双曲线及其标准方程练习题答案及详解 (2)
- 格式:doc
- 大小:43.50 KB
- 文档页数:4
双曲线及其标准方程班级:____________ 姓名:__________________一、选择题1.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( ) A .x 216-y 29=1 B .x 216-y 29=1(x ≥4) C .x 29-y 216=1 D .x 29-y 216=1(x ≥3) 2.已知双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .⎝⎛⎭⎫22,0 B .⎝⎛⎭⎫52,0 C .⎝⎛⎭⎫62,0 D .(3,0)3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( ) A .x 23-y 2=1 B .y 2-x 23=1 C .x 23-y 24=1 D .y 23-x 24=1 4.已知双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,则点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或285.设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1C .12D .26.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .20 7.如图,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,若|AN |-|BN |=12,则a =( )A .3B .4C .5D .6二、填空题8.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是________. 9.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.10.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为____________.三、解答题11.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.12.如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M到它的一个焦点的距离等于16,求点M到另一个焦点的距离;(2)若P是双曲线左支上的点,且|PF1|·|PF2|=32,试求△F1PF2的面积.13.已知双曲线过点(3,-2)且与椭圆4x2+9y2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M在双曲线上,F1,F2为左、右焦点,且|MF1|+|MF2|=63,试判断△MF1F2的形状.双曲线及其标准方程班级:____________ 姓名:__________________一、选择题1.已知平面内两定点A (-5,0),B (5,0),动点M 满足|MA |-|MB |=6,则点M 的轨迹方程是( ) A .x 216-y 29=1 B .x 216-y 29=1(x ≥4) C .x 29-y 216=1 D .x 29-y 216=1(x ≥3) 解析:选D .由|MA |-|MB |=6,且6<|AB |=10,得a =3,c =5,b 2=c 2-a 2=16.故其轨迹为以A ,B 为焦点的双曲线的右支.所以方程为x 29-y 216=1(x ≥3). 2.已知双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( )A .⎝⎛⎭⎫22,0 B .⎝⎛⎭⎫52,0 C .⎝⎛⎭⎫62,0 D .(3,0)解析:选C .将双曲线方程化成标准方程为x 21-y 212=1, 所以a 2=1,b 2=12,所以c =a 2+b 2=62, 故右焦点坐标为⎝⎛⎭⎫62,0. 3.以椭圆x 23+y 24=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线的方程是( ) A .x 23-y 2=1 B .y 2-x 23=1 C .x 23-y 24=1 D .y 23-x 24=1 解析:选B .由题意知,双曲线的焦点在y 轴上,且a =1,c =2,所以b 2=3,所以双曲线的方程为y 2-x 23=1. 4.已知双曲线Γ:x 2λ-y 29=1上有一点M 到Γ的右焦点F 1(34,0)的距离为18,则点M 到Γ的左焦点F 2的距离是( )A .8B .28C .12D .8或28解析:选D .因为双曲线Γ:x 2λ-y 29=1的右焦点F 1(34,0),所以λ=34-9=25,所以双曲线Γ:x 225-y 29=1.根据双曲线的定义,可知||MF 1|-|MF 2||=2a =10,又|MF 1|=18,则|MF 2|=8或28.故选D . 5.设F 1,F 2是双曲线x 24-y 2=1的左、右焦点,点P 在双曲线上,当△F 1PF 2的面积为1时,PF 1→·PF 2→的值为( )A .0B .1C .12D .2解析:选A .易知F 1(-5,0),F 2(5,0).不妨设P (x 0,y 0)(x 0,y 0>0),由12×2c ×y 0=1,得y 0=55, 所以P ⎝⎛⎭⎫2305,55,所以PF 1→=⎝⎛⎭⎫-5-2305,-55,PF 2→=⎝⎛⎭⎫5-2305,-55,所以PF 1→·PF 2→=0.6.