - 2)e x +a(x -1)2 有两个零点.(2)设x1 ,x2是f (x) 的两个零点,求证:x1+x2< 2 .8.(2016 全国2 理)(1)讨论函数f (x) =x - 2e x 的单调性,并证明当x > 0 时,( x - 2)e x +x + 2 > 0; x + 2(2)证明:当a ∈[0,1) h(a) ,求函数h(a) 的值域.时,函数g (x)=ex -ax -ax2(x > 0) 有最小值.设g (x )的最小值为9.(2016 全国2 文)已知函数f (x)=(x +1)ln x -a (x -1).(1)当a = 4时,求曲线y =f (x)在(1, f (1))处的切线方程;(2)若当x ∈(1, +∞)时,f (x)> 0 ,求a 的取值范围.10.(2016 全国3 理)设函数f (x) =a cos 2x + (a -1)(cos x+1) ,其中a > 0,记f (x) 的最大值为A .(1)求 f '(x) ;(2)求A ;(3)证明| f '(x) |≤ 2A11.(2015 全国1 理)已知函数f (x)=x3 +ax +1,g (x)=- ln x . 4(1)当a 为何值时,x 轴为曲线y =f (x)的切线;(2)用min {m, n}表示m ,n 中的最小值,设函数h (x)=min{f (x), g (x)}(x >0),讨论h (x )零点的个数.12.(2015 全国1 文)设函数f (x)= e2x -a ln x .(1)讨论f (x)的导函数f '(x)零点的个数;(2)求证:当a > 0 时,f (x) ≥ 2a +a ln 2ax b e13.(2015 全国2 理)设函数f (x)= e mx +x2 -mx .(1)证明:f (x)在(-∞, 0)单调递减,在(0, +∞)单调递增;(2)若对于任意x1 , x2∈[-1,1],都有| f (x1 ) -f (x2 ) |≤e -1,求m 的取值范围.x-114.(2014 全国1 理)设函数f (x )=a e ln x +,曲线y =xf (x )在点(1, f (1))处的切线为y = e(x - 1) + 2 .(1)求a, b ;(2)证明:f (x) > 1.15.(2014 全国1 文)设函数f (x )=a ln x +1 -ax 2 -bx2(a ≠ 1),曲线y = f (x )在点(1, f (1))处的切线斜率为0. (1)求b ;(2)若存在x0≥1,使得f (x )<aa -1,求a 的取值范围.16.(2013 全国1 理)已知函数f (x )=x2 +ax +b ,g (x)= e x (cx +d ) ,若曲线y = 和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2f (x)(1)求a,b,c,d 的值(2)若x ≥-2时,f (x) ≤kg(x),求k 的取值范围.17.(2013 全国2 理)已知函数f (x)= e x - ln (x +m).(1)设x = 0 是f (x)的极值点,求m ,并讨论f (x)的单调性;(2)当m ≤2 时,证明f (x )>0 .18.(2013 全国2 文)已知函数f (x) =x2e-x .(1)求f (x) 的极小值和极大值;(2)当曲线y =f (x) 的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.≠ > +19.(2012 全国 1 理)已知 f (x ) =(1)求 f (x ) 的解析式及单调区间f '(1)e x -1- f (0)x + 1 x 22(2)若 f (x ) ≥ 1x 2+ ax + b ,求(a +1)b 的最大值220.(2011 全国 1 理)已知函数 f (x ) =a ln x + b,曲线 y = f (x ) 在点(1, f (1)) 处的切线方程为 x + 2 y - 3 = 0. (1)求 a ,b 的值;x +1 xln x k (2)如果当 x>0,且 x 1时, f (x ) ,求 k 的取值范围.x -1 x21.(2010 全国1 理)设函数f (x) =e x -1-x -ax2(1)若a = 0 ,求f (x) 单调区间;(2)若当x ≥ 0 时,f (x) ≥ 0,求a 的取值范围22.(2015 山东理)设函数f (x )= ln (x +1)+a (x 2 -x ),其中a ∈R . (1)讨论函数f (x)极值点的个数,并说明理由;(2)若∀x > 0, f (x)≥ 0成立,求a 的取值范围.23.已知函数f ( x) = ( x -1)e x +ax 2 有两个零点x1, x2(Ⅰ)当a = 1时,求f ( x) 的最小值;(Ⅱ)求a 的取值范围;(Ⅲ)设x1, x2 是f ( x) 的两个零点,证明:x1 +x2 < 0 .24.已知函数 f (x) = ln x - 2ax +1(a ∈R)(Ⅰ)讨论函数g( x) =x2 +f ( x) 的单调性;(Ⅱ)若a =1,证明:| f ( x) -1 |>1nx+1 2 x 225. 已知函数 f (x ) = ax - ln x .(1)过原点O 作函数 f ( x ) 图象的切线,求切点的横坐标;(2)对∀x ∈[1,+∞),不等式 f ( x ) ≥ a (2x - x 2 ) 恒成立,求实数a 的取值范围.26. 已知函数 f ( x ) =ln x .x(I)求函数 f ( x ) 的极值;(II)当0 < x < e 时 : 证明 f (e + x ) > f (e - x )(III)设函数 f ( x ) 的图像与直线 y = m 的两个交点分别为 A ( x 1, f ( x 1 )) ,B ( x 1, f ( x 1 )) AB 的中点的横坐标为 x 0 证明: f '( x 0 ) < 00 1 27. 已知函数 f (x ) = 2 l n x + x 2 - ax + 2(a ∈ R ) .(Ⅰ)讨论函数 f (x ) 的单调性;(Ⅱ)若存在 x 0 ∈ (0,1],使得对任意的 a ∈[-2, 0) ,不等式f (x ) > a 2 + 3a + 2 - 2me a(a +1) (其中e 是自然对数的底数)都成立,求实数 m 的取值范围.28. 已知函数 f ( x ) = ln x + 1x 2- 2ax .其中 a ∈ R .2(I )讨论函数 f ( x ) 的单调性;(II)已知函数 g ( x ) =m ln x + m 其中 xm > 0若对任意a ∈[ ,1] 2存在 x 1, x 2 ∈[1, e ] 使得| f ( x 1) - g ( x 2 ) |< 1 成立,求实数 m 的取值范围。
