2015年概率论考试题2
- 格式:doc
- 大小:203.00 KB
- 文档页数:3
2005级建筑工程(本)自考班 概率统计期末考试题(A 卷)参考答案一、填空 1. ABBC AC 或 ABC ABC ABC ABC2. 出现的点数恰为53. r p -A 与B 互斥∴ ()()()P A B P A P B =+ 则 ()()()P B P A B P A r p =-=-4.21 ()22~21124()114412X e EX DX EX DX EX ∴===+=+=,则5. 0.25由题设,可得X sin 的概率分布为{}sin 00.250.250.5P X ==+={}5.021sin =⎭⎬⎫⎩⎨⎧===πX P X P则 ()sin 0.5E X =,()sin 0.50.50.25D X =⨯=二、单项选择 1.D 2. A 3. A利用集合的运算性质可得. 4.DA 与B 互斥()0P AB ∴=故 ()()()()P A B P A P AB P A -=-= 5.BB A ⊂ AB B ∴=故 ()()P AB P B = 6. (C )由已知X 服从二项分布(,)B n p ,则()1DX np p =- 又由方差的性质知,(21)4(1)D X np p -=-7. (B )()04X N 服从,04EX DX ∴==,于是 ()222E X X EX EX -=-⎡⎤⎣⎦()24DX EX EX =+-=28. (A ) 由正态分布密度的定义,有 22()2()()x p x x μσ--=-∞<<+∞24()()x x x ϕ--∞<<+∞⇒由 22242σσ=⇒=9. (D )X EX DX λ==若服从泊松分布,则∴如果EX DX ≠时,只能选择泊松分布. 10. (D )∵ X 为服从正态分布N (-1, 2), EX = -1 ∴ E (2X - 1) = -3三、计算与应用题 1. 解:设 A 表示“取到的两球颜色不同”,则1153A n C C =而样本点总数28C n =故 ()1153281528A C C n P A n C ===2. 解:设 A 表示“能把门锁打开”,则112373A n C C C =+,而210C n = 故 ()1123732108A 15A C C C n P n C +=== 3. 解:设 A 表示“有4个人的生日在同一月份”,则21124611C C n A =而样本点总数为612=n故 412612611()0.007312A C C n P A n === 4. 解:设 A 表示“至少取到一个次品”,因其较复杂,考虑逆事件A =“没有取到次品”则 A 包含的样本点数为A n 346C =。
全国高等教育自学考试概率论与数理统计(经管类)2015年10月真题(课程代码:04183)一、单项选择题(本大题共10小题,每小题2分,共20分)1.设事件A 与B 互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=( )A.0B.0.2C.0.4D.0.62.设随机变量X ~B(3,0.3),则p={X-2}=( ) A.0.189 B.0.21 C.0.441 D.0.73.设随机变量X 的概率密度为( )=⎩⎨⎧≤≤=a x ax x f ,则常数其他,,0,10,)(2 A.0 B.31 C. D.3214.设随机变量X 的分布律为( ){}==-12.06.02.01012X P P X ,则 A.0.2 B.0.4C.0.6D.0.85.设二维随机变量(x,y)的分布律为( ){}==11.02.01.013.02.01.00210\X P YX 则 A.0.1 B.0.2C.0.3D.0.46.设随机变量X ~N(3,),则E(2X+2)=( )22 A.3 B.6 C.9 D.157.设随机变量X 服从参数为3的泊松分布,Y 服从参数为的指数分布,且X,Y51互相独立,则D(X-2Y+1)=( ) A.23 B.28C.103D.1048.已知X 与Y 的协方差Cov (X,Y )=,则Cov (-2X,Y )=( )21- A. B.021- C. D.1219.设为总体X 的一个样本,且为样本均值,)2(,...,,21>n x x x n ,未知)()(μμ=X E x 则的无偏估计为( )μ A. B.x n xC. D.x n )1(-x n )1(1-10.设a 是假设检验中犯第一类错误的概率,为原假设,以下概率为a 的是( )0H A. B.{}不真接受00|H H P {}真拒绝00|H H P C. D.{}不真拒绝00|H H P {}真接受00|H H P 二、填空题(本大题共15小题,每小题2分,共30分)11.袋中有编号为0,1,2,3,4的5个球,从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_____.12.设A,B 为随机事件,则事件“A,B 至少有一个发生”可由A,B 表示为_____.13.设事件A,B 相互独立,且P(A)=0.3,P(B)=0.4,则=_____.)