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .20 解析:选B .由已知,|AB |+|AF 2|+|BF 2|=20.又|AB |=4,则|AF 2|+|BF 2|=16.根据双曲线的定义,2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.7.如图,已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点M 与双曲线C 的焦点不重合,点M 关于F 1,F 2的对称点分别为点A ,B ,线段MN 的中点Q 在双曲线的右支上,若|AN |-|BN |=12,则a =( )A .3B .4C .5D .6解析:选A .连接QF 1,QF 2.因为线段MN 的中点为Q ,点F 2为MB 的中点,所以|QF 2|=12|BN |,同理可得|QF 1|=12|AN |.因为点Q 在双曲线C 的右支上,所以|QF 1|-|QF 2|=2a ,所以12(|AN |-|BN |)=2a ,所以12×12=2a ,解得a =3.故选A .二、填空题8.椭圆x 24+y 2a 2=1与双曲线x 2a -y 22=1有相同的焦点,则a 的值是________.解析:依题意得⎩⎪⎨⎪⎧a >0,0<a 2<4,4-a 2=a +2,解得a =1.答案:19.在平面直角坐标系xOy 中,已知双曲线x 24-y 212=1上一点M 的横坐标为3,则点M 到此双曲线的右焦点的距离为________.解析:双曲线右焦点为(4,0),将x =3代入x 24-y 212=1,得y =±15. 所以点M 的坐标为(3,15)或(3,-15),所以点M 到双曲线右焦点的距离为(4-3)2+(±15)2=4.答案:410.已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为____________.解析:不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2,所以|F 1F 2|2=|PF 1|2+|PF 2|2=(22)2,又|PF 1|-|PF 2|=2,所以(|PF 1|-|PF 2|)2=4,可得2|PF 1|·|PF 2|=4,则(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3.答案:2 3三、解答题11.焦点在x 轴上的双曲线过点P (42,-3),且点Q (0,5)与两焦点的连线互相垂直,求此双曲线的标准方程.解:因为双曲线的焦点在x 轴上,所以设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0),F 1(-c ,0),F 2(c ,0). 因为双曲线过点P (42,-3),所以32a 2-9b2=1.① 又因为点Q (0,5)与两焦点的连线互相垂直,所以QF 1→·QF 2→=0,即-c 2+25=0.解得c 2=25.②又c 2=a 2+b 2,③所以由①②③可解得a 2=16或a 2=50(舍去).所以b 2=9,所以所求的双曲线的标准方程是x 216-y 29=1. 12.如图,若F 1,F 2是双曲线x 29-y 216=1的两个焦点.(1)若双曲线上一点M 到它的一个焦点的距离等于16,求点M 到另一个焦点的距离;(2)若P 是双曲线左支上的点,且|PF 1|·|PF 2|=32,试求△F 1PF 2的面积.解:(1)由双曲线的定义得||MF 1|-|MF 2||=2a =6,又双曲线上一点M 到它的一个焦点的距离等于16, 假设点M 到另一个焦点的距离等于x ,则|16-x |=6,解得x =10或x =22.由于c -a =5-3=2,10>2,22>2,故点M 到另一个焦点的距离为10或22.(2)将||PF 2|-|PF 1||=2a =6两边平方得|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|=36,所以|PF 1|2+|PF 2|2=36+2|PF 1|·|PF 2|=36+2×32=100.在△F 1PF 2中,由余弦定理得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=100-1002|PF 1|·|PF 2|=0, 所以∠F 1PF 2=90°,所以S =12×32=16. 13.(选做题)已知双曲线过点(3,-2)且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)若点M 在双曲线上,F 1,F 2为左、右焦点,且|MF 1|+|MF 2|=63,试判断△MF 1F 2的形状.解:(1)椭圆方程可化为x 29+y 24=1,焦点在x 轴上,且c =9-4=5,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0).依题意得⎩⎪⎨⎪⎧9a 2-4b 2=1,a 2+b 2=5,解得a 2=3,b 2=2, 所以双曲线的标准方程为x 23-y 22=1. (2)不妨设点M 在双曲线的右支上,则有|MF 1|-|MF 2|=23,因为|MF 1|+|MF 2|=63,所以|MF 1|=43,|MF 2|=2 3.又|F 1F 2|=25,因此在△MF 1F 2中,边MF 1最长,而cos ∠MF 2F 1=|MF 2|2+|F 1F 2|2-|MF 1|22|MF 2|·|F 1F 2|<0, 所以∠MF 2F 1为钝角,故△MF 1F 2为钝角三角形.。