导数压轴题(1)一.解答题(共21小题)1.(2011•黑龙江一模)巳知函数f(x)=x2﹣2ax﹣2alnx(x>0,a∈R,g(x)=ln2x+2a2+.(1)证明:当a>0时,对于任意不相等的两个正实数x1、x2,均有>f()成立;(2)记h(x)=,(i)若y=h′(x)在[1,+∞)上单调递增,求实数a的取值范围;(ii)证明:h(x)≥.2.设函数.(Ⅰ)求f(x)的单调区间;(Ⅱ)如果对任何x≥0,都有f(x)≤ax,求a的取值范围.3.已知函数f(x)=(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)设g(x)=x2+2x+3,证明:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2).4.已知函数f(x)=ax2﹣(2a+1)x+lnx,a∈R,(I)讨论函数f(x)的单调性;(II)设a<﹣1,证明:对任意x1,x2∈(2,+∞),|f (x1)﹣f(x2)|≥2|x1﹣x2|.5.(2012•天津)已知函数f(x)=x﹣ln(x+a)的最小值为0,其中a>0.(1)求a的值;(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;(3)证明:(n∈N*).6.(2014•陕西)设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值范围.7.(2014•河南)设函数f(x)=ae x lnx+,曲线y=f(x)在点(1,f(1))处得切线方程为y=e(x﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f(x)>1.(Ⅰ)当a>0时,求函数f(x)的单调区间;(Ⅱ)函数F(x)=f(x)﹣xlnx在定义域内是否存在零点?若存在,请指出有几个零点;若不存在,请说明理由;(Ⅲ)若f(x)≥0对任意x≥0恒成立,求a的取值范围.9.(2014•重庆一模)已知函数f(x)=tx﹣t﹣lnx(t>0).(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数t 的取值范围;(Ⅱ)当n≥2且n∈N*时,证明:.10.(2014•钟祥市模拟)已知函数f(x)=e x﹣1﹣ax,(a∈R).(Ⅰ)求函数y=f(x)的单调区间;(Ⅱ)试探究函数F(x)=f(x)﹣xlnx在定义域内是否存在零点,若存在,请指出有几个零点;若不存在,请说明理由.(Ⅲ)若g(x)=ln(e x﹣1)﹣lnx,且f(g(x))<f (x)在x∈(0,+∞)上恒成立,求实数a的取值范围.11.(2014•资阳二模)已知函数f(x)=ke x﹣x2(其中k∈R,e是自然对数的底数).(Ⅰ)若k<0,试判断函数f(x)在区间(0,+∞)上的单调性;(Ⅱ)若k=2,当x∈(0,+∞)时,试比较f(x)与2的大小;(Ⅲ)若函数f(x)有两个极值点x1,x2(x1<x2),求k的取值范围,并证明0<f(x1)<1.12.(2014•张掖一模)已知函数f(x)=lnx,g(x)=+bx﹣1,(1)当a=0且b=1时,证明:对∀x>0,f(x)≤g(x);(2)若b=2,且h(x)=f(x)﹣g(x)存在单调递减区间,求a的取值范围;(3)数列{a n},若存在常数M>0,∀n∈N*,都有a n<M,则称数列{a n}有上界.已知b n=1++…+,试判断数列{b n}是否有上界.13.(2014•张掖模拟)已知函数f(x)=[ax2+(a﹣1)2x﹣a2+3a﹣1]e x(a∈R).(Ⅰ)若函数f(x)在(2,3)上单调递增,求实数a 的取值范围;(Ⅱ)若a=0,设g(x)=+lnx﹣x,斜率为k的直线与曲线y=g(x)交于A(x1,y1),B(x2,y2)(其中x1<x2)两点,证明:(x1+x2)k>2.14.(2014•宜昌二模)已知函数f(x)=.(1)当a=1,求函数y=f(x)的图象在x=0处的切线方程;(2)若函数f(x)在(0,1)上单调递增,求实数a(3)已知x,y,z均为正实数,且x+y+z=1,求证:++≤0.15.(2014•阳泉二模)已知函数f(x)=21nx+ax2﹣1 (a∈R)(I)求函数f(x)的单调区间;(Ⅱ)若a=1,试解答下列两小题.(i)若不等式f(1+x)+f(1﹣x)<m对任意的0<x<l恒成立,求实数m的取值范围;(ii)若x1,x2是两个不相等的正数,且以f(x1)+f (x2)=0,求证:x1+x2>2.16.(2014•信阳一模)已知m∈R,函数f(x)=(x2+mx+m)•e x.(Ⅰ)当m<2时,求函数f(x)的极大值;(Ⅱ)当m=0时,求证:f(x)≥x2+x3.17.(2014•乌鲁木齐一模)已知函数f(x)=e x﹣e﹣x(xϵR)(Ⅰ)求证:当x≥0时,;(Ⅱ)试讨论函数H(x)=f(x)﹣ax(x∈R)的零点个数.18.(2014•文登市二模)已知函数f(x)=ax2﹣(2a+1)x+2lnx(a>0).(Ⅰ)若a=,求f(x)在[1,3]上的最大值;(Ⅱ)若a≠,求函数f(x)的单调区间;(Ⅲ)当<a<1时,判断函数f(x)在区间[1,2]上有无零点?写出推理过程.19.(2014•潍坊模拟)已知函数f(x)=ax+lnx,函数g (x)的导函数g′(x)=e x,且g(0)g′(1)=e,其中e为自然对数的底数.(Ⅰ)求f(x)的极值;(Ⅱ)若∃x∈(0,+∞),使得不等式成立,试求实数m的取值范围;(Ⅲ)当a=0时,对于∀x∈(0,+∞),求证:f(x)<g (x)﹣2.20.(2014•太原二模)设函数f(x)=x2+aln(x+1)(a 为常数)(Ⅰ)若函数y=f(x)在区间[1,+∞)上是单凋递增函数,求实数a的取值范围;(Ⅱ)若函数y=f(x)有两个极值点x1,x2,且x1<x2,求证:.21.(2014•深圳一模)已知函数.(1)求f(x)在上的最大值;(2)若直线y=﹣x+2a为曲线y=f(x)的切线,求实数a的值;(3)当a=2时,设,且x1+x2+…+x14=14,若不等式f(x1)+f(x2)+…+f(x14)≤λ恒成立,求实数λ的最小值.参考答案与试题解析(1)首先分别求出与f();然后通过作差法或基本不等式等知识比较两代数式中部分的大小;最后得出两代数式整体的大小.(2)(i)首先求出h(x)及其导函数h′(x);然后根据y=h′(x)在[1,+∞)上单调递增,得y=h′(x)的导函数大于等于0恒成立,则利用分离参数的方法可得关于a的不等式a≥﹣x2+lnx﹣1(x≥1)恒成立;再运用导数法求出﹣x2+lnx﹣1的最大值,此时a≥[﹣x2+lnx﹣1]max即可.(ii)首先把h(x)表示成a为主元的函数h(x)=a2﹣(x+lnx)a+(x2+ln2x)+;然后利用配方法得P(a)=a2﹣(x+lnx)a+(x2+ln2x)=(a﹣)2+≥;再通过构造函数Q(x)=x﹣lnx,并由导数法求其最小值进而得P(a)的最小值;最后得h(x)的最小值,即问题得证.解答:(1)证明:由题意得,=﹣a(x1+x2)﹣aln(x1x2),f()=﹣a(x1+x2)﹣2aln=﹣a(x1+x2)﹣aln∵﹣=>0(x1≠x2),∴>①又∵0<x1x2<∴lnx1x2<ln∵a>0∴﹣alnx1x2>﹣aln②由①②知>f().(2)(i)解:h(x)==x2﹣ax ﹣alnx+ln2x+a2+.