(B A P 14.设X 表示某射手在一次射击命中目标的次数,该射手的命中率为0.9,则P{x=0}=_____.15.设随机变量X 服从参数为1的指数分布,则P{X >2}=_____.16.设二维随机变量(X,Y)的分布律为则c=_____.cYX 2561256259010\17.设二维随机变量(X,Y)的分布函数为F(x,y),则P{X≤0,Y≤0}用F(x,y)表示为_____.18.设二维随机变量(X,Y)服从区域D:-1≤x≤2,0≤y≤2的均匀分布,则(X,Y)概率密度f(x,y)在D 上的表达式为_____.19.设X 在区间[1,4]上服从均匀分布,则E(X)_____.20.设,则D(X)=_____.⎪⎭⎫⎝⎛515~B ,X 21.设随机变量X 与Y 的协方差Cov(X,Y)=,E(X)=E(Y)=1,则E(XY)=_____.21-22.设二维随机变量(X,Y)服从区域D:0≤x≤4,0≤y≤4上的分布,则____.=+)(22Y X E 23.设总体X ~N(0,1),为来自总体X 的一个样本,且123x x x ,,,则n=______.2222123~()x x x n χ++24.设X ~N(0,1),Y ~(10),且X 与Y 互相独立,则_____.2X =10/Y X25.设某总体X 的样本为_____.=⎪⎭⎫⎝⎛=∑-n i l n x n D X D x x x 12211,)(,,...,,则σ三、计算题(本大题共2小题,每小题8分,共16分)26.已知甲袋中有3个白球、2个红球;乙袋中有1个白球、2个白球,现从甲袋中任取一球放入乙袋,再从乙袋中任取一球,求该球是白球的概率。
2015年10月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷本试卷共4页。
满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸. 2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑. 3.第二部分为非选择题必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。
4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的。
请将其选出并将“答题卡”的相应代码涂黑。
未涂、错涂或多涂均无分。
1.设事件4与B互不相容,且P(A)=0.4,P(B)=0.2,则P(A∪B)=A.0 B.O.2 C.O.4 D.O.62.设随机变量X~B(3,0.3),则P{X=2}=A.0.1 89 B.0.2l C.0.441 D.0.7A.0.2 B.0.4 C.0.6 D.0.85.设二维随机变量(X,Y)的分布律为6.设随机变量X~N(3,22),则E(2X+3)=A.3 B.6 C.9 D.157.设随机变量X,Y,相互独立,且,Y在区间上服从均匀分布,则第二部分非选择题二、填空题(本大题共l5小题。
每小题2分,共30分)请在答题卡上作答。
11.袋中有编号为0,l,2,3,4的5个球.今从袋中任取一球,取后放回;再从袋中任取一球,则取到两个0号球的概率为_______.12.设A,B为随机事件,则事件“A,B至少有一个发生”可由A,B表示为_______.13.设事件A,B相互独立,且P(A)=0.3,P(B)=0.4.则= _______.14.设X表示某射手在一次射击中命中目标的次数,该射手的命中率为0.9,则P{X=0}= _______.15.设随机变量X服从参数为单科自考包过:qq:18606240单科自考包过:qq:186062401的指数分布,则= _______.16.设二维随机变量(X,Y)的分布律为则c= _______.17.设二维随机变量(X,Y)服从正态分布N(0,0;1,l;0),则(X,Y)的概率密度F(x,y)= _______.18.设二维随机变量(X,Y)服从区域D:-l≤x≤2,0≤y≤2上的均匀分布,则(X,Y) 的概率密度f(x,y)在D上的表达式为_______.19.设X在区间上服从均匀分布,则E(X)= _______.20.设的= _______.21.设随机变量x与y的协方差= _______.22.在贝努利试验中,若事件A发生的概率为P(0<p<1),今独立重复观察n次,记三、计算题(本大题共2小题,每小题8分,共l6分)请在答题卡上作答。
