当前位置:文档之家› 电子科大连续信号的采样和恢复信号与系统实验报告

电子科大连续信号的采样和恢复信号与系统实验报告

电子科大连续信号的采样和恢复信号与系统实验报告
电子科大连续信号的采样和恢复信号与系统实验报告

电 子 科 大

实 验 报 告

学生姓名:*** 学 号:****** 指导教师:****

一、实验室名称: 信号与系统实验室 二、实验项目名称: 连续信号的采样和恢复 三、实验原理:

实际采样和恢复系统如图3.6-1所示。可以证明,奈奎斯特采样定理仍然成立。

x )

(t P T )

图3.6-1 实际采样和恢复系统

采样脉冲:

其中,T s πω2=

,2

/)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号:

∑∞

-∞

=-=?→←k s S F

S k j X T j X t x )((1)()(ωωω

当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。 四、实验目的:

目的:

1、使学生通过采样保持电路理解采样原理。

2、使学生理解采样信号的恢复。

任务:记录观察到的波形与频谱;从理论上分析实验中信号的采

样保持与恢复的波形与频谱,并与观察结果比较。

五、实验内容:

①采样定理验证

②采样产生频谱交迭的验证

六、实验器材(设备、元器件): 实验仪器名称:

数字信号处理实验箱、信号与系统实验板的低通滤波器模块

()()2()

F

T T k

s

k p t P j

a k ωπδωω

+∞

=-∞

←?→=-∑

U11和U22、采样保持器模块U43、PC机端信号与系统实验软件、+5V电源

元器件及耗材:连接线、计算机串口连接线

七、实验步骤:

(1)采样定理验证步骤:

①打开PC机端软件SSP.EXE,在“实验选择”中选择“实验六”。

②根据实验书的指导,接通实验箱电源,连接接口区的“输入信号1”和“输出信号”。

③按实验箱键盘“3”选择好“正弦波”,按“+”将正弦波频率为“2.6kHz”,按“F4”键把采样脉冲设为10kHz。点击SSP软件界面上的按钮。

④观察到,波形密集混论无法观察。调节X轴分辨率,将其调到最小,同时将Y轴分辨率调到最大,从而观察到稳定波形。

⑤将图像截屏后,更改实验箱电路连接方式,按照实验指导书上连接方式连接:

⑥点击SSP软件界面上的按钮,观察采样后的波形,

同时将Y轴分辨率减小,顺利观察到完整的采样后波形图,截屏保存图像。

⑦立刻点击按键,发现信号混论,没有回复成原始信号状态;多次点击,均不可以实现原始信号还原。

⑧认真对着指导书操作步骤,进行实验操作。发现恢复信号时过急,为连接低通滤波器。

⑨改变电路连接方式,将采样保持器的输出信号通过低通滤波器U11,滤波器输出信号接入接口区的输出信号端口。

⑩点击SSP软件界面上的按钮,观察恢复后的波形,并截屏,得到恢复后信号图像。

(2)采样产生频谱交迭的验证操作:

11重复②~⑩的操作,在③操作中,按“F4”键把采样脉冲频率设为“5kHz”,其他操作行为不变。

12由②~⑩操作的经验,因此使得接下来的操作很顺利。

八、实验数据及结果分析:

实验内容(一)、采样定理验证(原始信号2.6kHz,采样信号10kHz) 1.原始波形 2.采样后波形

3.恢复信号截屏

实验内容(二)、采样产生频谱交迭的验证(原始信号2.6KHz,采样信号5kHz)1.原始波形 2.采样后波形

3.恢复后的信号

分析:两次实验测量的波形图像,均有理论分析图像差不多相似,

因此在一定误差范围内,两次实验操作步骤是正确的,得到的实

验结果有效。

九、实验结论:

由“采样定理验证”和“采样产生频谱交迭的验证”两个实验得到六

张实验图像,可以看出:采样信号的频率s w 应大于等于原始信号频率m w 的2倍,只有满足此条件,经低通滤波器恢复的信号才不会失真。 十、总结及心得体会:

总结:通过两个关于采样定理验证的实验,能够直观且真实感受到,

采样信号的频率s w 应大于等于原始信号频率m w 的2倍,这一条件的必要性。

心得体会:实验操作过程,一定要严谨细致,急躁可能会导致实验出很大错误,心态一定放平;少走弯路。

十一、对本实验过程及方法、手段的改进建议:

意见:在取样定理验证操作中,是否可以考虑增加测电压峰峰值的步

骤,观察实验信号电压变化关系,同理论值比较更加准确验证取样定理。 十二、思考问题:

(1)画出实验内容(一)的原理方框图和各信号频谱,说明为什么

实验内容(一)的输出信号恢复了输入信号? 实验原理图:

?

)

x t

原因:采样脉冲:

其中,T s πω2=

,2

/)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号:

∑∞

-∞

=-=?→←k s S F

S k j X T j X t x )((1)()(ωωω

当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的信号)(t x S 恢复原始信号)(t x 。

因为采样信号频率大于原始信号频率的2倍,原始信号经窄脉冲信号提取之后,不会交叉重叠,因此信号不失真。采样后信号在经过低通滤波器后,所以能够不失真输出。

(2)画出实验内容(二)的方框图,解释与实验内容(一)有何不

同之处?

原理框图:

不同:实验(二)采样信号频率S w =5kHz 小于原始信号频率M w 的二

()()2()

F

T T k

s

k p t P j a k ωπδωω+∞

=-∞

←?→=

-

?