∴h′(x)=x﹣a﹣+令F(x)=h′(x)=x﹣a﹣+,则y=F(x)在[1,+∞)上单调递增.∴F′(x)=,则当x≥1时,x2﹣lnx+a+1≥0恒成立.即x≥1时,a≥﹣x2+lnx﹣1恒成立.令G(x)=﹣x2+lnx﹣1,则当x≥1时,G′(x)=<0.∴G(x)=﹣x2+lnx﹣1在[1,+∞)上单调递减,从而G(x)max=G(1)=﹣2.故a≥G(x)max=﹣2.即a的取值范围是[﹣2,+∞).(ii)证明::h(x)=x2﹣ax﹣alnx+ln2x+a2+=a2﹣(x+lnx)a+(x2+ln2x)+.令P(a)=a2﹣(x+lnx)a+(x2+ln2x),则P(a)=(a﹣)2+≥.令Q(x)=x﹣lnx,则Q′(x)=1﹣=.显然Q(x)在(0,1)上单调递减,在(1,+∞)上单调递增,则Q(x)min=Q(1)=1,则P(a)≥.故h(x)≥+=.解:(Ⅰ).(2分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g(x)=ax﹣f(x),则==.故当时,g'(x)≥0.又g(0)=0,所以当x≥0时,g(x)≥g(0)=0,即f(x)≤ax.(9分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0时,有.因此,a的取值范围是.(12分)法二:(Ⅱ)应用洛必达法则和导数sin()2cosxf x axx=≤+若0x=,则a R∈;若0x>,则sin2cosxaxx≤+等价于sin(2cos)xax x≥+,即sin()(2cos)xg xx x=+则222cos2sin sin cos'()(2cos)x x x x x xg xx x--+=+.记()2cos2sin sin cosh x x x x x x x=--+,2'()2cos2sin2cos cos212sin cos212sin2sin2sin(sin) h x x x x x xx x x x x x x x x=---+=--+=-=-】因此,当(0,)xπ∈时,'()0h x<,()h x在(0,)π上单调递减,且(0)0h=,故'()0g x<,所以()g x在(0,)π上单调递减,而000sin cos1lim()lim lim(2cos)2+cos sin3x x xx xg xx x x x x→→→===+-.另一方面,当[,)xπ∈+∞时,sin111()(2cos)3xg xx x xπ=≤≤<+,因此13a≥.解答:解:(Ⅰ)∵f′(x)==设,则>0,∴h(x)在(1,+∞)是增函数,又h(2)=0,∴当x∈(1,2)时,h(x)<0,则f′(x)<0,f(x)是单调递减函数;当x∈(2,+∞)时,h(x)>0,则f′(x)>0,f(x)是单调递增函数.综上知:f(x)在(1,2)单调递减函数,f(x)在(2,+∞)单调递增函数.(Ⅱ)对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)恒成立,等价于f(x)>g(x)min恒成立,而g(x)min=2,即证f(x)>2恒成立.等价于﹣2>0,也就是证[ln(x﹣1)+﹣2]>0设G(x)=ln(x﹣1)+﹣2,G′(x)=﹣=≥0∴G(x)在(1,+∞)单调递增函数,又G(2)=0∴当x∈(1,2)时,G(x)<0,则[ln(x﹣1)+﹣2]>0当x∈(2,+∞)时,G(x)>0,则[ln(x﹣1)+﹣2]>0综上可得:对任意x1∈(1,2)∪(2,+∞),总存在x2∈R,使得f(x1)>g(x2)分(Ⅰ)求出函数定义域及导数f′(x)=,分①a=0,②0<a<,③a=,④a>,⑤a<0五种情况进行讨论解不等式f′(x)>0,f′(x)<0,解出不等式即为单调区间;(Ⅱ)证明不等式|f(x1)﹣f(x2)|≥2|x1﹣x2|,即≥2,可证明|f′(x)|≥2,利用导数可转化为函数的最值问题证明;解答:解:(Ⅰ)函数的定义域为(0,+∞).f′(x)=2ax﹣(2a+1)+==,①若a=0,则f′(x)=,当0<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减;②若0<a<,令f′(x)>0,得0<x<1或x>,令f′(x)<0,得1<x<,所以f(x)在(0,1),(,+∞)上递增,在(1,)上递减;③若a=,f′(x)=≥0,f(x)在(0,+∞)上单调递增;令f′(x)>0,得0<x<,或x>1,令f′(x)<0,得<x<1,所以f(x)在(0,),(1,+∞)上单调递增,在(,1)上单调递减;⑤若a<0,令f′(x)>0,得0<x<1,令f′(x)<0,得x>1,所以f(x)在(0,1)上递增,在(1,+∞)上递减;综上,a=0时,f(x)在(0,1)上单调递增,在(1,+∞)上递减;0<a<时,f(x)在(0,1),(,+∞)上递增,在(1,)上递减;a=时,f(x)在(0,+∞)上单调递增;a>时,f(x)在(0,),(1,+∞)上单调递增,在(,1)上单调递减;a<0时,f(x)在(0,1)上递增,在(1,+∞)上递减;(Ⅱ)|f(x1)﹣f(x2)|≥2|x1﹣x2|,即≥2,所以有|f′(x)|≥2.所以证明对任意x1,x2∈(2,+∞),|f(x1)﹣f (x2)|≥2|x1﹣x2|,≥2对任意x∈(2,+∞)成立,也即证明2a≤(x>2),令g(x)=(x>2),则g′(x)=,当x>2时,g′(x)>0,所以g(x)在(2,+∞)上单调递增,g(x)>g(2)=﹣,而a<﹣1时,2a<﹣2,所以2a<﹣<g(x),即2a≤(x>2)成立.故a<﹣1时,对任意x1,x2∈(2,+∞),|f(x1)﹣f(x2)|≥2|x1﹣x2|.分析:(1)确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数f(x)=x﹣ln(x+a)的最小值为0,即可求得a的值;(2)当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意;当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数,令g′(x)=0,可得x1=0,,分类讨论:①当k≥时,,g(x)在(0,+∞)上单调递减,g(x)≤g(0)=0;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,,由此可确定k的最小值;(3)当n=1时,不等式左边=2﹣ln3<2=右边,不等式成立;当n≥2时,,在(2)中,取k=,得f(x)≤x2,从而可得,由此可证结论.