《概率论与数理统计(二)》复习题一、单项选择题1.设A,B 为随机事件,则事件“A ,B 至少有一个发生”可表示为 A.AB B.AB C.A BD.A B2.设随机变量2~(,)X N μσ,Φ()x 为标准正态分布函数,则{}P X x >= A.Φ(x ) B.1-Φ(x ) C.Φx μσ-⎛⎫⎪⎝⎭D.1-Φx μσ-⎛⎫ ⎪⎝⎭3.设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~A.211(,)N μσB.221()N μσC.212(,)N μσD.222(,)N μσ4.设随机事件A 与B 互不相容,且()0P A >,()0P B >,则A. ()1()P A P B =-B. ()()()P AB P A P B =C. ()1P A B =D. ()1P AB =5.设随机变量~(,)X B n p ,且()E X =2.4,()D X =1.44,则A. n =4, p =0.6B. n =6, p =0.4C. n =8, p =0.3D. n =24, p =0.16.设随机变量2~(,)X N μσ,Y 服从参数为(0)λλ>的指数分布,则下列结论中不正确...的是 A.1()E X Y μλ+= B.221()D X Y σλ+=+C.1(),()E X E Y μλ==D.221(),()D X D Y σλ==7.设总体X 服从[0,θ]上的均匀分布(参数θ未知),12,,,n x x x 为来自X 的样本,则下列随机变量中是统计量的为 A. 11ni i x n =∑B. 11ni i x n θ=-∑C. 11()ni i x E X n =-∑D. 2111()n i x D X n =-∑8.设12,,,n x x x 是来自正态总体2(,)N μσ的样本,其中μ未知,x 为样本均值,则2σ的无偏估计量为 A. 11()1ni i x n μ=--∑2 B. 11()ni i x n μ=-∑2C. 11()1ni i x x n =--∑ 2 D.11()ni i x x n =-∑ 29.设A,B 为B 为随机事件,且A B ⊂,则AB 等于A.ABB.BC.AD.A10.设A ,B 为随机事件,则()P A B -=A.()()P A P B -B.()()P A P AB -C.()()()P A P B P AB -+D.()()()P A P B P AB +-11.设随机变量X 的概率密度为1,3<x<6,()30,f x ⎧⎪=⎨⎪⎩其他,则{}3<4=P X ≤A.{}1<2P X ≤B.{}4<5P X ≤C.{}3<5P X ≤D.{}2<7P X ≤12.已知随机变量X 服从参数为λ的指数分布,则X 的分布函数为A.e ,0,()0, 0.x x F x x λλ-⎧>=⎨≤⎩B.1e ,0,()0, 0.x x F x x λλ-⎧->=⎨≤⎩C.1e ,0,()0, 0.x x F x x λ-⎧->=⎨≤⎩D.1e ,0,()0, 0.x x F x x λ-⎧+>=⎨≤⎩13.设随机变量X 的分布函数为F(x),则A.()1F -∞=B.(0)0F =C.()0F +∞=D.()1F +∞=14.设随机变量X 与Y 相互独立,它们的概率密度分别为(),()X Y f x f y ,则(X ,Y )的概率密度为 A.[]1()()2X Y f x f y + B.()()X Y f x f y +C.1()()2X Y f x f y D.()()X Y f x f y15.设随机变量~(,)X B n p ,且() 2.4,() 1.44E X D X ==,则参数n,p 的值分别为 A.4和0.6 B.6和0.4 C.8和0.3D.3和0.816.设随机变量X 的方差D(X)存在,且D(X)>0,令Y X =-,则X γρ= A.1- B.0 C.1 D.2二、填空题1. 一口袋中装有3只红球,2只黑球,今从中任意取出2只球,则这2只球恰为一红一黑的概率是____________.2. 设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A )=______________.3. 设A,B,C 为三个随机事件,P(A)=P(B)=P(C)=41,P(AB)=P(AC)=P(BC)=61,P(ABC)=0,则P(A B C)=___________. 4. 设X 为连续随机变量,c 为一个常数,则P {X =c }=_____________.5. 已知连续型随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧<+<=.2,1;20),1(31;0,31)(≥≤x x x x e x F x设X 的概率密度为f(x),则当x<0,f(x)= _______________.6. 已知随机变量X 的分布函数为F X (x),则随机变量Y=3X+2的分布函F Y (y)=_________.7. 设随机变量X ~N (2,4),则P {X≤2}=____________.8. 设随机变量X 的概率密度为f(x)=+∞<<-∞-x ex ,2122π,则E(X+1)=___________.9. 设随机变量X 与Y 相互独立,且X ~N (0,5),Y ~X 2(5),则随机变量YX Z =服从自由度为5的_______________分布。
2015年4月高等教育自学考试全国统一命题考试概率论与数理统计(二) 试卷(课程代码02197)本试卷共4页,满分l00分,考试时间l50分钟。
考生答题注意事项:1.本卷所有试题必须在答题卡上作答。
答在试卷上无效,试卷空白处和背面均可作草稿纸。