1.双曲线的标准方程一.知识梳理1.定义:平面内与两定点1F 、2F 的距离的差的绝对值是常数(小于12||F F )的点的轨迹叫做双曲线.这两个定点1F 、2F 叫做双曲线的焦点,两个焦点之间的距离叫做焦距. 注:若定义中“差的绝对值”中的“绝对值”去掉的话,点的轨迹成为双面线的一支。
设()y x M ,为双曲线上的任意一点,若M 点在双曲线右支上,则()02,2121>=->a a MF MF MF MF ; 若M 在双曲线的左支上,则a MF MF MF MF 2,2121-=-<; 因此得a MF MF 221±=-.2.标准方程:焦点在x 轴上:()0,12222>>=-b a by a x焦点在y 轴上:()0,12222>>=-b a bx a y .可以看出,如果2x 项的系数是正的,那么焦点就在x 轴上;如果2y 项的系数是正的,那么焦点就在y 轴上.3.标准方程中的c b a ,,三个量满足222b a c +=4.方程()0122<=+mn ny mx 表示的曲线为双曲线,它包含焦点在x 轴上或在y 轴上两种情形.若将方程变形为11122=+n y m x ,则当0>m ,0<n 时,方程为11122=--ny m x ,它表示焦点在x 轴上的双曲线,此时nb m a 1,1-==;当0,0><n m 时,方程为11122=--mx n y ,它表示焦点在y 轴上的双曲线,此时mb n a 1,1-==。
因此,在求双曲线的标准方程时,若焦点的位置不确定,则常考虑上述设法. 三.例题分析题型1 双曲线的定义及应用例1.双曲线11442522=-y x 上一点P 到右焦点的距离是5,则下列结论正确的是 ( ) A.P 到左焦点的距离为8 B.P 到左焦点的距离为15 C.P 到左焦点的距离不确定 D.这样的P 点不存在习题1.双曲线116922=-y x 上一点P 到左焦点1F 的距离101=PF ,求P 点到右焦点2F 的距离2PF .习题24表示的曲线方程为( ) A .24x -25y =1(x ≤-2)B .24x -25y =1(x ≥2)C .24y -25x =1(y ≤-2)D .24y -25x =1(y ≥2)题型2.求双曲线方程例2. 求适合下列条件的双曲线的标准方程: (1)4=a ,经过点⎪⎪⎭⎫⎝⎛-3104,1A ;(2)经过点()24,3-、⎪⎭⎫ ⎝⎛5,49; (3)与双曲线141622=-y x 有相同的焦点,且经过点)2,23(.题型3.判断曲线类型例3.(1).“m>2”是“方程22121x y m m -=--表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件(2).设()0,2πθ∈,则“方程22134sin x y θ+=表示双曲线”的必要不充分条件为( )A .()0,πθ∈B .2,23πθπ⎛⎫∈ ⎪⎝⎭ C .3ππ,2θ⎛⎫∈ ⎪⎝⎭D .π3π,22θ⎛⎫∈ ⎪⎝⎭(3).已知方程22134x y m m +=+-表示双曲线,则m 的取值范围是______.(4).若方程22131x y m m-=+-表示焦点在x 轴上的双曲线,则实数m 的取值范围为____________.解析:(1)方程22121x y m m -=--表示双曲线等价于()()210m m --<,即1m <或m>2, 故“m>2”是“方程22121x y m m -=--表示双曲线”的充分不必要条件. 故选:A (2)由()0,2θ∈π,方程22134sin x y θ+=表示双曲线,则sin 0θ<,所以(),2θ∈ππ,根据选项,“方程22134sin x y θ+=表示双曲线”的必要不充分条件为B. 故选:B.(3)若方程22134x y m m +=+-表示在x 轴上的双曲线,则3040m m +>⎧⎨-<⎩,解得34-<<m ;若方程22134x y m m +=+-表示在y 轴上的双曲线,则3040m m +<⎧⎨->⎩,此时m ∈∅.综上所述,34-<<m . 故答案为:()3,4-.(4)因为方程22131x y m m -=+-表示焦点在x 轴上的双曲线,所以有3010m m +>⎧⎨->⎩,解得31m -<<,所以实数m 的取值范围为(3,1)-,故答案为:(3,1)-题型4 双曲线的轨迹例4.在△ABC 中,()6,0B -,()6,0C ,直线AB 、AC 的斜率乘积为94,求顶点A 的轨迹.例5.(1)已知两圆()()22221249,49C x y C x y ++=-+=::,动圆C 与圆1C 外切,且和圆2C 内切,则动圆C 的圆心C 的轨迹方程为( ) A .()221379y x x -=≥B .22197y x -=C .22179x y -=D .()221397x x y -=≥(2)已知动圆M 与圆1:C ()2242x y ++=外切,与圆2C :()2242x y -+=内切,则动圆圆心M 的轨迹方程为( ) A .()2212214x y x -=≥ B .()2212214x y x -=≤-C .()2212214x y x +=≥D .221214x y -=解析:(1)如图,设动圆C 的半径为R ,则13CC R =+,23CC R =-,则121268CC CC C C -=<=, 所以动圆圆心C 的轨迹是以1C ,2C 为焦点,以6为实轴长的双曲线的右支.因为26,28a c ==,所以2223,4,7a c b c a ===-=.