(1)解:函数的定义域为(﹣a,+∞),求导函数可得令f′(x)=0,可得x=1﹣a>﹣a令f′(x)>0,x>﹣a可得x>1﹣a;令f′(x)<0,x>﹣a可得﹣a<x<1﹣a∴x=1﹣a时,函数取得极小值且为最小值∵函数f(x)=x﹣ln(x+a)的最小值为0,∴f(1﹣a)=1﹣a﹣0,解得a=1(2)解:当k≤0时,取x=1,有f(1)=1﹣ln2>0,故k≤0不合题意当k>0时,令g(x)=f(x)﹣kx2,即g(x)=x﹣ln(x+1)﹣kx2,求导函数可得g′(x)=g′(x)=0,可得x1=0,①当k≥时,,g′(x)<0在(0,+∞)上恒成立,因此g(x)在(0,+∞)上单调递减,从而对任意的x∈[0,+∞),总有g(x)≤g(0)=0,即对任意的x∈[0,+∞),有f(x)≤kx2成立;②当0<k<时,,对于,g′(x)>0,因此g(x)在上单调递增,因此取时,g(x0)≥g(0)=0,即有f(x0)≤kx02不成立;综上知,k≥时对任意的x∈[0,+∞),有f(x)≤kx2成立,k的最小值为(3)证明:当n=1时,不等式左边=2﹣ln3<2=右边,所以不等式成立当n≥2时,在(2)中,取k=,得f(x)≤x2,∴(i≥2,i∈N*).∴=f(2)+<2﹣ln3+=2﹣ln3+1﹣<2综上,(n∈N*).试题分为三问,题面比较简单,给出的函数比较常分(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h(x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值范围.解答:解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x≥0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值范围是[,+∞).7.分析:(Ⅰ)求出定义域,导数f′(x),根据题意有f(1)=2,f′(1)=e,解出即可;(Ⅱ)由(Ⅰ)知,f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,函数h(x)=,只需证明g(x)min>h(x)max,利用导数可分别求得g(x)min,h(x)max;解答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),f′(x)=+,由题意可得f(1)=2,f′(1)=e,故a=1,b=2;(Ⅱ)由(Ⅰ)知,f(x)=e x lnx+,从而f(x)>1等价于xlnx>xe﹣x﹣,设函数g(x)=xlnx,则g′(x)=1+lnx,∴当x∈(0,)时,g′(x)<0;当x∈(,+∞)时,g′(x)>0.故g(x)在(0,)上单调递减,在(,+∞)上单调递增,从而g(x)在(0,+∞)上的最小值为g()=﹣.设函数h(x)=,则h′(x)=e﹣x(1﹣x).∴当x∈(0,1)时,h′(x)>0;当x∈(1,+∞)时,h′(x)<0,故h(x)在(0,1)上单调递增,在(1,+∞)上单调递减,从而h(x)在(0,+∞)上的最大值为h(1)=﹣.综上,当x>0时,g(x)>h(x),即f(x)>1.分(Ⅰ)直接对f(x)求导,当a>0时,f′(x)=e x ﹣a的正负即可确定函数f(x)单调区间;(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=(x>0),研究函数h(x)的单调性和最小值,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)求f(x)的导数,利用导数研究函数f(x)确定f(x)的最值,即可确定实数a的取值范围.解答:解:(Ⅰ)由f(x)=e x﹣ax﹣1,则f′(x)=e x﹣a.由f′(x)>0,得x>lna;由f′(x)<0,得x<lna,所以函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna);(Ⅱ)函数F(x)=f(x)﹣xlnx的定义域为(0,+∞),由F(x)=0,得(x>0)令h(x)=(x>0),则h′(x)=,由于x>0,e x﹣1>0,可知当x>1,h′(x)>0;当0<x<1时,h′(x)<0,故函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故h(x)≥h(1)=e﹣1.又由(Ⅰ)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即,当a>e﹣1时,函数F(x)有两个不同的零点;当a=e﹣1时,函数F(x)有且仅有一个零点;当a<e﹣1时,函数F(x)没有零点.(Ⅲ)由f(x)=e x﹣ax﹣1,则f′(x)=e x﹣a.①当a≤1时,对∀x≥0,有f′(x)>0,所以函数f(x)在区间(0,+∞)上单调递增,又f(0)=0,即f(x)≥f(0)=0对∀x≥0恒成立.②当a>1时,由(Ⅰ),f(x)单调递增区间为(lna,+∞),单调递减区间为(﹣∞,lna),若f(x)≥0对任意x≥0恒成立,只需f(x)min=f(lna)=a﹣alna﹣1≥0,令g(a)=a﹣alna﹣1(a>1),g′(a)=1﹣lna﹣1=﹣lna<0,即g(a)在区间(1,+∞)上单调递减,又g(1)=0,故g(a)<0在(1,+∞)上恒成立,故当a>1时,满足a﹣alna﹣1≥0的a不存在.综上所述,a的取值范围是(﹣∞,1].(Ⅰ)若函数f(x)在[1,+∞)上为增函数,求实数t 的取值范围;(Ⅱ)当n≥2且n∈N*时,证明:.分析:(Ⅰ)由f(x)在[1,+∞)上为增函数,得在x∈[1,+∞)上恒成立,分离参数t后化为函数最值解决;(Ⅱ)由(I)可知当t=1,x≥1时,f(x)≥f(1)=0,从而可得x﹣1≥lnx(当x=1时,等号成立),可证x∈(0,1]时,也有x﹣1≥lnx在(0,1]恒成立,从而有x∈(0,+∞)时,x﹣1≥lnx…①恒成立,(当且仅当x=1时,等号成立),用x代替x﹣1,得x≥ln(x+1)…②恒成立(当且仅当x=0时,等号成立),则k≥2时,k∈N*,由①得k﹣1>lnk,即,由②得.进而可得当k≥2,k∈N*时,,即.令k=2,3,…n,然后把各式累加可得结论;解答:解:(I)函数f(x)=tx﹣t﹣lnx的定义域为(0,+∞).∵f(x)在[1,+∞)上为增函数,∴在x∈[1,+∞)上恒成立,即在x∈[1,+∞)上恒成立,∵,∴t≥1,∴t的取值范围为[1,+∞).(Ⅱ)由(I)当t=1,x≥1时,f(x)≥f(1),又f(1)=0,∴x﹣1﹣lnx≥0(当x=1时,等号成立),即x﹣1≥lnx.又当x∈(0,1]时,设g(x)=x﹣1﹣lnx,则,∴g(x)在(0,1]上递减,∴g(x)≥g(1)=0,即x﹣1≥lnx在(0,1]恒成立,∴x∈(0,+∞)时,x﹣1≥lnx…①恒成立,(当且仅当x=1时,等号成立),用x代替x﹣1,则x≥ln(x+1)…②恒成立(当且仅当x=0时,等号成立),∴当k≥2时,k∈N*,由①得k﹣1>lnk,即,当k≥2时,k∈N*,,由②得.∴当k≥2,k∈N*时,,即.∴,,,….∴.分(Ⅰ)直接对f(x)求导,讨论a≤0和a>0时,f′(x)=e x﹣a的正负即可确定函数f(x)单调区间;(Ⅱ)对F(x)=f(x)﹣xlnx进行化简,构造函数h(x)=,研究函数h(x)的单调性和最小值,从而画出h(x)的简图,即可确定F(x)=f(x)﹣xlnx在定义域内是否存在零点;(Ⅲ)构造函数H(x)=xe x﹣e x+1,(x>0),求其导数,利用导数研究函数H(x)的单调性,从而确定H(x)的最值,可得到H(x)>H(0)=0,然后讨论a的取值即可确定实数a的取值范围.