)

x t

倍 5.2kHz,所以采样后的信号出现交叉重叠,从而失真。固经过低通滤波器输出的信号完全失真。

(3)如果改变实验内容(二)的3kHz恢复低通滤波器为截止频率为5kHz的低通滤波器(U22),系统的输出信号有何变化?

变化:输出信号幅度增大,但仍是处于失真状态。

报告评分:

指导教师签字:

电子科技大学 汇编 实验报告

计算机专业类课程 实 验 报 告 课程名称:汇编语言程序设计 学院:计算机科学与工程 专业:计算机科学与技术 学生姓名:郭小明 学号:2011060100010 日期:2013年12月24日

电子科技大学 实验报告 实验一 学生姓名:郭小明学号:2011060100010 一、实验室名称:主楼A2-412 二、实验项目名称:汇编源程序的上机调试操作基础训练 三、实验原理: DEBUG 的基本调试命令;汇编数据传送和算术运算指令 MASM宏汇编开发环境使用调试方法 四、实验目的: 1. 掌握DEBUG 的基本命令及其功能 2. 学习数据传送和算术运算指令的用法 3.熟悉在PC机上编辑、汇编、连接、调试和运行汇编语言程序的过程五、实验内容: 编写程序计算以下表达式: Z=(5X+2Y-7)/2 设X、Y的值放在字节变量VARX、VARY中,结果存放在字节单元VARZ中。 1.编辑源程序,建立一个以后缀为.ASM的文件. 2.汇编源程序,检查程序有否错误,有错时回到编辑状态,修改程序中错误行。无错时继续第3步。 3.连接目标程序,产生可执行程序。

4.用DEBUG程序调试可执行程序,记录数据段的内容。 六、实验器材(设备、元器件): PC机,MASM软件平台。 七、实验数据及结果分析: 程序说明: 功能:本程序完成Z=(5X+2Y-7)/2这个等式的计算结果求取。其中X 与Y 是已知量,Z是待求量。 结构:首先定义数据段,两个DB变量VARX与VARY(已经初始化),以及结果存放在VARZ,初始化为?。然后定义堆栈段,然后书写代码段,代码段使用顺序程序设计本程序,重点使用MOV和IMUL以及XOR,IDIV完成程序设计。详细内容见程序注释。 程序清单:

实验五 信号的采样与恢复

信号与系统实验报告 【实验原理】 1、离散时间信号可以从离散信号源获得,也可以从连续时间信号抽样而得。抽样信号f s (t )可以看成连续信号f (t )和一组开关函数s (t )的乘积。s (t )是一组周期性窄脉冲,见图1,T s 称为抽样周期,其倒数T s =1T S ?称抽样频率。 图1矩形抽样脉冲 对抽样信号进行傅里叶分析可知,抽样信号的频率包括了原连续信号以及无限个经过平移的原信号频率。平移的频率等于抽样频率f s 及其谐波频率2f s 、3f s ……。当抽样信 号是周期性窄脉冲时,平移后的频率幅度按(sinx)x ?规律衰减。抽样信号的频谱是原信号 频谱周期的延拓,它占有的频带要比原信号频谱宽得多。 2、正如测得了足够的实验数据以后,我们可以在坐标纸上把一系列数据点连起来,得到一条光滑的曲线一样,抽样信号在一定条件下也可以恢复到原信号。只要用一截止频率等于原信号频谱中最高频率f n 的低通滤波器,滤除高频分量,经滤波后得到的信号包含了原信号频谱的全部内容,故在低通滤波器输出可以得到恢复后的原信号。 3、但原信号得以恢复的条件是f s ≥2B ,其中f s 为抽样频率,B 为原信号占有的频带宽度。而f min =2B 为最低抽样频率又称“奈奎斯特抽样率”。当f s <2B 时,抽样信号的频谱会发生混迭,从发生混迭后的频谱中我们无法用低通滤波器获得原信号频谱的全部内容。在实际使用中,仅包含有限频率的信号是极少的。因此即使f s =2B ,恢复后的信号失真还是难免的。图2画出了当抽样频率f s ≥2B (不混叠时)及当抽样频率f s <2B (混叠时)两种情况下冲激抽样信号的频谱。 (a)连续信号的频谱

通信原理实验四 实验报告 抽样定理与PAM系统实训

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验四抽样定理与PAM系统实训 一、实验目的 1.熟通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM调制实验,使学生能加深理解脉冲幅度调制的特点; 3.通过对电路组成、波形和所测数据的分析,了解PAM调制方式的优缺点。 二、实验原理 1.取样(抽样、采样) (1)取样 取样是把时间连续的模拟信号变换为时间离散信号的过程。 (2)抽样定理 一个频带限制在(0,f H) 内的时间连续信号m(t),如果以≦1/2f H每秒的间隔对它进行等间隔抽样,则m(t)将被所得到的抽 样值完全确定。 (3)取样分类 ①理想取样、自然取样、平顶取样; ②低通取样和带通取样。 2.脉冲振幅调制电路原理(PAM) (1)脉冲幅度调制系统 系统由输入电路、高速电子开关电路、脉冲发生电路、解调滤波电路、功放输出电路等五部分组成。 图 1 脉冲振幅调制电路原理框图 (2)取样电路 取样电路是用4066模拟门电路实现。当取样脉冲为高电位时,