故动圆圆心C 的轨迹方程为()221397x x y -=≥. 故选:D.(2)如图,由题意得:MB MA =,圆1:C ()2242x y ++=与圆2C :()2242x y -+=的半径2,即122BC AC =()121212MC MC MB BC MA AC MB BC MA AC -=+--=+-+1212228BC AC C C =+==,故点M 的轨迹为以12,C C 为焦点的双曲线的右支,其中222a =28c =,故2a =4c =,则22216214b c a =-=-=,所以轨迹方程为(2212214x y x -=≥,故选:A题型5.双曲线的最值问题例 6.(1).P 为双曲线11522=-y x 右支上一点,N M ,分别是圆()44:221=++y x C 和圆()14:222=+-y x C 上的点,则||||PN PM -的最大值为______.。
双曲线双曲线及其标准方程练习题(带答案)双曲线及其标准方程练习一、选择题(每小题四个选项中,只有一项符合题目要求) 1.已知点和,曲线上的动点P到、的距离之差为6,则曲线方程为()A. B. C.或 D. 2.“ab<0”是“方程表示双曲线”的() A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分又不必要条件 3.动圆与两圆和都相切,则动圆圆心的轨迹为() A.抛物线 B.圆 C.双曲线的一支 D.椭圆 4.P为双曲线上的一点,F 为一个焦点,以PF为直径的圆与圆的位置关系是() A.内切 B.内切或外切 C.外切 D.相离或相交 5.双曲线的左焦点为F,点P为左支的下半支上任一点(非顶点),则直线PF的斜率的范围是()A.(-∞,0]∪[1,+∞) B.(-∞,0)∪(1,+∞) C.(-∞,-1)∪[1,+∞) D.(-∞,-1)∪(1,+∞) 6.若椭圆和双曲线有相同的焦点、,P是两曲线的一个公共点,则的值是() A.m -a B. C. D.二、填空题 7.双曲线的一个焦点是,则m的值是________ _。
8.过双曲线的焦点且垂直于x轴的弦的长度为_______。
三、解答题 9.已知双曲线过点A(-2,4)、B(4,4),它的一个焦点是,求它的另一个焦点的轨迹方程。
10.已知直线y=ax+1与双曲线相交于A、B两点,是否存在这样的实数a,使得A、B关于直线y=2x对称?如果存在,求出a的值,如果不存在,说明理由。
11.A、B、C是我方三个炮兵阵地,A在B的正东相距6km,C在B的北偏西30°相距4km,P为敌炮兵阵地,某时刻A发现敌炮阵地的某种信号,4秒种后,B、C才同时发现这一信号,该信号的传播速度为每秒1km, A若炮击P地,求炮击的方位角。
答案与提示一、1.D 2.A 3.C 4.B 5.B 6.A 二、7.-2 8.三、9.提示:易知由双曲线定义知即① 即此时点的轨迹为线段AB 的中垂线,其方程为x=1(y≠0) ② 即此时点的轨迹为以A、B为焦点,长轴长为10的椭圆,其方程为(y≠0) 10.不存在 11.提示:以AB的中点为原点,正东、正北方向分别为x轴、y轴建立直角坐标系,则A(3,0),B(-3,0),,依题意|PB|-|PA|=4 ∴ P 点在以A、B为焦点的双曲线的右支上,其中c=3,2a=4,则,方程为又|PB|=|PC| ∴P在线段BC的垂直平分线上联立解得∴ 又∴α=60° ∴P点在A点东偏北60°处,即A炮击P地时,炮击的方位角为北偏东30°。
§2.2 双曲线2.2.1 双曲线及其标准方程 课时目标 1.了解双曲线的定义、几何图形和标准方程的推导过程.2.掌握双曲线的标准方程.3.会利用双曲线的定义和标准方程解决简单的应用问题.1.双曲线的有关概念(1)双曲线的定义平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于________)的点的轨迹叫做双曲线.平面内与两个定点F 1,F 2的距离的差的绝对值等于|F 1F 2|时的点的轨迹为 __________________________________________.平面内与两个定点F 1,F 2的距离的差的绝对值大于|F 1F 2|时的点的轨迹__________.(2)双曲线的焦点和焦距双曲线定义中的两个定点F 1、F 2叫做________________,两焦点间的距离叫做________________.2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程是________________,焦点F 1__________,F 2__________.(2)焦点在y 轴上的双曲线的标准方程是________________________,焦点F 1________,F 2__________.(3)双曲线中a 、b 、c 的关系是____________.一、选择题1.已知平面上定点F 1、F 2及动点M ,命题甲:||MF 1|-|MF 2||=2a (a 为常数),命题乙:M 点轨迹是以F 1、F 2为焦点的双曲线,则甲是乙的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.若ax 2+by 2=b (ab <0),则这个曲线是( )A .双曲线,焦点在x 轴上B .双曲线,焦点在y 轴上C .椭圆,焦点在x 轴上D .椭圆,焦点在y 轴上3.焦点分别为(-2,0),(2,0)且经过点(2,3)的双曲线的标准方程为( )A .x 2-y 23=1 B.x 23-y 2=1 C .y 2-x 23=1 D .x 22-y 22=1 4.