解答:解:(Ⅰ)∵f(x)=e x﹣1﹣ax,(x∈R,a∈R),∴f′(x)=e x﹣a,①当a≤0时,则∀x∈R有f′(x)>0,∴函数f(x)在区间(﹣∞,+∞)单调递增;②当a>0时,f′(x)>0⇒x>lna,f′(x)<0⇒x<lna∴函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).综合①②的当a≤0时,函数f(x)的单调增区间为(﹣∞,+∞);当a>0时,函数f(x)的单调增区间为(lna,+∞),单调减区间为(﹣∞,lna).(Ⅱ)函数F(x)=f(x)﹣xlnx定义域为(0,+∞),又,令h(x)=,则h′(x)=,∴h′(x)>0⇒x>1,h′(x)<0⇒0<x<1,∴函数h(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∴h(x)≥h(1)=e﹣1由(1)知当a=1时,对∀x>0,有f(x)>f(lna)=0,即∴当x>0且x趋向0时,h(x)趋向+∞随着x>0的增长,y=e x﹣1的增长速度越来越快,会超过并远远大于y=x2的增长速度,而y=lnx的增长速度则会越来越慢.故当x>0且x趋向+∞时,h(x)趋向+∞.得到函数h(x)的草图如图所示故①当a>e﹣1时,函数F(x)有两个不同的零点;②当a=e﹣1时,函数F(x)有且仅有一个零点;③当a<e﹣1时,函数F(x)无零点;(Ⅲ)由(2)知当x>0时,e x﹣1>x,故对∀x >0,g(x)>0,先分析法证明:∀x>0,g(x)<x要证∀x>0,g(x)<x只需证即证∀x>0,xe x﹣e x+1>0构造函数H(x)=xe x﹣e x+1,(x>0)∴H′(x)=xe x>0,∀x>0故函数H(x)=xe x﹣e x+1在(0,+∞)单调递增,∴H(x)>H(0)=0,则∀x>0,xe x﹣e x+1>0成立.①当a≤1时,由(1)知,函数f(x)在(0,+∞)单调递增,则f(g(x))<f(x)在x∈(0,+∞)上恒成立.②当a>1时,由(1)知,函数f(x)在(lna,+∞)单调递增,在(0,lna)单调递减,故当0<x<lna时,0<g(x)<x<lna,∴f(g(x))>f(x),则不满足题意.综合①②得,满足题意的实数a的取值范围(﹣∞,1].11解答:解:(Ⅰ)由f′(x)=ke x﹣2x可知,当k<0时,由于x∈(0,+∞),f′(x)=ke x﹣2x<0,故函数f(x)在区间(0,+∞)上是单调递减函数.(Ⅱ)当k=2时,f(x)=2e x﹣x2,则f′(x)=2e x﹣2x,令h(x)=2e x﹣2x,h′(x)=2e x﹣2,由于x∈(0,+∞),故h′(x)=2e x﹣2>0,于是h(x)=2e x﹣2x在(0,+∞)为增函数,所以h(x)=2e x﹣2x>h(0)=2>0,即f′(x)=2e x ﹣2x>0在(0,+∞)恒成立,从而f(x)=2e x﹣x2在(0,+∞)为增函数,故f(x)=2e x﹣x2>f(0)=2.(Ⅲ)函数f(x)有两个极值点x1,x2,则x1,x2是f′(x)=ke x﹣2x=0的两个根,即方程有两个根,设,则,当x<0时,φ′(x)>0,函数φ(x)单调递增且φ(x)<0;当0<x<1时,φ′(x)>0,函数φ(x)单调递增且φ(x)>0;当x>1时,φ′(x)<0,函数φ(x)单调递减且φ(x)>0.要使有两个根,只需.故实数k的取值范围是.又由上可知函数f(x)的两个极值点x1,x2满足0<x1<1<x2,由,得,∴,由于x1∈(0,1),故,(1)把f(x)和g(x)作差后构造辅助函数,然后利用导数求函数的最值,由最值的符号得到要证明的结论;(2)由h(x)=f(x)﹣g(x)存在单调递减区间,得其导函数小于0在定义域内有解,由导函数分离变量a后换元,然后利用配方法求得分离变量后的代数式的值域,则实数a的范围可求;(3)令,则,由(1)得到不等式,累加后可证明数列{b n}无上界.(1)证明:当a=0且b=1时,设g(x)=f(x)﹣g(x)=lnx﹣(x﹣1)=lnx﹣x+1,对∀x>0,,解g′(x)=0,得x=1.当0<x<1时,,g(x)单调递增;当x>1时,,g(x)单调递减,∴g(x)在x=1处取最大值,即∀x>0,g(x)≤g(1)=ln1﹣1+1=0,lnx≤x ﹣1,即f(x)≤g(x);(2)解:当b=2时,h(x)=f(x)﹣g(x)=,∴,∵函数h(x)存在单调递减区间,∴h'(x)<0在(0,+∞)上有解,∴ax2+2x﹣1>0在(0,+∞)上有解,∴在(0,+∞)上有解,即∃x∈(0,+∞),使得,令,则t>0,则y=t2﹣2t=(t﹣1)2﹣1,t>0,当t=1时,ymin=﹣1∴a>﹣1;(3)解:数列{b n}无上界∀n∈N*.设,,由(1)得,,,∴=ln(n+1),∀M>0,取n为任意一个不小于e M的自然数,则,∴数列{b n}无上界.本题考查利用导数研究函数的最值,主要用导函数构造法和数学转化思想方法,解答(3)的关键是借助于(1)的结论得到含有自然数n的不等式,是难度较大的题目.分(Ⅰ)首先求出函数f(x)的导数f'(x),对a讨论,分a≥0,a<0①﹣1<a<0,②a=﹣1,③a<﹣1,分别求出单调区间,再求并集;(Ⅱ)化简a=0时的g(x),由两点的斜率公式写出k,运用分析法证(x1+x2)k>2,注意运用对数的运算法则和同时除以x1的变形,再令,构造函数h(x)=lnx﹣(x>1),求出导数,求出单调区间,运用单调性说明h(x)>0成立即可.解答:解:(Ⅰ)函数f(x)的导数f'(x)=[2ax+(a﹣1)2]•e x+[ax2+(a﹣1)2x+a﹣(a﹣1)2]•e x=[ax2+(a2+1)x+a]•e x,当a≥0时,∵x∈(2,3),∴f'(x)>0,∴f(x)在(2,3)上单调递增,当a<0时,∵f(x)在(2,3)上单调递增,∴f'(x)=a(x+a)(x+)•e x≥0,①当﹣1<a<0时,解得﹣a≤x≤﹣,由题意知(2,3)⊆[﹣a,﹣],得≤a<0,②当a=﹣1时,f'(x)=﹣(x﹣1)2•e x≤0,不合题意,舍去,③当a<﹣1时,解得≤x≤﹣a,则由题意知(2,3)⊆[﹣,﹣a],得a≤﹣3,综上可得,实数a的取值范围是(﹣∞,﹣3]∪[﹣,+∞);(Ⅱ)a=0时,g(x)=+lnx﹣x=lnx﹣1,k=,∵x2﹣x1>0,要证(x2+x1)k>2,即证(x1+x2)>2,即证ln﹣>0(>1),设h(x)=lnx﹣(x>1),h'(x)=﹣=>0,∴h(x)在(1,+∞)上单调递增,h(x)>h(1)=0,∴ln﹣>0(>1)成立,即(x1+x2)k>2成立.14.