2.第一部分为选择题。
必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。
3.第二部分为非选择题。
必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答. 4.合理安排答题空间。
超出答题区域无效。
第一部分选择题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。
未涂、错涂或多涂均无分。
1.设A,B为随机事件,且B A,P(A)=0.4,P(B)=0.2,则P(B∣A)=A.O.2 B.0.4 C. 0.5 D.12.设随机变量X~B(3,0.2),则P{x>2}=A.0.008 B.0.488 C.0.512 D.0.9923.设随机变量X的概率密度为,则X~A.N(-2,2) B.N(-2,4) C.N(2,2) D.N(2,4)4.设随机变量X的分布函数为F(x),则下列结论中不一定成立的是A.F(-∞)=0 B.F(+∞)=1 C.0≤F(x)≤1 D.F(x)是连续函数5.设二维随机变量(X,Y)的分布律为则P(X≤Y)=A.O.25 B.0.45 C.O.55 D.0.756.设随机变量X服从参数为的指数分布,则E(2x—1)=A.0 B.1 C.3 D.47.设随机变量X与Y相互独立,且D(X)=D(Y)=4,则D(3X-Y)=A.8 B.16 C.32 D.408.设总体X服从正态分布N(0,1),x l,x2,…,x n是来自X的样本,则x12+x22+…+x n2~9.设x1,x2,x3,x4为来自总体X的样本,且E(X)= .记,,则的无偏估计是10.设总体X~N(),已知,x1,x2,…,x n为来自X的样本,为样本均值.假设H O:,已知,检验统计量u=,给定检验水平a,则拒绝H O的理由是第二部分非选择题二、填空题(本大题共l5小题,每小题2分,共30分)请在答题卡上作答。
2015年10月全国自考概率论与数理统计(二)模拟试卷(一)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题【正确答案】 B【你的答案】本题分数2分第2题【正确答案】 B【你的答案】本题分数2分第3题A. =0B. =1C. >0D. 不存在【正确答案】 A【你的答案】本题分数2分第4题【正确答案】 B【你的答案】本题分数2分第5题【正确答案】 B【你的答案】本题分数2分第6题设电灯泡使用寿命在2000小时以上的概率为0.15,如果要求12个灯泡在使用2000小时以后只有一个不坏的概率,则只需用()即可算出.A. 全概率公式B. 古典概型计算公式C. 贝叶斯公式D. 贝努利概型计算公式【正确答案】 D【你的答案】本题分数2分第7题甲、乙、丙三人独立地译一密码,他们每人译出的概率都是0.25,则密码被译出的概率为()A. 14B. 164C. 3764D. 6364【正确答案】 D【你的答案】本题分数2分第8题下面命题中错误的是()A. X与Y独立,是X与Y的相关系数ρXY=0的充要条件B. E(XY)=E(X)E(Y),是X与Y的相关系数ρXY=0的充要条件C. Cov(X,Y)=0,是X与Y的相关系数ρXY=0的充要条件D. D(X+Y)=D(X)+D(Y),是X与Y的相关系数ρXY=0的充要条件【正确答案】 A【你的答案】本题分数2分第9题某人打靶的命中率为0.8,现独立地射击5次,那么5次中有2次命中的概率为()A. (0.8)2×0.2B. (0.8)2C. C25(0.2)2(0.8)3D. C25(0.8)2×(0.2)3【正确答案】 D【你的答案】本题分数2分第10题【正确答案】 D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
高考数学概率20151.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束。
(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)2.(本小题13分)A,B两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A组:10,11,12,13,14,15,16B组:12,13,15,16,17,14,a假设所有病人的康复时间互相独立,从A,B两组随机各选1人,A组选出的人记为甲,B组选出的人记为乙.(Ⅰ) 求甲的康复时间不少于14天的概率;a ,求甲的康复时间比乙的康复时间长的概率;(Ⅱ) 如果25(Ⅲ) 当a为何值时,A,B两组病人康复时间的方差相等?(结论不要求证明)3.(本小题满分13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.4.(本小题满分12分)某厂用鲜牛奶在某台设备上生产,A B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产,A B两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为W12 15 18P0.3 0.5 0.2该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(Ⅰ)求Z的分布列和均值;(Ⅱ)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10000元的概率.5.(本小题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖。