双曲线x 2m -y 23+m=1的一个焦点为(2,0),则m 的值为( ) A .12B .1或3C .1+22D .2-125.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( )A .抛物线B .圆C .双曲线的一支D .椭圆6.已知双曲线中心在坐标原点且一个焦点为F 1(-5,0),点P 位于该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的方程是( )A .x 24-y 2=1B .x 2-y 24=1 C .x 22-y 23=1 D .x 23-y 22=1题号 1 2 3 4 5 6 答案7.设F 1、F 2是双曲线 x 24-y 2=1的两个焦点,点P 在双曲线上,且PF 1→·PF 2→=0,则|PF 1|·|PF 2|=______.8.已知方程x 21+k -y 21-k=1表示双曲线,则k 的取值范围是________. 9.F 1、F 2是双曲线x 29-y 216=1的两个焦点,P 在双曲线上且满足|PF 1|·|PF 2|=32,则∠F 1PF 2=______.三、解答题10.设双曲线与椭圆x 227+y 236=1有相同的焦点,且与椭圆相交,一个交点A 的纵坐标为4,求此双曲线的标准方程.11.在△ABC 中,B (4,0)、C (-4,0),动点A 满足sin B -sin C =12sin A ,求动点A 的轨迹方程.能力提升12.若点O 和点F(-2,0)分别为双曲线x 2a2-y 2=1(a>0)的中心和左焦点,点P 为双曲线右支上的任意一点,则OP →·FP →的取值范围为( )A .[3-23,+∞)B .[3+23,+∞)C .[-74,+∞)D .[74,+∞) 13.已知双曲线的一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,求双曲线的标准方程.1.双曲线的标准方程可以通过待定系数法求得.2.和双曲线有关的轨迹问题要按照求轨迹方程的一般步骤来解,也要和双曲线的定义相结合.3.直线和双曲线的交点问题可以转化为解方程组(设而不求),利用韦达定理,弦长公式等解决.§2.2 双曲线2.2.1 双曲线及其标准方程答案知识梳理1.(1)|F 1F 2| 以F 1,F 2为端点的两条射线 不存在 (2)双曲线的焦点 双曲线的焦距2.(1)x 2a 2-y 2b 2=1(a >0,b >0) (-c,0) (c,0) (2)y 2a 2-x 2b 2=1(a >0,b >0) (0,-c ) (0,c ) (3)c 2=a 2+b 2作业设计1.B [根据双曲线的定义,乙⇒甲,但甲 乙,只有当2a <|F 1F 2|且a ≠0时,其轨迹才是双曲线.]2.B [原方程可化为x 2b a+y 2=1,因为ab <0,所以b a<0,所以曲线是焦点在y 轴上的双曲线,故选B.]3.A [∵双曲线的焦点在x 轴上,∴设双曲线方程为x 2a 2-y 2b 2=1 (a >0,b >0). 由题知c =2,∴a 2+b 2=4. ①又点(2,3)在双曲线上,∴22a 2-32b 2=1. ② 由①②解得a 2=1,b 2=3,∴所求双曲线的标准方程为x 2-y 23=1.] 4.A [∵双曲线的焦点为(2,0),在x 轴上且c =2,∴m +3+m =c 2=4.∴m =12.] 5.C [由题意两定圆的圆心坐标为O 1(0,0),O 2(4,0),设动圆圆心为O ,动圆半径为r ,则|OO 1|=r +1,|OO 2|=r +2,∴|OO 2|-|OO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.]6.B [设双曲线方程为x 2a 2-y 2b 2=1,因为c =5,c 2=a 2+b 2,所以b 2=5-a 2,所以 x 2a 2-y 25-a 2=1.由于线段PF 1的中点坐标为(0,2),则P 点的坐标为(5,4).代入双曲线方程得5a 2-165-a 2=1,解得a 2=1或a 2=25(舍去),所以双曲线方程为x 2-y 24=1.故选B.]7.2解析 ∵||PF 1|-|PF 2||=4, 又PF 1⊥PF 2,|F 1F 2|=25, ∴|PF 1|2+|PF 2|2=20,∴(|PF 1|-|PF 2|)2=20-2|PF 1||PF 2|=16,∴|PF 1|·|PF 2|=2.8.-1<k <1解析 因为方程x 21+k -y 21-k=1表示双曲线, 所以(1+k )(1-k )>0.所以(k +1)(k -1)<0.所以-1<k <1.9.90°解析 设∠F 1PF 2=α,|PF 1|=r 1,|PF 2|=r 2.在△F 1PF 2中,由余弦定理,得(2c )2=r 21+r 22-2r 1r 2cos α,∴cos α=(r 1-r 2)2+2r 1r 2-4c 22r 1r 2=36+64-10064=0. ∴α=90°.10.解 方法一 设双曲线的标准方程为y 2a 2-x 2b2=1 (a >0,b >0),由题意知c 2=36-27 =9,c =3.又点A 的纵坐标为4,则横坐标为±15,于是有⎩⎪⎨⎪⎧ 42a 2-(±15)2b 2=1,a 2+b 2=9,解得⎩⎪⎨⎪⎧a 2=4,b 2=5. 所以双曲线的标准方程为y 24-x 25=1. 方法二 将点A 的纵坐标代入椭圆方程得A (±15,4),又两焦点分别为F 1(0,3),F 2(0,-3).所以2a =|(±15-0)2+(4+3)2-(±15-0)2+(4-3)2|=4,即a =2,b 2=c 2-a 2=9-4=5,所以双曲线的标准方程为y 24-x 25=1. 