析:(1)求导函数,可得切线的斜率,求出切点的坐标,可得函数y=f(x)的图象在x=0处的切线方程;(2)先确定﹣1≤a<0,再根据函数f(x)在(0,1)上单调递增,可得f′(x)≥0在(0,1)上恒成立,构造h(x)=(x+1)ln(x+1)﹣x,证明h (x)在(0,1)上的值域为(0,2ln2﹣1),即可求实数a的取值范围;(3)由(2)知,当a=﹣1时,f(x)=在(0,1)上单调递增,证明(3x﹣1)f(x)≥(3x﹣1)•,即≤(3x﹣1)•,从而可得结论.答:(1)解:当a=1时,f(x)=,则f(0)=0,f′(x)=,∴f′(0)=1,∴函数y=f(x)的图象在x=0处的切线方程为y=x;(3分)(2)解:∵函数f(x)在(0,1)上单调递增,∴ax+1=0在(0,1)上无解当a≥0时,ax+1=0在(0,1)上无解满足当a<0时,只需1+a≥0,∴﹣1≤a<0 ①(5分)f′(x)=∵函数f(x)在(0,1)上单调递增,∴f′(x)≥0在(0,1)上恒成立即a[(x+1)ln(x+1)﹣x]≤1在(0,1)上恒成立设h(x)=(x+1)ln(x+1)﹣x,则h′(x)=ln(x+1),∵x∈(0,1),∴h′(x)>0,∴h(x)在(0,1)上单调递增∴h(x)在(0,1)上的值域为(0,2ln2﹣1)(7分)∴a≤在(0,1)上恒成立,∴a≤②综合①②得实数a的取值范围为[﹣1,](9分)(3)证明:由(2)知,当a=﹣1时,f(x)=在(0,1)上单调递增(10分)于是当0<x≤时,f(x)=≤f()=当≤x<1时,f(x)=≥f()=(12分)∴(3x﹣1)f(x)≥(3x﹣1)•,即≤(3x﹣1)•,同理有≤(3y﹣1)•,≤(3z﹣1)•,三式相加得:++≤0.(14分).(分,令f′(x)>0,分类讨论可得函数的单调区求出g(t)min,即可证得结论.(I)解:函数f(x)的定义域为(0,+∞),f′(x)=令f′(x)>0,∵x>0,∴2ax2+2>0①当a≥0时,f′(x)>0在(0,+∞)上恒成立,∴f(x)递增区间是(0,+∞);②当a<0时,由2ax2+2>0可得<x<x>0,∴f(x)递增区间是(0,),递减区间为;(Ⅱ)(i)解:设F(x)=f(1+x)+f(1﹣x)=2ln(1+x)+2ln(1﹣x)+2x2,则F′(x)=∵0<x<l,∴F′(x)<0在(0,1)上恒成立,∴F(x)在(0,1)上为减函数∴F(x)<F(0)=0,∴m≥0,∴实数m的取值范围为[0,+∞);(ii)证明:∵f(x1)+f(x2)=0,∴21nx1+x12﹣1+21nx2+x22﹣1=0∴2lnx1x2+(x1+x2)2﹣2x1x2﹣2=0∴(x1+x2)2=2x1x2﹣2lnx1x2+2设t=x1x2,则t>0,g(t)=2t﹣2lnt+2,∴g′(t)=令g′(t)>0,得t>1,∴g(t)在(0,1)上单调递减,在(1,+∞)上单调递增∴g(t)min=g(1)=4,∴(x1+x2)2>4,∴x1+x2奇偶性和单调性,研究函数零点的个数.答:解:(Ⅰ)令则g'(x)=f'(x)﹣2﹣x2=e x+e﹣x﹣2﹣x2,g''(x)=f(x)﹣2x,∵g'''(x)=f'(x)﹣2=e x+e﹣x﹣2当x≥0时,e x>0,e﹣x>0,∴∴g'''(x)≥0,∴函数y=g''(x)(x≥0)为增函数,∴g''(x)≥g''(0)=0,即f(x)﹣2x≥0∴函数y=g'(x)(x≥0)为增函数,∴g'(x)≥g'(0)=0,即e x+e﹣x≥2+x2∴函数y=g(x)(x≥0)为增函数,∴g(x)≥g(0)=0,即当x≥0时,成立;(Ⅱ)(1)当a≤2时,∵H(x)=f(x)﹣ax∴∴函数y=H(x)(x∈R)为增函数,当x>0时,H(x)>H(0)=0,当x<0时,H (x)<H(0)=0,∴当a≤2时,函数y=H(x)的零点为x=0,其零点个数为1个(2)当a>2时,∵对∀x∈R,H(﹣x)=﹣H(x)∴函数y=H(x)为奇函数,且H(0)=0下面讨论函数y=H(x)在x>0时的零点个数:由(Ⅰ)知,当x0>0时,,令∴则,H''(x)=f''(x)=e x﹣e﹣x当x>0时,e x>1,0<e﹣x<1,∴e x﹣e﹣x>0,∴H''(x)>0∴函数y=H'(x)(x>0)为增函数∴当0<x≤x0时,H'(x)≤H'(x0)=0;当x>x0时,H'(x)≥H'(x0)=0∴函数y=H(x)(x>0)的减区间为(0,x0],增区间为(x0,+∞)∴当0<x<x0时,H(x)<H(0)=0即对∀x0∈(0,x0]时,H(x)<0又由(Ⅰ)知,=当x0>0时,由③知,∴故,当时,∴,即H(x)>0由函数y=H(x)(x≥x0)为增函数和⑥⑦及函数零点定理知,存在唯一实数使得H(x*)=0,又函数y=H(x),x∈R为奇函数∴函数y=H(x),x∈R,有且仅有三个零点.本题(Ⅰ)通过三阶导数的研究,逐步通过导函数性研究零点,对学生计算能力和表达能力要求高.分(Ⅰ)求出a=的函数f(x)的导数,分别令f'(x)≥0,f'(x)≤0,求出f(x)在[1,3]上的单调性,从而确定极大值点2,也是最大值点,写出最大值;(Ⅱ)先求导数,并分解因式,讨论与2的大小,注意a>0,分别求出函数f(x)的单调区间;(Ⅲ)根据(Ⅱ)求出函数f(x)在区间[1,2]上的极大值,也是最大值且为f(),根据条件,说明最大值小于0即可.解答:解:(Ⅰ)当,,,当x∈[1,2]时f'(x)≥0,f(x)在[1,2]是增函数,当x∈[2,3]时f'(x)≤0,f(x)在[2,3]是减函数,∴f(x)的极大值也是最大值,且为;(Ⅱ)∵f'(x)=ax﹣(2a+1)+(x>0),即f'(x)=(x>0),当>2时,即0<a<时,由f'(x)>0得x>或x<2,由f'(x)<0,得2<x<,∴当0<a<,f(x)的单调增区间是(0,2]和[,+∞),单调减区间是[2,],同理当a>,f(x)的单调增区间是(0,]和[2,+∞),单调减区间是[,2];(Ⅲ)由(Ⅱ)知,当<a<1时,f(x)在[1,]上单调递增,在[,2]上单调递减,∴f(x)的极大值为f(),也是最大值f(x)max=f()=﹣2﹣﹣2lna,由<a<1,可知﹣2﹣2lna<0,f(x)max<0,∴在区间[1,2]上,f(x)<0恒成立,∴当a>时,函数f(x)在区间[1,2]上没有零点.点评:本题是导数在函数中的综合运用,考查运用导数则一定为最值的结论的运用..析:(Ⅰ)求出函数f(x)的定义域,求出导数f'(x)=a+,分a≥0,a<0两种情况进行讨论,a≥0时由单调性易判断;当a<0时可得极值;(Ⅱ)由g'(x)=e x,可设g(x)=e x+c,再由g(0)g'(1)=e可得g(x成立,分离出参数m后可得,令,则问题可转化为:m<h(x)max,利用导数可求得h(x)max;(Ⅲ)a=0时,f(x)=lnx,令φ(x)=g(x)﹣f (x)﹣2,则φ(x)=e x﹣lnx﹣2,,且φ'(x)在(0,+∞)上为增函数,设φ'(x)=0的根为x=t,则,即t=e﹣t,易知φ(x)的最小值为φ(t),通过放缩可判断φ(t)>0,从而可得结论;答:解:(Ⅰ)函数f(x)的定义域为(0,+∞),(x>0).