取出信号样值;当取样脉冲为低电位,输出电压为0。 图 2 抽样电路 图 3 低通滤波电路 三、实验步骤 1.函数信号发生器产生2KHz(2V)模拟信号送入SP301,记fs; 2.555电路模块输出抽样脉冲,送入SP304,连接SP304和SP302,记fc; 3.分别观察fc>>2fs,fc=2fs,fc<2fs各点波形; 4.连接SP204 与SP301、SP303H 与SP306、SP305 与TP207,把扬声 器J204开关置到1、2 位置,触发SW201 开关,变化SP302 的输入 时钟信号频率,听辨音乐信号的质量. 四、实验内容及现象 1.测量点波形 图 4 TP301 模拟信号输入 图 5 TP302 抽样时钟波形(555稍有失真) fc=38.8kHz ①fc>>2fs,使fs=5KHz: 图 6 TP303 抽样信号输出1 图7 TP304 模拟信号还原输出1 ②fc=2fs,使fs=20KHz: 图8 TP303 抽样信号输出2 图9 TP304 模拟信号还原输出2 ③fc<2fs,使fs=25KHz: 图10 TP303 抽样信号输出3 图11 TP304 模拟信号还原输出3 2.电路Multisim仿真 图12 PAM调制解调仿真电路 图13 模拟信号输入 图14 抽样脉冲波形 图15 PAM信号 图16 低通滤波器特性 图17 还原波形 更多学习资料请见我的个人主页:

电子科大电子技术实验报告

电子科技大学 电子技术实验报告 学生姓名:班级学号:考核成绩:实验地点:仿真指导教师:实验时间: 实验报告内容:1、实验名称、目的、原理及方案2、经过整理的实验数据、曲线3、对实验结果的分析、讨论以及得出的结论4、对指定问题的回答 实验报告要求:书写清楚、文字简洁、图表工整,并附原始记录,按时交任课老师评阅实验名称:负反馈放大电路的设计、测试与调试

一、实验目的 1、掌握负反馈电路的设计原理,各性能指标的测试原理。 2、加深理解负反馈对电路性能指标的影响。 3、掌握用正弦测试方法对负反馈放大器性能的测量。 二、实验原理 1、负反馈放大器 所谓的反馈放大器就是将放大器的输出信号送入一个称为反馈网络的附加电路后在放大器的输入端产生反馈信号,该反馈信号与放大器原来的输入信号共同控制放大器的输入,这样就构成了反馈放大器。单环的理想反馈模型如下图所示,它是由理想基本放大器和理想反馈网络再加一个求和环节构成。 反馈信号是放大器的输入减弱成为负反馈,反馈信号使放大器的输入增强成为正反馈。四种反馈类型分别为:电压取样电压求和负反馈,电压取样电流求和负反馈,电流取样电压求和负反馈,电流取样电流求和负反馈。 2、实验电路

实验电路如下图所示,可以判断其反馈类型累电压取样电压求和负反馈。 3.电压取样电压求和负反馈对放大器性能的影响 引入负反馈会使放大器的增益降低。负反馈虽然牺牲了放大器的放大倍数,但它改善了放大器的其他性能指标,对电压串联负反馈有以下指标的改善。 可以扩展闭环增益的通频带 放大电路中存在耦合电容和旁路电容以及有源器件内部的极间电容,使得放大器存在有效放大信号的上下限频率。负反馈能降低和提高,从而扩张通频带。 电压求和负反馈使输入电阻增大 当 v一定,电压求和负反馈使净输入电压减小,从而使输入电流 s

信号系统实验报告

电子工程系 信号与系统课程实验报告 2011-----2012学年第一学期 专业: 电子信息工程技术班级: 学号 : 姓名: 指导教师: 实常用连续时间信号的实现

一、实验目的 (1)了解连续时间信号的特点; (2)掌握连续时间信号表示的向量法和符号法; (3)熟悉MATLAB Plot函数等的应用。 二、实验原理 1、信号的定义 信号是随时间变化的物理量。信号的本质是时间的函数。 2、信号的描述 1)时域法 时域法是将信号表示成时间的函数f(t)来对信号进行描述的方法。信号的时间特性指的是信号的波形出现的先后,持续时间的长短,随时间变化的快慢和大小,周期的长短等。 2)频域(变换域)法 频域法是通过正交变换,将信号表示成其他变量的函数来对信号进行描述的方法。一般常用的是傅立叶变换。信号的频域特性包括频带的宽窄、频谱的分布等。 信号的频域特性与时域特性之间有着密切的关系。 3、信号的分类 按照特性的不同,信号有着不同的分类方法。 (1)确定性信号:可以用一个确定的时间函数来表示的信号。 随机信号:不可以用一个确定的时间函数来表示,只能用统计特性加以描述的信号。 (2)连续信号:除若干不连续的时间点外,每个时间点在t上都有对应的数值信号。离散信号:只在某些不连续的点上有数值,其他时间点上信号没有定义的信号。 (3)周期信号:存在T,使得等式f(t+T)=f(t)对于任意时间t都成立的信号。非周期信号:不存在使得等式f(t+T)=f(t)对于任意时间t都成立的信号。 绝对的周期信号是不存在的,一般只要在很长时间内慢走周期性就可以了。 (4)能量信号:总能量有限的信号。 功率信号:平均功率有限切非零的信号。 (5)奇信号:满足等式f(t)=--f(--t)的信号。偶信号:满足等式f(t)=f(--t)的信号。 三、涉及的MATLAB函数 1、plot函数 功能:在X轴和Y轴方向都按线性比例绘制二维图形。 调用格式: Plot(x,y):绘出相x对y的函数线性图。 Plot(x1,y1,x2,y2,…..):会出多组x对y的线性曲线图。 2、ezplot函数 功能:绘制符号函数在一定范围内的二维图形。简易绘制函数曲线。 调用格式: Ezplot (fun):在[-2π,2π]区间内绘制函数。 Ezplot (fun,[min,max]):在[min,max]区间内绘函数。 Ezplot (funx,funy):定义同一曲面的函数,默认的区间是[0, 2π]。】 3、sym函数 功能:定义信号为符号的变量。 调用格式:sym(fun):fun为所要定义的表达式。 4、subplot函数

matlab验证时域采样定理实验报告

通信原理实验报告实验名称:采样定理 实验时间: 201211日年12月 指导老师:应娜 学院:计算机学院 级:班 学号: 姓名:

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 f(x)=sin(2*pi*80*t)+ cos(2*pi*30*t); 2、对信号进行采样,得到采样序列,画出采样频率分别为80Hz,110 Hz,140 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 四、数据分析 (1)部分程序分析: f=[fs0*k2/m2,fs0*k1/m1]; %设置原信号的频率数组 axis([min(t),max(t),min(fx1),max(fx1)]) %画原信号幅度频谱 f1=[fs*k2/m2,fs*k1/m1]; %设置采样信号的频率数组 fz=eval(fy); %获取采样序列 FZ=fz*exp(-j*[1:length(fz)]'*w); %采样信号的离散时间傅里叶变换 TMN=ones(length(n),1)*t-n'*T*ones(1,length(t)); 由采样信号恢复原信号fh=fz*sinc(fs*TMN); %. (2)原信号的波形与幅度频谱:

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号采样与重建的编程实现

课程设计任务书 学生:凯鑫专业班级:电信1203班 指导教师:阙大顺,王虹工作单位:信息工程学院 题目: 信号采集与重建的编程实现 初始条件: 1.Matlab6.5以上版本软件; 2.课程设计辅导资料:“Matlab语言基础及使用入门”、“数字信号处理原理与实现”、“Matlab及 在电子信息课程中的应用”等; 3.先修课程:信号与系统、数字信号处理、Matlab应用实践及信号处理类课程等。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1.课程设计时间:1周(课实践); 2.课程设计容:信号采样与重建的编程实现,具体包括:连续信号的时域采样、频谱混叠分析、 由离散序列恢复模拟信号等; 3.本课程设计统一技术要求:研读辅导资料对应章节,对选定的设计题目进行理论分析,针对具 体设计部分的原理分析、建模、必要的推导和可行性分析,画出程序设计框图,编写程序代码(含注释),上机调试运行程序,记录实验结果(含计算结果和图表),并对实验结果进行分析和总结; 4.课程设计说明书按学校“课程设计工作规”中的“统一书写格式”撰写,具体包括: ①目录; ②与设计题目相关的理论分析、归纳和总结; ③与设计容相关的原理分析、建模、推导、可行性分析; ④程序设计框图、程序代码(含注释)、程序运行结果和图表、实验结果分析和总结; ⑤课程设计的心得体会(至少500字); ⑥参考文献; ⑦其它必要容等。 时间安排: 1)第1-2天,查阅相关资料,学习设计原理。 2)第3-4天,方案选择和电路设计仿真。 3)第4-5天,电路调试和设计说明书撰写。 4)第6天,上交课程设计成果及报告,同时进行答辩。

通信原理抽样定理及其应用实验报告

实验1 抽样定理及其应用实验 一、实验目的 1.通过对模拟信号抽样的实验,加深对抽样定理的理解; 2.通过PAM 调制实验,使学生能加深理解脉冲幅度调制的特点; 3.学习PAM 调制硬件实现电路,掌握调整测试方法。 二、实验仪器 1.PAM 脉冲调幅模块,位号:H (实物图片如下) 2.时钟与基带数据发生模块,位号:G (实物图片见第3页) 3.20M 双踪示波器1台 4.频率计1台 5.小平口螺丝刀1只 6.信号连接线3根 三、实验原理 抽样定理告诉我们:如果对某一带宽有限的时间连续信号(模拟信号)进行抽样,且抽 样速率达到一定数值时,那么根据这些抽样值就能准确地还原原信号。这就是说,若要传输模拟信号,不一定要传输模拟信号本身,可以只传输按抽样定理得到的抽样值。 PAM 实验原理:它采用模拟开关CD4066实现脉冲幅度调制。抽样脉冲序列为高电平时, 模拟开关导通,有调制信号输出;抽样脉冲序列为低电平,模拟开关断开, 无信号输出 图1-2 PAM 信道仿真电路示意图 32W01 C1 C2 32P03 R2 32TP0

四、可调元件及测量点的作用 32P01:模拟信号输入连接铆孔。 32P02:抽样脉冲信号输入连接铆孔。 32TP01:输出的抽样后信号测试点。 32P03:经仿真信道传输后信号的输出连接铆孔。 32W01:仿真信道的特性调节电位器。 五、实验内容及步骤 1.插入有关实验模块: 在关闭系统电源的条件下,将“时钟与基带数据发生模块”、“PAM脉冲幅度调制模块”,插到底板“G、H”号的位置插座上(具体位置可见底板右下角的“实验模块位置分布表”)。注意模块插头与底板插座的防呆口一致,模块位号与底板位号的一致。 2.信号线连接: 用专用铆孔导线将P03、32P01;P09、32P02;32P03、P14连接(注意连接铆孔的箭头指向,将输出铆孔连接输入铆孔)。 3.加电: 打开系统电源开关,底板的电源指示灯正常显示。若电源指示灯显示不正常,请立即关闭电源,查找异常原因。