《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的概率为__________.2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______.3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2X Y =在区间)4,0(内的概率密度为=)(y f Y _________.4. 设随机变量Y X ,相互独立,且均服从参数为λ的指数分布,2)1(-=>e X P ,则=λ_________,}1),{min(≤Y X P =_________.5. 设总体X 的概率密度为⎪⎩⎪⎨⎧<<+=其它,0,10,)1()(x x x f θθ 1->θ.n X X X ,,,21 是来自X 的样本,则未知参数θ的极大似然估计量为_________.解:1.3.0)(=+B A B A P即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P9.0)(1)()(=-==AB P AB P B A P . 2.λλλλλ---==+==+==≤e X P e e X P X P X P 2)2(,)1()0()1(2由 )2(4)1(==≤X P X P 知 λλλλλ---=+e e e 22即 0122=--λλ 解得 1=λ,故161)3(-==e X P . 3.设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则2()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U,所以(0X F =,即()Y X F y F = 故04,()()0,.Y Y X y f y F y f <<'===⎩其它另解 在(0,2)上函数2y x =严格单调,反函数为()h y =所以04,()0,.Y X y f y f <<==⎩其它4.2(1)1(1)P X P X e e λ-->=-≤==,故 2λ={min(,)1}1{min(,)1}P X Y P X Y ≤=->1(1)(1)P X P Y =->>41e -=-. 5.似然函数为 111(,,;)(1)(1)(,,)nn n i n i L x x x x x θθθθθ==+=+∏1ln ln(1)ln nii L n xθθ==++∑1ln ln 01ni i d L nx d θθ==++∑解似然方程得θ的极大似然估计为 1111ln ni i x n θ==-∑.二、单项选择题(每小题3分,共15分)1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是 (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则AC 与B 也独立.(C )若()0P C =,则A C 与B 也独立.(D )若C B ⊂,则A 与C 也独立. ( ) 2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为 (A )2[1(2)]-Φ. (B )2(2)1Φ-.(C )2(2)-Φ. (D )12(2)-Φ. ( ) 3.设随机变量X 和Y 不相关,则下列结论中正确的是(A )X 与Y 独立. (B )()D X Y DX DY -=+.(C )()D X Y DX DY -=-. (D )()D XY DXDY =. ( ) 4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==. ( ) 5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. ( )解:1.因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ). 3.由不相关的等价条件知应选(B ). 4.若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+ ∴29α=, 19β= 故应选(A ).5.1EX μ=,所以1X 是μ的无偏估计,应选(A ).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率. 