当a≥0时,f'(x)>0,∴f(x)在(0,+∞)上为增函数,f(x)没有极值;当a<0时,,若时,f'(x)>0;若时,f'(x)<0,∴f(x)存在极大值,且当时,;综上可知:当a≥0时,f(x)没有极值;当a<0时,f(x)存在极大值,且当时,;(Ⅱ)∵函数g(x)的导函数g'(x)=e x,∴g(x)=e x+c,又∵g(0)g'(1)=e,∴(1+c)e=e⇒c=0,∴g(x)=e x,∵∃x∈(0,+∞),使得不等式成立,∴∃x∈(0,+∞),使得成立,令,则问题可转化为:m<h(x)max,对于,x∈(0,+∞),由于,当x∈(0,+∞)时,∵e x>1,,∴,∴h'(x)<0,从而h(x)在(0,+∞)上为减函数,∴h(x)<h(0)=3,∴m<3;(Ⅲ)当a=0时,f(x)=lnx,令φ(x)=g(x)﹣f(x)﹣2,则φ(x)=e x﹣lnx﹣2,∴,且φ'(x)在(0,+∞)上为增函数,设φ'(x)=0的根为x=t,则,即t=e﹣t,∵当x∈(0,t)时,φ'(x)<0,φ(x)在(0,t)上为减函数;当x∈(t,+∞)时,φ'(x)>0,φ(x)在(t,+∞)上为增函数,∴,∵φ'(1)=e﹣1>0,,∴,由于φ(t)=e t+t﹣2在上为增函数,∴,∴f(x)<g(x)﹣2..解:(Ⅰ)根据题意知:f′(x)=在[1,+∞)上恒成立.即a≥﹣x2﹣2x在区间[1,+∞)上恒成立.∵﹣2x2﹣2x在区间[1,+∞)上的最大值为﹣4,∴a≥﹣4;经检验:当a=﹣4时,,x∈[1,+∞).∴a的取值范围是[﹣4,+∞).(Ⅱ)在区间(﹣1,+∞)上有两个不相等的实数根,即方程2x2+2x+a=0在区间(﹣1,+∞)上有两个不相等的实数根.记g(x)=2x2+2x+a,则有,解得.∴,.∴令.,.∴,.在使得p′(x0)=0.当,p′(x)<0;当x∈(x0,0)时,p′(x)>0.而k′(x)在单调递减,在(x0,0)单调递增,∵,∴当,∴k(x)在单调递减,即.本题考查的是导数知识,重点是利用导数法研究函即二次求导,本题还用到消元的方法,难度较大.21析:(1)先求f'(x),令f'(x)=0,可得极值点,分极值点在区间[,2]内、外进行讨论可得函数的最大值;(2)设切点为(t,f(t)),则,解出方程组可求;(3)f(x1)+f(x2)+…+f(x14)≤λ恒成立,等价于f(x1)+f(x2)+…+f(x14)的最大值小于等件.解:(1),令f'(x)=0,解得x=(负值舍去),由,解得.(ⅰ)当0<a时,得f'(x)≥0,∴f(x)在[,2]上的最大值为.(ⅱ)当a≥4时,由,得f'(x)≤0,∴f (x)在[,2]上的最大值为f()=.(ⅲ)当时,∵在时,f'(x)>0,在<x<2时,f'(x)<0,∴f(x)在[,2]上的最大值为f()=.(2)设切点为(t,f(t)),则,由f'(t)=﹣1,有=﹣1,化简得a2t4﹣7at2+10=0,即at2=2或at2=5,①由f(t)=﹣t+2a,有=2a﹣t,②由①、②解得a=2或a=.(3)当a=2时,f(x)=,由(2)的结论直线y=4﹣x为曲线y=f(x)的切线,∵f(2)=2,∴点(2,f(2))在直线y=4﹣x上,根据图象分析,曲线y=f(x)在直线y=4﹣x下方.下面给出证明:当x∈[,2]时,f(x)≤4﹣x.∵f(x)﹣(4﹣x)=﹣4+x==,∴当x∈[,2]时,f(x)﹣(4﹣x)≤0,即f(x)≤4﹣x.∴f(x1)+f(x2)+…+f(x14)≤4×14﹣(x1+x2+…+x14),∵x1+x2+…+x14=14,∴f(x1)+f(x2)+…+f(x14)≤56﹣14=42.∴要使不等式f(x1)+f(x2)+…+f(x14)≤λ恒成立,必须λ≥42.又当x1=x2=…=x14=1时,满足条件x1+x2+…+x14=14,且f(x1)+f(x2)+…+f(x14)=42,因此,λ的最小值为42.。
历年导数压轴经典题目证题中常用的不等式:① ln 1(0)x x x ≤->②≤ln +1(1)x x x ≤>-() ③1x e x ≥+④ 1xex -≥-⑤ ln 1(1)12x x x x -<>+⑥ 22ln 11(0)22x x x x <->⑦ 1≥e^x (1-x )1.已知函数321()3f x x ax bx =++,且'(1)0f -=(1) 试用含a 的代数式表示b,并求()f x 的单调区间;(2)令1a =-,设函数()f x 在1212,()x x x x <处取得极值,记点M (1x ,1()f x ),N(2x ,2()f x ),P(,()m f m ), 12x m x <<,请仔细观察曲线()f x 在点P 处的切线与线段MP 的位置变化趋势,并解释以下问题:(I )若对任意的m ∈(t, x 2),线段MP 与曲线f(x)均有异于M,P 的公共点,试确定t 的最小值,并证明你的结论;(II )若存在点Q(n ,f(n)), x ≤n< m ,使得线段PQ 与曲线f(x)有异于P 、Q 的公共点,请直接写出m 的取值围(不必给出求解过程)2.本小题满分14分)已知函数,,且是函数的极值点。
(Ⅰ)数的值; (Ⅱ)若方程有两个不相等的实数根,数的取值围;(Ⅲ)若直线是函数的图象在点处的切线,且直线与函数的图象相切于点,,数的取值围。
1 x x3.已知函数()()()()201,10.x f x ax bx c e f f =++==且(I )若()f x 在区间[]0,1上单调递减,数a 的取值围;(II )当a=0时,是否存在实数m 使不等式()224141x f x xe mx x x +≥+≥-++对任意x R ∈恒成立?若存在,求出m 的值,若不存在,请说明理由4.已知:二次函数()g x 是偶函数,且(1)0g =,对,()1x R g x x ∀∈≥-有恒成立,令1()()ln ,()2f xg x m x m R =++∈(I )求()g x 的表达式;(II )当0m <∃≤时,若x>0,使f(x)0成立,求m 的最大值;(III )设12,()()(1),m H x f x m x <<=-+证明:对12,[1,]x x m ∀∈,恒有12|()()| 1.H x H x -<5.已知函数()(a x ax x f ln -=>)().28,0+=x xx g (I )求证();ln 1a x f +≥(II )若对任意的⎥⎦⎤⎢⎣⎡∈32,211x ,总存在唯一的⎥⎦⎤⎢⎣⎡∈e ex ,122(e 为自然对数的底数),使得()()21x f x g =,数a 的取值围.6.已知函数2()8,()6ln .f x x x g x x m =-+=+ (I )求()f x 在区间[],1t t +上的最大值();h t(II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值围;若不存在,说明理由。