信号实验:连续信号的采样和恢复

电子科技大学 实 验 报 告 学生姓名: 学号: 指导老师: 日期:2016年 12月 10日

一、实验室名称: 连续信号的采样和恢复 二、实验项目名称: 实验项目四:连续信号的采样和恢复 三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 ? ) x t ) (t P T ) 图3.4-1 实际采样和恢复系统 采样脉冲: 其中,T s πω2=, 2/)2/sin(τωτωτs s k k k T a =,T <<τ。 采样后的信号: ∑∞ -∞ =-=?→←k s S F S k j X T j X t x ) ((1)()(ωωω 当采样频率大于信号最高频率两倍,可以用低通滤波器)(ωj H r 由采样后的 ()()2() F T T k s k p t P j a k ωπδωω+∞ =-∞ ←?→= -∑

信号)(t x S 恢复原始信号)(t x 。 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。 四、实验内容 实验内容(一)、采样定理验证 实验内容(二)、采样产生频谱交迭的验证 五、项目需用仪器设备名称:数字信号处理实验箱、信号与系统实验板的低通滤 波器模块U11和U22、采样保持器模块U43、PC 机端信号与系统实验软件、+5V 电源 六、实验步骤: 打开PC 机端软件SSP.EXE ,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 实验内容(一)、采样定理验证 实验步骤: 1、连接接口区的“输入信号1”和“输出信号”,如图3.4-2所示。 图3.4-2 观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6kHz ”。 按“F4”键把采样脉冲设为10kHz 。 七、实验数据及结果分析:

抽样定理和PCM调制解调实验报告

《通信原理》实验报告 实验一:抽样定理和PAM调制解调实验 系别:信息科学与工程学院 专业班级:通信工程1003班 学生姓名:陈威 同组学生:杨鑫 成绩: 指导教师:惠龙飞 (实验时间:2012 年 12 月 7 日——2012 年 12 月28日) 华中科技大学武昌分校

1、实验目的 1对电路的组成、波形和所测数据的分析,加深理解这种调制方法的优缺点。 2.通过脉冲幅度调制实验,使学生能加深理解脉冲幅度调制的原理。 2、实验器材 1、信号源模块 一块 2、①号模块 一块 3、60M 双踪示波器 一台 4、连接线 若干 3、实验原理 3.1基本原理 1、抽样定理 图3-1 抽样与恢复 2、脉冲振幅调制(PAM ) 所谓脉冲振幅调制,即是脉冲载波的幅度随输入信号变化的一种调制方式。如果脉冲载波是由冲激脉冲组成的,则前面所说的抽样定理,就是脉冲增幅调制的原理。 自然抽样 平顶抽样 ) (t m ) (t T

图3-3 自然抽样及平顶抽样波形 PAM方式有两种:自然抽样和平顶抽样。自然抽样又称为“曲顶”抽样,(t)的脉冲“顶部”是随m(t)变化的,即在顶部保持了m(t)变已抽样信号m s 化的规律(如图3-3所示)。平顶抽样所得的已抽样信号如图3-3所示,这里每一抽样脉冲的幅度正比于瞬时抽样值,但其形状都相同。在实际中,平顶抽样的PAM信号常常采用保持电路来实现,得到的脉冲为矩形脉冲。 四、实验步骤 1、将信号源模块、模块一固定到主机箱上面。双踪示波器,设置CH1通道为同步源。 2、观测PAM自然抽样波形。 (1)将信号源上S4设为“1010”,使“CLK1”输出32K时钟。 (2)将模块一上K1选到“自然”。 (3)关闭电源,连接 表3-1 抽样实验接线表 (5)用示波器观测信号源“2K同步正弦波”输出,调节W1改变输出信号幅度,使输出信号峰-峰值在1V左右。在PAMCLK处观察被抽样信号。CH1接PAMCLK(同步源),CH2接“自然抽样输出”(自然抽样PAM信号)。

电子科技大学通信原理实验实验报告2

电子科技大学通信学院 最佳接收机(匹配滤波器) 实验报告 班级 学生 学号 教师任通菊

最佳接收机(匹配滤波器)实验 一、实验目的 1、运用MATLAB软件工具,仿真随机数字信号在经过高斯白噪声污染后最佳的恢复的方法。 2、熟悉匹配滤波器的工作原理。 3、研究相关解调的原理与过程。 4、理解高斯白噪声对系统的影响。 5、了解如何衡量接收机的性能及匹配滤波器参数设置方法。 二、实验原理 对于二进制数字信号,根据它们的时域表达式及波形可以直接得到相应的解调方法。在加性白高斯噪声的干扰下,这些解调方法是否是最佳的,这是我们要讨论的问题。 数字传输系统的传输对象是二进制信息。分析数字信号的接收过程可知,在接收端对波形的检测并不重要,重要的是在背景噪声下正确的判断所携带的信息是哪一种。因此,最有利于作出正确判断的接收一定是最佳接收。 从最佳接收的意义上来说,一个数字通信系统的接收设备可以看作一个判决装置,该装置由一个线性滤波器和一个判决电路构成,如图1所示。线性滤波器对接收信号进行相应的处理,输出某个物理量提供给判决电路,以便判决电路对接收信号中所包含的发送信息作出尽可能正确的判决,或者说作出错误尽可能小的判决。 图1 简化的接收设备 假设有这样一种滤波器,当不为零的信号通过它时,滤波器的输出能在某瞬间形成信号的峰值,而同时噪声受到抑制,也就是能在某瞬间得到最大的峰值信号功率与平均噪声功率之比。在相应的时刻去判决这种滤波器的输出,一定能得到最小的差错率。 匹配滤波器是一种在最大化信号的同时使噪声的影响最小的线性滤波器设计技术。注意:该滤波器并不保持输入信号波形,其目的在于使输入信号波形失 t输出信号值相对于均方根(输出)噪声值达到真并滤除噪声,使得在采样时刻 最大。