解:设A =‘任取一产品,经检验认为是合格品’ B =‘任取一产品确是合格品’则(1) ()()(|)()(|)P A P B P A B P B P A B =+ 0.90.950.10.020.857.=⨯+⨯= (2) ()0.90.95(|)0.9977()0.857P AB P B A P A ⨯===.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5. 设X 为途中遇到红灯的次数,求X 的分布列、分布函数、数学期望和方差. 解:X 的概率分布为 3323()()()0,1,2,3.55kkkP X k C k -=== 即01232754368125125125125XPX 的分布函数为0,0,27,01,12581(),12,125117,23,1251,3.x x F x x x x <⎧⎪⎪≤<⎪⎪⎪=≤<⎨⎪⎪≤<⎪⎪≥⎪⎩ 263,55EX =⨯=231835525DX =⨯⨯=.五、(10分)设二维随机变量(,)X Y 在区域{(,)|0,0,1}D x y x y x y =≥≥+≤ 上服从均匀分布. 求(1)(,)X Y 关于X 的边缘概率密度;(2)Z X Y =+的分布函数与概率密度.(1)(,)X Y 的概率密度为 2,(,)(,)0,.x y Df x y ∈⎧=⎨⎩其它22,01()(,)0,X x x f x f x y dy +∞-∞-≤≤⎧==⎨⎩⎰其它(2)利用公式()(,)Z f z f x z x dx +∞-∞=-⎰其中2,01,01(,)0,x z x x f x z x ≤≤≤-≤-⎧-=⎨⎩其它2,01, 1.0,x x z ≤≤≤≤⎧=⎨⎩其它.当 0z <或1z >时()0Z f z = 01z ≤≤时 00()222z zZ f z dx x z ===⎰故Z 的概率密度为2,01,()0,Z z z f z ⎧≤≤⎪=⎨⎪⎩其它.Z 的分布函数为200,00,0,()()2,01,01,1, 1.1,1z z Z Z z z f z f y dy ydy z z z z z -∞<⎧<⎧⎪⎪⎪==≤≤=≤≤⎨⎨⎪⎪>⎩>⎪⎩⎰⎰或利用分布函数法10,0,()()()2,01,1, 1.Z D z F z P Z z P X Y z dxdy z z ⎧<⎪⎪=≤=+≤=≤≤⎨⎪⎪>⎩⎰⎰20,0,,01,1, 1.z z z z <⎧⎪=≤≤⎨⎪>⎩2,01,()()0,Z Z z z f z F z ≤≤⎧'==⎨⎩其它.六、(10分)向一目标射击,目标中心为坐标原点,已知命中点的横坐标X 和纵坐标Y 相互独立,且均服从2(0,2)N 分布. 求(1)命中环形区域22{(,)|12}D x y x y =≤+≤的概率;(2)命中点到目标中心距离Z =的数学期望.1){,)}(,)DP X Y D f x y dxdy ∈=⎰⎰2222288111248x y r De dxdy erdrd πθππ+--==⋅⎰⎰⎰⎰2221122888211()8r r red ee e ------=-=-⎰;(2)22818x y EZ E e dxdy π+-+∞-∞-∞==⎰⎰2222881184r r rerdrd e r dr πθπ--+∞+∞==⎰⎰⎰2228882r r r reedr dr +∞---+∞+∞-∞=-+==⎰⎰七、(11分)设某机器生产的零件长度(单位:cm )2~(,)X N μσ,今抽取容量为16的样本,测得样本均值10x =,样本方差20.16s =. (1)求μ的置信度为0.95的置信区间;(2)检验假设20:0.1H σ≤(显著性水平为0.05).(附注)0.050.050.025(16) 1.746,(15) 1.753,(15) 2.132,t t t ===2220.050.050.025(16)26.296,(15)24.996,(15)27.488.χχχ===解:(1)μ的置信度为1α-下的置信区间为 /2/2(((X t n X t n αα--+-0.02510,0.4,16,0.05,(15) 2.132X s n t α===== 所以μ的置信度为0.95的置信区间为(9.7868,10.2132)(2)20:0.1H σ≤的拒绝域为22(1)n αχχ≥-.221515 1.6240.1S χ==⨯=,20.05(15)24.996χ= 因为 220.052424.996(15)χχ=<=,所以接受0H .《概率论与数理统计》期末试题(3)与解答一、填空题(每小题3分,共15分)(1) 设事件A 与B 相互独立,事件B 与C 互不相容,事件A 与C 互不相容,且()()0.5P A P B ==,()0.2P C =,则事件A 、B 、C 中仅C 发生或仅C 不发生的概率为___________.(2) 甲盒中有2个白球和3个黑球,乙盒中有3个白球和2个黑球,今从每个盒中各取2个球,发现它们是同一颜色的,则这颜色是黑色的概率为___________. (3) 设随机变量X 的概率密度为2,01,()0,x x f x <<⎧=⎨⎩其它, 现对X 进行四次独立重复观察,用Y 表示观察值不大于的次数,则2EY =___________. (4) 设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pa b若0.8EXY =,则Cov(,)X Y =____________.