11.解 设A 点的坐标为(x ,y ),在△ABC 中,由正弦定理,得a sin A =b sin B =c sin C=2R , 代入sin B -sin C =12sin A , 得|AC |2R -|AB |2R =12·|BC |2R,又|BC |=8, 所以|AC |-|AB |=4.因此A 点的轨迹是以B 、C 为焦点的双曲线的右支(除去右顶点)且2a =4,2c =8,所以 a =2,c =4,b 2=12.所以A 点的轨迹方程为x 24-y 212=1 (x >2). 12.B[由c =2得a 2+1=4,∴a 2=3,∴双曲线方程为x 23-y 2=1. 设P (x ,y )(x ≥3),∴ OP →·FP →=(x ,y )·(x +2,y )=x 2+2x +y 2 =x 2+2x +x 23-1 =43x 2+2x -1(x ≥3). 令g (x )=43x 2+2x -1(x ≥3),则g (x )在[3,+∞)上单调递增.g (x )min =g (3)=3+2 3. OP →·FP →的取值范围为[3+23,+∞).]13.解 设双曲线的标准方程为x 2a 2-y 2b2=1, 且c =7,则a 2+b 2=7.① 由MN 中点的横坐标为-23知, 中点坐标为⎝⎛⎭⎫-23,-53. 设M (x 1,y 1),N (x 2,y 2),则由⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 得b 2(x 1+x 2)(x 1-x 2)-a 2(y 1+y 2)(y 1-y 2)=0.∵⎩⎨⎧x 1+x 2=-43y 1+y 2=-103,且y 1-y 2x 1-x 2=1, ∴2b 2=5a 2.②由①,②求得a 2=2,b 2=5.∴所求双曲线的标准方程为x 22-y 25=1.。
§2 双曲线2.1 双曲线及其标准方程必备知识基础练知识点一 双曲线的定义1.动点P 到点M (1,0)及点N (5,0)的距离之差为2a ,则当a =1和a =2时,点P 的轨迹分别是( )A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条射线D .双曲线的一支和一条直线 2.一动圆与两圆:x 2+y 2=1和x 2+y 2-8x +12=0都外切,则动圆圆心的轨迹为( ) A .抛物线 B .圆 C .双曲线的一支 D .椭圆 知识点二 双曲线的标准方程3.“m >1且m ≠2”是“方程x 22-m -y 2m -1=1表示双曲线”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.求适合下列条件的双曲线的标准方程:(1)焦点分别为(-2,0),(2,0),且经过点(2,3); (2)焦点在y 轴上,且经过点(2,-5),a =25 ;(3)以椭圆x 28+y 25=1的长轴端点为焦点,且经过点(3,10 );(4)经过点A (2,233),B (3,-22 );(5)与双曲线x 216-y 24=1有公共焦点,且经过点(32 ,2).知识点三 双曲线的定义及方程的应用5.若双曲线E :x 29 -y 2160=1的左、右焦点分别为F 1,F 2,点P 在双曲线E 上,且|PF 1|=15,则|PF 2|=( )A .9B .21C .9或21D .186.已知双曲线x 2m -y 27=1,直线l 过其左焦点F 1,交双曲线左支于A ,B 两点,且|AB |=4,F 2为双曲线的右焦点,△ABF 2的周长为20,则m 的值为( )A .8B .9C .16D .207.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.关键能力综合练一、选择题1.已知M (-2,0),N (2,0),|PM |-|PN |=4,则动点P 的轨迹是( )A .双曲线B .双曲线左支C .一条射线D .双曲线右支2.双曲线x 225 -y 29=1上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .23.已知双曲线的一个焦点为F 1(-5 ,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则该双曲线的标准方程是( )A .x 24 -y 2=1B .x 2-y 24=1C .x22-y23=1 D .x23-y 22=1 4.已知双曲线的中心在原点,两个焦点F 1,F 2分别为(5 ,0)和(-5 ,0),点P 在双曲线上,且PF 1⊥PF 2,△PF 1F 2的面积为1,则双曲线的方程为( )A .x 22-y 23=1 B .x 23-y 22=1C .x24 -y 2=1 D .x 2-y24=15.[易错题]已知O 为坐标原点,设F 1,F 2分别是双曲线x 2-y 2=1的左、右焦点,P 为双曲线上任一点,过点F 1作∠F 1PF 2的平分线的垂线,垂足为H ,则|OH |=( )A .1B .2C .4D .12二、填空题6.[双空题]若方程y 24 -x 2m +1=1表示双曲线,则实数m 的取值范围是____________;若表示椭圆,则m 的取值范围是____________.7.已知双曲线与椭圆x 227 +y 236=1有相同的焦点,且与椭圆的一个交点的纵坐标为4,则双曲线的方程为________.8.[探究题]已知双曲线C :x 2-y 23=1的左焦点为F 1,点Q (0,23 ),P 是双曲线C右支上的动点,则|PF 1|+|PQ |的最小值为________.