信号与系统实验报告

学生实验报告 (理工类) 课程名称:信号与系统实验专业班级:电子信息(1)班学生学号:1005101058 学生姓名:严生生 所属院部:信息技术学院指导教师:杨婧 20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制

实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求 实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示实验学时: 1 同组学生姓名:实验地点: B402 实验日期:实验成绩: 批改教师:杨婧批改时间: 一、实验目的和要求 熟悉MATLAB软件,利用MATLAB软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件。 三、实验过程 1,绘制正弦信号f(t)=Asin(ωt+ψ),其中A=1,ω=2π, ψ=π/6; 2,绘制指数信号f(t)=Ae^at,其中A=1,a=-0.4; 3,绘制矩形脉冲信号,脉冲宽度为2; 4,绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5,对上题三角波脉冲信号进行尺度变换,分别得出f(2t),f(2-2t); 6,绘制抽样函数Sa(t),t取值在-3π到+3π之间; 7,绘制周期矩形脉冲信号,参数自定; 8,绘制周期三角脉冲信号,参数自定; 1,打开MATLAB界面,建立新文件。 2,根据实验要求,编写程序。

数字信号处理实验六-时域采样与信号的重建

实验目的: 1.了解用MATLAB语言进行时域抽样与信号重建的方法 2.进一步加深对时域信号抽样与恢复的基本原理的理解 3.掌握采样频率的确定方法和内插公式的编程方法。 二.实验内容 1认真阅读并输入实验原理与方法中介绍的例子,观察输出波形曲线,理解每一条语句的含义。. 2.已知一个连续时间信号f(t)=sinc(t)。取最高有限带宽频率fm=1Hz。(1)分别显示原连续时间信号波形和Fm=fm、Fm=2fm、Fm=3fm三种情况下抽样信号的波形。 实验程序: dt=0.1; f0=1; T0=1/f0; fm=f0; Tm=1/fm; t=-2:dt:2; f=sinc(t); subplot(4,1,1),plot(t,f,'k'); axis([min(t) max(t) 1.1*min(f) 1.1*max(f)]); title('原连续信号和抽样信号'); for i=1:3; fs=i*fm; Ts=1/fs;

n=-2:Ts:2; f=sinc(n); subplot(4,1,i+1),stem(n,f,'filled','k'); axis([min(n) max(n) 1.1*min(f) 1.1*max(f)]); end 实验截图: (2)求解原连续信号波形和抽样信号所对应的幅度谱。实验程序: dt=0.1;t=-4:dt:4;

N=length(t);f=sinc(t);Tm=1;fm=1/Tm; wm=2*pi*fm;k=1:N; w1=k*wm/N; F1=f*exp(-j*t'*w1)*dt; subplot(4,1,1),plot(w1/(2*pi),abs(F1));grid axis([0 max(4*fm) 1.1*min(F1) 1.1*max(F1)]); for i=1:3; if i<= 2 c=0 ,else c=0.2,end fs=(4-i+c)*fm; Ts=1/fs; n=-4:Ts:4; f=sinc(n); N=length(n); wm=2*pi*fs; k=1:N; w=k*wm/N; F=f*exp(-j*n'*w)*Ts; subplot(4,1,5-i),plot(w/(2*pi),abs(F),'k');grid axis([0 max(4*fm) 1.1*min(F) 1.1*max(F)]); end 实验截图:

信号与系统通信原理抽样定理实验报告

新疆师范大学 实验报告 2020年4月20日课程名称通信原理实验项目实验三:抽样定理实验物理与电子工程学院电子17-5 姓名赵广宇 同组实验者指导教师 一、实验目的 了解抽样定理在通信系统中的重要性。 掌握自然抽样及平顶抽样的实现方法。 理解低通采样定理的原理。 理解实际的抽样系统。 理解低通滤波器的幅频特性对抽样信号恢复的影响。 理解低通滤波器的相频特性对抽样信号恢复的影响。 理解带通采样定理的原理。 二、实验器材 主控&信号源 3号信源编译模块 示波器 三、实验原理 2、实验框图说明

抽样信号由抽样电路产生。将输入的被抽样信号与抽样脉冲相乘就可以得到自然抽样信号,自然抽样的信号经过保持电路得到平顶抽样信号。平顶抽样和自然抽样信号是通过开关S1切换输出的。 抽样信号的恢复是将抽样信号经过低通滤波器,即可得到恢复的信号。这里滤波器可以选用抗混叠滤波器(8阶3.4kHz的巴特沃斯低通滤波器)或FPGA数字滤波器(有FIR、IIR两种)。反sinc滤波器不是用来恢复抽样信号的,而是用来应对孔径失真现象。 要注意,这里的数字滤波器是借用的信源编译码部分的端口。在做本实验时与信源编译码的内容没有联系。 四、实验步骤 实验项目一抽样信号观测及抽样定理验证