(5) 设1217,,,X X X 是总体(,4)N μ的样本,2S 是样本方差,若2()0.01P S a >=,则a =____________.(注:20.01(17)33.4χ=, 20.005(17)35.7χ=, 20.01(16)32.0χ=, 20.005(16)34.2χ=)解:(1)()()()P ABC ABC P ABC P ABC +=+因为 A 与C 不相容,B 与C 不相容,所以,A C B C ⊃⊃,故ABC C = 同理 ABC AB =.()()()0.20.50.50.45P ABC ABC P C P AB +=+=+⨯=. (2)设A =‘四个球是同一颜色的’,1B =‘四个球都是白球’,2B =‘四个球都是黑球’ 则 12A B B =+. 所求概率为 22212()()(|)()()()P AB P B P B A P A P B P B ==+ 22223322122222555533(),()100100C C C C P B P B C C C C =⋅==⋅=所以 21(|)2P B A =.(3)~(4,),Y B p其中 10.52201(0.5)24p P X xdx x=≤===⎰, 113341,44444EY DY =⨯==⨯⨯=, 2215()144EY DY EY =+=+=.(4)(,)X Y 的分布为这是因为 0.4a b +=,由0.8EXY = 得 0.220.8b += 0.1,0.3a b ∴==0.620.4 1.4EX =+⨯=,0.5EY =故 cov(,)0.80.70.1X Y EXY EXEY =-=-=.(5)2216(){4}0.014S P S a P a >=>= 即 20.01(16)4a χ=,亦即 432a = 8a ∴=.二、单项选择题(每小题3分,共15分)(1)设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有 (A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤(C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥ ( )(2)设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞且~(0,1)Y aX b N =+,则在下列各组数中应取(A )1/2, 1.a b == (B )2,a b ==(C )1/2,1a b ==-. (D )2,a b == ( )(3)设随机变量X 与Y 相互独立,其概率分布分别为010.40.6XP010.40.6Y P则有(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == ( ) (4)对任意随机变量X ,若EX 存在,则[()]E E EX 等于(A )0. (B ).X (C ).EX (D )3().EX ( ) (5)设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为(A)/2/2(x u x u αα-+ (B)1/2/2(x u x u αα--+ (C)(x u x u αα-+ (D)/2/2(x u x u αα-+ ( ) 解 (1)由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+-应选C. (2)22(2)4()x f x +-==即~(2,)X N -故当a b ===时 ~(0,1)Y aX b N =+ 应选B.(3)()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.(4)[()]E E EX EX = 应选C.(5)因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D.三、(8分)装有10件某产品(其中一等品5件,二等品3件,三等品2件)的箱子中丢失一件产品,但不知是几等品,今从箱中任取2件产品,结果都 是一等品,求丢失的也是一等品的概率。
2005级建筑工程(本)自考班 概率统计期末考试题(B 卷)
一、填空(每小题2分,共10分)
1. 若随机变量 X 的概率分布为 {}k
P X k C ==
,()123k =,,,则=C ( )。
2. 设随机变量 ()2X B p 服从,,且 {}9
5
1=≥X P ,则p =( )。
3. 设随机变量 ()1X N -服从,4,则 {}=<+01X P ( )。
4.设B A ,为两个随机事件,()0.6P A =,()0.2P A B -=,则()
P AB =( )。
5.设C B A ,,是三个随机事件,()()()14P A P B P C ===,()1