三、解答题9.在①m >0,且C 的右支上任意一点到左焦点的距离的最小值为3+23 ;②C 的焦距为43 ;③C 上一点到两焦点距离之差的绝对值为6,这三个条件中任选一个,补充在下面的问题中并解答.问题:已知双曲线C :x 23m -y 2m=1,________,求C 的方程.注:如果选择多个条件分别解答,则按第一个解答计分.学科素养升级练1.[多选题]已知点P 在双曲线C :x 216 -y 29=1上,F 1,F 2是双曲线C 的左、右焦点,若△PF 1F 2的面积为20,则下列说法正确的有( )A .点P 到x 轴的距离为203B .|PF 1|+|PF 2|=503C .△PF 1F 2为钝角三角形D .∠F 1PF 2=π32.[情境命题——生活情境]某地发生地震,为了援救灾民,救援员在如图所示的P 处收到一批救灾药品,现要把这批药品沿道路PA ,PB 运送到矩形灾民区ABCD 中去,已知PA =100 km ,PB =150 km ,BC =60 km ,∠APB =60°,试在灾民区中确定一条界线,使位于界线一侧的点沿道路PA 送药较近,而另一侧的点沿道路PB 送药较近,请说明这一界线是一条什么曲线,并求出其方程.2.1 双曲线及其标准方程必备知识基础练1.解析:由题意,知|MN |=4,当a =1时,|PM |-|PN |=2a =2<4,此时点P 的轨迹是双曲线的一支;当a =2时,|PM |-|PN |=2a =4=|MN |,点P 的轨迹为以N 为端点沿x 轴向右的一条射线.答案:C2.解析:由题意两定圆的圆心坐标分别为O 1(0,0),O 2(4,0),半径分别为1,2.设动圆圆心为C ,动圆半径为r ,则|CO 1|=r +1,|CO 2|=r +2,∴|CO 2|-|CO 1|=1<|O 1O 2|=4,故动圆圆心的轨迹为双曲线的一支.答案:C3.解析:若方程x 22-m -y 2m -1 =1表示双曲线,则(2-m )·(m -1)>0,解得1<m <2.当1<m <2时,可推出“方程x 22-m-y 2m -1 =1表示双曲线”,故“m >1且m ≠2”是“方程x 22-m-y 2m -1=1表示双曲线”的必要不充分条件.答案:B4.解析:(1)∵双曲线的焦点在x 轴上,∴设双曲线的标准方程为x 2a 2 -y 2b2 =1(a >0,b >0).由题知c =2,∴a 2+b 2=4 ①.又∵点(2,3)在双曲线上, ∴22a 2 -32b2 =1 ②. 由①②解得a 2=1,b 2=3,所求双曲线的标准方程为x 2-y 23=1.(2)因为双曲线的焦点在y 轴上,所以可设双曲线的标准方程为y 2a 2 -x 2b2 =1(a >0,b >0).由a =25 ,点(2,-5)在双曲线上,可得⎩⎪⎨⎪⎧a =25,25a 2-4b2=1, 解得b 2=16.故所求双曲线的标准方程为y 220 -x 216=1.(3)由题意得,双曲线的焦点在x 轴上,且c =22 .设双曲线的标准方程为x 2a 2 -y 2b2 =1(a >0,b >0),由点(3,10 )在双曲线上,可得⎩⎪⎨⎪⎧a 2+b 2=c 2=8,9a 2-10b2=1, 解得⎩⎪⎨⎪⎧a 2=3,b 2=5, 故所求双曲线的标准方程为x 23-y 25=1.(4)可设双曲线的方程为mx 2+ny 2=1(mn <0).因为点A ⎝⎛⎭⎪⎫2,233 ,B (3,-22 )在双曲线上,所以⎩⎪⎨⎪⎧4m +43n =1,9m +8n =1, 解得⎩⎪⎨⎪⎧m =13,n =-14,故所求双曲线的标准方程为x 23-y 24=1.(5)易知双曲线x 216 -y 24=1的焦点在x 轴上,且c 21 =16+4=20,则待求双曲线的焦点也在x 轴上,且c 22=c 21=20.设其标准方程为x 2a 22 -y 220-a 22=1(a 22 <20) ①,因为点(32 ,2)在双曲线上,所以将(32 ,2)代入①中,得18a 22 -420-a 22=1,得a 2=12或a 2=30(舍去),故所求双曲线的标准方程为x 212 -y 28=1.5.解析:由于|PF 1|=15<c +a =13+3=16,所以点P 在双曲线E 的左支上,所以由双曲线的定义,得|PF 2|-|PF 1|=2a =6,即|PF 2|-15=6,故|PF 2|=21.答案:B6.解析:由已知,得|AB |+|AF 2|+|BF 2|=20.因为|AB |=4,所以|AF 2|+|BF 2|=16.根据双曲线的定义,知2a =|AF 2|-|AF 1|=|BF 2|-|BF 1|,所以4a =|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16-4=12,即a =3,所以m =a 2=9.答案:B 7.解析:由双曲线定义,知|PF 1|-|PF 2|=22 ,a =b =2 .∵|PF 1|=2|PF 2|,∴|PF 2|=22 ,|PF 1|=42 ,|F 1F 2|=2c =2a 2+b 2=4,∴cos∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2| =32+8-162×42×22=34 .答案:34关键能力综合练1.解析:因为|PM |-|PN |=4=|MN |,所以动点P 的轨迹是一条射线.故选C. 答案:C2.解析:因为a 2=25,所以a =5.设双曲线的左、右焦点分别为F 1,F 2,双曲线上一点为P . 由双曲线的定义可得||PF 1|-|PF 2||=10, 不妨设|PF 1|=12,所以|PF 1|-|PF 2|=±10, 所以|PF 2|=22或2.