基带信号+抽样脉冲输出 模拟滤波器恢复出的信号 数字滤波器恢复出的基带信号

五.心得与体会 1.通过本次实验进一步了解了抽样定理的内容 2.通过本次实验将理论与实践联系在了一起,不仅提高了动手实践能力,更加深了对课程的理解 3.通过实验现象可以更加深入的认识到,数字滤波器比模拟滤波器的恢复波形能力要强. 教师签字

电子科技大学实验报告撰写模板

电子科技大学 实验报告 ( 2018 - 2019 - 2 ) 学生姓名:学生学号:指导老师: 实验学时:1.5h 实验地点:基础实验大楼425 实验时间:2019.4.9 14:30—16:00 报告目录 一、实验课程名称:电路实验I 1.实验名称:BJT放大器设计与测试 二、实验目的: 1. 了解BJT管的基本放大特性。 2. 掌握BJT共射放大电路的分析与设计方法。 3. 掌握放大电路静态工作点的测试方法。 4. 掌握放大电路放大倍数(增益)的测试方法。 5. 掌握放大电路输入、输出电阻的测试方法。 6. 掌握放大电路幅频特性曲线的测试方法。 三、实验器材(设备、元器件): GDS1152A型数字示波器一台。 EE1641B1型函数发生器一台。

通用面包板一个。 1kΩ电阻;10mH电感;0.047μF电容若干。 四、实验原理:

3、测试方法 (1)静态工作点调整与测试 对直流电压的测量一般用数字万用表。测量静态工作点时测出晶体管各管脚对地的电压。 (2)放大倍数的测试 用晶体管毫伏表或者示波器直接测量输出、输入电压,由 Av=vo/vi 即可得到。(3)放大器输入电阻的测试

在放大器输入端口串入一个取样电阻R,用两次电压法测量放大器的输入电阻Ri。 (4)放大器输出电阻的测试 在放大器输出端口选择一个合适的负载电阻RL,用两次电压法分别测量空载与接上负载时的输出电压,计算输出电阻Ro。 (5)放大器频率特性的测试 用点频法测试法测量放大器的频率特性,并求出带宽。 五、实验内容: (1)静态工作点的测试 (2)电压增益测试 (3)输入电阻测试 (4)输出电阻测试 (5)幅频特性测试 六、实验数据及结果分析: 1、静态工作点调整与测试 令VCC=+12V,用万用表测量VE、VB、VC,计算VBE、IEQ、VCE,数据记入表格中。 2、放大倍数的测试 用函数发生器输出一个正弦波信号作为放大器的输入信号,设置信号频率 f =1kHz,(有效值)Ui=5mV,测量U0 ,计算放大器的电压放大倍数(增益)Av。数据填入表中,定量描绘输出波形图。

信号与系统实验报告汇总

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10 ()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

信号与系统——信号的采样与恢复实验

实验六 信号与系统实验 1.信号的采样与恢复实验 1.1实验目的 (1)熟悉信号的采样与恢复的过程 (2)学习和掌握采样定理 (3)了解采样频率对信号恢复的影响 1.2实验原理及内容 (1)采样定理 采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号等时间间隔上瞬时值表示,这些值包含该信号全部信息,利用这些值可以恢复原信号。采样定理是连续时间信号与离散时间信号的桥梁。 采样定理:对于一个具有有限频谱且最高频率为max w 的连续信号进行采样,当采样频率s w >=2max w 时,采样函数能够无失真地恢复出原信号。 (2)采样信号的频谱 连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为 )]([)2 ( )(s n s s nw w j F nw Sa T A jw F -= ∑ +∞ -∞ =τ τ 它包含了原信号频谱以及重复周期为s w 的原信号频谱的搬移,且幅度按 )2 (ττ s nw Sa T A 规律变化。所以抽样信号的频谱便是原信号频谱的周期性拓延。 (3)采样信号的恢复 将采样信号恢复成原信号,可以是用低通滤波器。低通滤波器的截止频率c f 应当满足 max max f f f f x c -≤≤。实验中采用的低通滤波器的截止频率固定为 Hz RC f 8021≈=π (4)单元构成 本实验电路由脉冲采样电路和滤波器两部分构成,滤波器部分不再赘述,其中采样保持部分电路由一片CD4052完成。此电路有两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲。 1.3实验步骤 本实验在脉冲与恢复单元完成。 (1)信号的采样 1)使波形发生器第一路输出幅值3V 、频率10Hz 的三角波信号;第二路输出幅值5V 、频率100Hz 、占空比50%的脉冲信号,将第一路信号接入IN1端;作为输入信号,第二路信号接入Pu 端,作为采样脉冲。 2)用示波器分别测量IN1端和OUT1端,观察采样前后波形的差异。 3)增加采样脉冲的频率为200、500、800等值。观察OUT1端波形的变化。解释现象产生的原因。

信号的采样与恢复实验报告

竭诚为您提供优质文档/双击可除信号的采样与恢复实验报告 篇一:实验2:连续信号的采样和恢复 电子科技大学 实验报告(二) 学生姓名:学号:指导教师:一、实验室名称:信号与系统实验室二、实验项目名称:连续信号的采样和恢复三、实验原理: 实际采样和恢复系统如图3.4-1所示。可以证明,奈奎斯特采样定理仍然成立。 xpT(t) ) 图3.4-1实际采样和恢复系统 采样脉冲:p(t)??F ?pT(j?)?T 2?T ?? ?