6
P AC =,()0P AB =、()0P BC =,则C B A ,,至少发生一个的概率为( )。
二、单项选择(每题的四个选项中只有一个是正确答案,请将正确答案的番号填在括号内。
每小题2分,共20分)
1. 设 ()1F x 与 ()2F x 分别是两个随机变量的分布函数,为使 ()()()12F x aF x bF x =- 是某一随机变量的分布函数,在下列给定的各组数值中应取( )。
(A ) 21
33a b ==, (B ) 13
22a b =
=-, (C ) 32
55
a b ==-,
(D ) 13
22
a b =-=,
2. 设随机变量X 的概率密度为()cos 020A x x p x π⎧
<<
⎪=⎨⎪⎩
其它,则=A ( )。
(A ) 2π (B ) 1
(C ) π (D ) 0
3.下列函数为随机变量分布密度的是( )。
(A ) sin 0()20 x x p x π⎧<<⎪=⎨⎪⎩,,其它 (B ) 3sin 0()20 x x p x π⎧
<<⎪=⎨⎪⎩,
,
其它
(C ) sin 0()0 x x p x π<<⎧=⎨⎩,
,
其它
(D ) sin 02()0 x x p x π<<⎧=⎨⎩,
,
其它
4.下列函数为正态分布密度的是( )。
(A ) 22
()
x x p x +-
= (B ) 2
(21)()x p x -+=
(C ) 2
() 2
()
x p x μ--= (D ) 21
4
()x p x --=
5. 设随机变量X 的概率度为()p x ,X Y -=,则Y 的概率密度为( )。
(A ) ()p y - (B ) ()1p y -- (C ) ()p y -
(D ) ()p y
6. 设C B A ,,相互独立()()()1
3P A P B P C ===
,则()P A B C =( )。
(A )
2
3 (B ) 19
(C ) 1927
(D ) 127
7.设C B A ,,是三个随机事件,且有()(
)
0.90.8A B A C P A P B
C ⊃⊃==,,,,则
()P A BC -=( )。
(A ) 0.1 (B ) 0.6 (C ) 0.8
(D ) 0.7
8. 进行一系列独立的试验,每次试验成功的概率为p ,则在成功2次之前已经失败3次的概率为( )。
(A ) p 2(1– p )3 (B ) 4 p (1– p )3 (C ) 5 p 2(1– p )3 (D ) 4 p 2(1– p )3 9. 设A 、B 为两随机事件,且B A ⊂,则下列式子正确的是( )。
(A ) ()()P A
B P B = (B ) ()()P AB P B =
(C ) ()()|P B A P B = (D ) ()()()P B A P B P A -=- 10. 设事件A 与B 同时发生时,事件C 一定发生,则( )。
(A ) P (A B ) = P (C ) (B ) P (A ) + P (B ) – P (C ) ≤ 1
(C ) P (A ) + P (B ) – P (C ) ≥ 1 (D ) P (A ) + P (B ) ≤ P (C )
三、计算与应用题(每小题8分,共64分)
1. 盒内有12个乒乓球,其中9个是新球,3个是旧球。
采取不放回抽取,每次取一个,直到取到新球为止。
求抽取次数X 的概率分布。
2. 车间中有6名工人在各自独立的工作,已知每个人在1小时内有12分钟需用小吊车。
求(1)在同一时刻需用小吊车人数的最可能值是多少?
(2)若车间中仅有2台小吊车,则因小吊车不够而耽误工作的概率是多少?
3. 某种电子元件的寿命X 是随机变量,其概率密度为
2
100()0100
C x p x x x ⎧≥⎪=⎨⎪<⎩
求(1)常数C ;
(2)若将3个这种元件串联在一条线路上,试计算该线路使用150小时后仍能正常工作的概率。
4. 某种电池的寿命(单位:小时)是一个随机变量X ,且()
~300X N 2
,35。
求(1)这样的电池寿命在250小时以上的概率;
(2)a ,使电池寿命在()300300a a -+,内的概率不小于0.9。
5. 加工某种零件,需经过三道工序,假定第一、二、三道工序的次品率分别为0.2,0.1,0.1,并且任何一道工序是否出次品与其它各道工序无关。
求该种零件的次品率。
6. 已知某品的合格率为0.95,而合格品中的一级品率为0.65。
求该产品的一级品率。
7. 一箱产品共100件,其中次品个数从0到2是等可能的。
开箱检验时,从中随机抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收。
若已知该箱产品已通过验收, 求其中确实没有次品的概率。
8. 某厂的产品,%80按甲工艺加工,%20按乙工艺加工,两种工艺加工出来的产品的合格率分别为0.8与0.9。
现从该厂的产品中有放回地取5件来检验, 求其中最多有一件次品的概率。
四、证明题(共6分)
设随机变量X 服从参数为2的指数分布。
证明:21X Y e -=-在区间()01,上,服从均匀分布。