7.已知函数()xf x e kx =-,x ∈R(Ⅰ)若k=e ,试确定函数f (x )的单调区间;(Ⅱ)若k>0,且对于任意,()0x R f x ∈>恒成立,试数k 的取值围;(Ⅲ)设函数F (x )=f (x )+f (x )+f (-x ),求证:12(1)(2)()(2)n n F F F n e +⋅⋅⋅>+(*n N ∈)8.(1)已知函数f(x)=x 3=x ,其图像记为曲线C. (i )求函数f(x)的单调区间;(ii)证明:若对于任意非零实数x 1,曲线C 与其在点P 1(x 1,f(x 1)处的切线交于另一点P 2(x 2,f(x 2).曲线C 与其在点P 2处的切线交于另一点P 3(x 3 f(x 3)),线段P 1P 2,P 2P 3与曲线C 所围成封闭图形的面积分别记为S 1,S 2,则12s s 为定值: (Ⅱ)对于一般的三次函数g (x )=ax 3+bx 2+cx+d(a ≠0),请给出类似于(Ⅰ)(ii)的正确命题,并予以证明。
9.已知函数R a ex ax e x f x∈-+=,)(2(Ⅰ)若曲线)(x f y =在点))1(,1(f 处的切线平行于x 轴,求函数)(x f 的单调区间; (Ⅱ)试确定a 的取值围,使得曲线)(x f y =上存在唯一的点P ,曲线在该点处的切线与曲线只有一个公共点P 。
10.已知f (x )=222+-x ax (x ∈R )在区间[-1,1]上是增函数.(Ⅰ)数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f (x )=x1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm +1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值围;若不存在,请说明理由.11.已知函数f (x )=ln x ,g(x )=21ax 2+b x ,a ≠0. (Ⅰ)若b =2,且h (x )=f (x )-g(x )存在单调递减区间,求a 的取值围;(Ⅱ)设函数f (x )的图象C 1与函数g(x )图象C 2交于点P 、Q ,过线段PQ 的中点作x 轴的垂线分别交C 1,C 2于点M 、N ,证明C 1在点M 处的切线与C 2在点N 处的切线不平行.12.已知()n n n A a b ,(n ∈N*)是曲线xy e =上的点,1a a =,n S 是数列{}n a 的前n 项和,且满足22213n n n S n a S -=+,0n a ≠,234n =,,,….(I )证明:数列2n n b b +⎧⎫⎨⎬⎩⎭(2n ≤)是常数数列; (II )确定a 的取值集合M ,使a M ∈时,数列{}n a 是单调递增数列; (III )证明:当a M ∈时,弦1n n A A +(n ∈N*)的斜率随n 单调递增.13已知函数f (x )=ln 2(1+x)-21x x+. (I)求函数f (x ) 的单调区间; (Ⅱ)若不等式1(1)a ae n++≤对任意的N*n ∈都成立(其中e 是自然对数的底数).求α的最大值.14.已知函数),()(2R c b c bx x x f ∈++=,对任意R x ∈,恒有).()('x f x f ≤ (I )证明:当0≥x 时,;)()(2c x x f +≤(II )若对满足题设条件的任意b ,c ,不等式)()()(22b c M b f c f -≤-恒成立,求M的最小值.15.已知函数3()f x x =,()g x x =(Ⅰ)求函数()()()h x f x g x =-的零点个数。
并说明理由;(Ⅱ)设数列{n a }(*n N ∈)满足10(0)a a =>,1()()n n f a g a +=,证明:存在常数M,使得 对于任意的*n N ∈,都有n a ≤ M .16.已知函数()f x =axe x =-,其中a ≠0.(1) 若对一切x ∈R ,()f x ≥1恒成立,求a 的取值集合.(2)在函数()f x 的图像上取定两点11(,())A x f x ,22(,())B x f x 12()x x <,记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使0()f x k '>成立?若存在,求0x 的取值围;若不存在,请说明理由.17.设()ln(1)(,,,)f x x ax b a b R a b =+++∈为常数,曲线()y f x =与直线32y x =在(0,0)点相切。
(Ⅰ)求,a b 的值。
(Ⅱ)证明:当02x <<时,9()6xf x x <+。
18.已知函数()()21xf x x e -=+⋅()3,12cos .2x g x ax x x =+++当[]0,1x ∈时,(I )求证:()11-;1x f x x≤≤+ (II )若()()f x g x ≥恒成立,数a 的取值围。
19.已知函数8()(cos )(2)(sin 1)3f x x x x x π=-+-+,2()3()cos 4(1sin )ln(3)xg x x x x x π=--+-.证明:(1)存在唯一0(0,)2x π∈,使0()0f x =;(2)存在唯一1(,)2x ππ∈,使1()0g x =,且对(1)中的01x x π+<.20.已知函数()()()1ln 1,.xf x x a x a Rg x xe -=--∈=(I )求()g x 的极值;(II )设2a =,函数()()322m h x x x f x ⎡⎤'=++⎢⎥⎣⎦在区间()2,3上不是单调函数,数m 的取值围.(III )当0a <时,若对任意的 []()()()()()1212212111,3,4,x x x x f x f x g x g x ∈≠-<-恒成立,求a 的最小值.21.已知函数()ln ,().xf x xg x e == ⑴若函数φ(x )=f (x )-11x x ,求函数φ(x )的单调区间; ⑵设直线l 为函数f (x )的图象上一点A (x 0,f (x 0))处的切线,证明:在区间(1,+∞)上存在唯一的x 0,使得直线l 与曲线y =g (x )相切.22.已知函数2()ln ,()3f x x x g x x ax ==-+-. ⑴求()f x 在[,2](0)t t t +>上的最小值;⑵若存在1,x e e ⎡⎤∈⎢⎥⎣⎦(e 是常数,e =2.71828⋅⋅⋅)使不等式2()()f x g x ≥成立,数a 的取值围;⑶证明对一切(0,),x ∈+∞都有12ln x x e ex>-成立.23.设函数1()ln ().f x x a x a R x =--∈⑴讨论函数()f x 的单调性;⑵若()f x 有两个极值点12,x x ,记过点11(,()),A x f x 22(,())B x f x 的直线斜率为k ,问:是否存在a ,使得2k a =-?若存在,求出a 的值;若不存在,请说明理由.24.已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,数m 的取值围.25.已知a ∈R ,函数()ln 1,()(ln 1),x af x xg x x e x x=+-=-+(其中 2.718e ≈) (I )求函数()f x 在区间(]0,e 上的最小值;(II )是否存在实数(]00,x e ∈,使曲线()y g x =在点0x x =处的切线与y 轴垂直?若存在,求出0x 的值;若不存在,请说明理由。