k???(:信号的采样与恢复实验报告) 2?ak?(??k?s) 其中,?s? ,ak? ?sin(k?s?/2)T k?s?/2 F ,???T。 采样后的信号:xs(t)???xs(j?)? 1T ? ?x(j(? k??? ?k?s) 当采样频率大于信号最高频率两倍,可以用低通滤波器hr(j?)由采样后的信号xs(t)恢复原始信号x(t)。 四、实验目的与任务: 目的:1、使学生通过采样保持电路理解采样原理。 2、使学生理解采样信号的恢复。 任务:记录观察到的波形与频谱;从理论上分析实验中信号的采样保持与恢 复的波形与频谱,并与观察结果比较。

五、实验内容: 1、采样定理验证 2、采样产生频谱交迭的验证 六、实验器材(设备、元器件): 数字信号处理实验箱、信号与系统实验板的低通滤波器模块u11和u22、采样保持器模块u43、pc机端信号与系统实验软件、+5V电源,连接线、计算机串口连接线等。 七、实验步骤: 打开pc机端软件ssp.exe,在下拉菜单“实验选择”中选择“实验六”;使用串口电缆连接计算机串口和实验箱串口,打开实验箱电源。 【1.采样定理验证】 1、连接接口区的“输入信号1”和“输出信号”,如图1所示。 图1观察原始信号的连线示意图 2、信号选择:按“3”选择“正弦波”,再按“+”或“-”设置正弦波频率为“2.6khz”。按“F4”键把采样脉冲设为10khz。 3、点击ssp软件界面上的 按钮,观察原始正弦波。 4、按图2的模块连线示意图连接各模块。 图2观察采样波形的模块连线示意图

实验实验报告

PAM和PCM编译码器系统 一、实验目的 1.观察了解PAM信号形成的过程;验证抽样定理;了解混叠效应形成的原因; 2.验证PCM编译码原理;熟悉PCM抽样时钟、编码数据和输入/输出时钟之间的关系;了 解PCM专用大规模集成电路的工作原理和应用。 二、实验内容和步骤 1.PAM编译码器系统 1.1自然抽样脉冲序列测量 (1)准备工作; (2)PAM脉冲抽样序列观察; (3)PAM脉冲抽样序列重建信号观测。 1.2平顶抽样脉冲序列测量 (1)准备工作; (2)PAM平顶抽样序列观察; (3)平顶抽样重建信号观测。 1.3信号混叠观测 (1)准备工作 (2)用示波器观测重建信号输出的波形。 2.PCM编译码器系统 2.1PCM串行接口时序观察 (1)输出时钟和帧同步时隙信号的观察; (2)抽样时钟信号与PCM编码数据测量; 2.2用示波器同时观察抽样时钟信号和编码输出数据信号端口(TP502),观测时以TP504 同步,分析掌握PCM编码输数据和抽样时钟信号(同步沿、脉冲宽度)及输出时钟的对应关系; 2.3PCM译码器输出模拟信号观测,定性观测解码信号与输入信号的关系:质量,电平, 延时。 2.4PCM频率响应测量:调整测试信号频率,定性观察解码恢复出的模拟信号电平,观测 输出信号电平相对变化随输入信号频率变化的相对关系; 2.5PCM动态范围测量:将测试信号频率固定在1000Hz,改变测试信号电平,定性观测解 码恢复出的模拟信号的质量。 三、实验数据处理与分析 1.PAM编译码器系统

(1)观察得到的抽样脉冲序列和正弦波输入信号如下所示: 上图中上方波形为输入的正弦波信号,下方为得到的抽样脉冲序列,可见抽样序列和正弦波信号基本同步。 (2)观测得到的重建信号和正弦波输入信号如下所示: 如上图所示,得到的重建信号也为正弦波,波形并没有失真。 (3)平顶抽样的脉冲序列如下所示:

数字集成电路设计实验报告

哈尔滨理工大学数字集成电路设计实验报告 学院:应用科学学院 专业班级:电科12 - 1班 学号:32 姓名:周龙 指导教师:刘倩 2015年5月20日

实验一、反相器版图设计 1.实验目的 1)、熟悉mos晶体管版图结构及绘制步骤; 2)、熟悉反相器版图结构及版图仿真; 2. 实验内容 1)绘制PMOS布局图; 2)绘制NMOS布局图; 3)绘制反相器布局图并仿真; 3. 实验步骤 1、绘制PMOS布局图: (1) 绘制N Well图层;(2) 绘制Active图层; (3) 绘制P Select图层; (4) 绘制Poly图层; (5) 绘制Active Contact图层;(6) 绘制Metal1图层; (7) 设计规则检查;(8) 检查错误; (9) 修改错误; (10)截面观察; 2、绘制NMOS布局图: (1) 新增NMOS组件;(2) 编辑NMOS组件;(3) 设计导览; 3、绘制反相器布局图: (1) 取代设定;(2) 编辑组件;(3) 坐标设定;(4) 复制组件;(5) 引用nmos组件;(6) 引用pmos组件;(7) 设计规则检查;(8) 新增PMOS基板节点组件;(9) 编辑PMOS基板节点组件;(10) 新增NMOS基板接触点; (11) 编辑NMOS基板节点组件;(12) 引用Basecontactp组件;(13) 引用Basecontactn 组件;(14) 连接闸极Poly;(15) 连接汲极;(16) 绘制电源线;(17) 标出Vdd 与GND节点;(18) 连接电源与接触点;(19) 加入输入端口;(20) 加入输出端口;(21) 更改组件名称;(22) 将布局图转化成T-Spice文件;(23) T-Spice 模拟; 4. 实验结果 nmos版图

相关主题
文本预览
相关文档 最新文档