故选A. 答案:A3.解析:设双曲线的标准方程为x 2a 2 -y 2b 2 =1(a >0,b >0),因为c =5 ,c 2=a 2+b 2,所以b 2=5-a 2,所以x 2a 2 -y 25-a2 =1,因为线段PF 1的中点坐标为(0,2),所以点P 的坐标为(5 ,4),将P (5 ,4)代入双曲线方程,得5a 2 -165-a2 =1,解得a 2=1或a 2=25(舍去),所以双曲线的标准方程为x 2-y 24=1.故选B.答案:B4.解析:由题可得⎩⎨⎧|PF 1|·|PF 2|=2,|PF 1|2+|PF 2|2=(25)2,得(|PF 1|-|PF 2|)2=16,即2a =4,解得a =2,又因为c =5 ,所以b =1,所以双曲线的方程为x 24-y 2=1,故选C.答案:C5.解析:不妨在双曲线右支上取点P ,延长PF 2,F 1H ,交于点Q ,由角平分线性质可知|PF 1|=|PQ |,根据双曲线的定义得,|PF 1|-|PF 2|=2,从而|QF 2|=2,在△F 1QF 2中,OH 为其中位线,故|OH |=1.故选A.答案:A6.解析:若表示双曲线,则应有m +1>0,即m >-1;若表示椭圆,则有⎩⎪⎨⎪⎧m +1<0,m +1≠-4,解得m <-1且m ≠-5.答案:(-1,+∞) (-∞,-5)∪(-5,-1)7.解析:椭圆的焦点为F 1(0,-3),F 2(0,3),故可设双曲线方程为y 2a 2 -x 2b 2 =1(a >0,b >0),其中a 2+b 2=9,因为双曲线与椭圆的一个交点的纵坐标为4,所以该点的坐标为(15 ,4)或(-15 ,4),故16a 2 -15b2 =1.解方程组⎩⎪⎨⎪⎧a 2+b 2=9,16a 2-15b 2=1, 得⎩⎪⎨⎪⎧a 2=4,b 2=5,所以所求双曲线的方程为y 24-x 25=1.答案:y 24-x 25=18.解析:设双曲线的右焦点为F 2,如图,连接PF 2,QF 2.根据双曲线的定义可知|PF 1|-|PF 2|=2a =2,所以|PF 1|=|PF 2|+2,所以|PF 1|+|PQ |=|PF 2|+|PQ |+2≥|QF 2|+2,而Q (0,23 ),F 2(2,0),所以|QF 2|=22+(23)2 =4,所以|PF 1|+|PQ |的最小值为6.9.解析:选①:因为m >0,所以a 2=3m ,b 2=m ,c 2=a 2+b 2=4m , 则a =3m ,c =2m ,因为C 的右支上任意一点到左焦点的距离的最小值为3+23 ,所以3m +2m =(3 +2)m =3+23 ,解得m =3,C 的方程为x 29-y 23=1.选②:若m >0,则a 2=3m ,b 2=m ,c 2=a 2+b 2=4m ,c =2m ,因为C 的焦距为43 ,所以2c =4m =43 ,m =3,C 的方程为x 29-y 23=1;若m <0,则a 2=-m ,b 2=-3m ,c 2=a 2+b 2=-4m ,c =2-m ,因为C 的焦距为43 ,所以2c =4-m =43 ,m =-3,C 的方程为y 23-x 29=1,综上所述,C 的方程为x 29-y 23=1或y 23-x 29=1.选③:若m >0,则a 2=3m ,a =3m ,因为C 上一点到两焦点距离之差的绝对值为6,所以2a =23m =6,m =3,C 的方程为x 29-y 23=1;若m <0,则a 2=-m ,a =-m ,因为C 上一点到两焦点距离之差的绝对值为6,所以2a =2-m =6,m =-9,C 的方程为y 29-x 227=1,综上所述,C 的方程为x 29-y 23=1或y 29-x 227=1.学科素养升级练1.解析:因为在双曲线x 216-y 29=1中,a =4,b =3,所以c =16+9 =5,因为S △PF 1F 2=12·2c ·|y P |=5|y P |=20,所以|y P |=4,所以P 到x 轴的距离为4,故A 错误;不妨取P (203 ,4),又因为F 1(-5,0),F 2(5,0),则|PF 1|=(203+5)2+16 =373,|PF 2|= (203-5)2+16 =133 ,所以|PF 1|+|PF 2|=503 ,故B 正确;因为kPF 2=4-0203-5 =125>0,所以∠PF 2F 1为钝角,所以△PF 1F 2为钝角三角形,故C 正确;因为S △SS 1S 2=12|PF 1|·|PF 2|sin ∠F 1PF 2,即12 ×133 ×373 sin ∠F 1PF 2=20,则sin ∠F 1PF 2=360481 ,所以∠F 1PF 2≠π3,故D 错误.2.解析:灾民区ABCD中的点可分为三类,第一类沿道路PA送药较近,第二类沿道路PB送药较近,第三类沿道路PA和PB送药一样近.依题意,知界线是第三类点的轨迹.设M为界线上的任一点,则|PA|+|MA|=|PB|+|MB|,即|MA|-|MB|=|PB|-|PA|=50,因为|AB|=1002+1502-2×100×150×cos 60°=507>50,所以界线是以A,B为焦点的双曲线的右支的一部分.如图所示,以AB所在直线为x轴,线段AB的垂直平分线为y轴,建立平面直角坐标系.设所求双曲线的标准方程为x2a2-y2b2=1(a>0,b>0),易知a=25,c=257,所以b2=c2-a2=3 750.故双曲线的标准方程为x2625-y23 750=1.注意到点C的坐标为(257,60),故y的最大值为60,此时x=35,故界线的曲线方程为x2625-y23 750=1(25≤x≤35,0≤y≤60).。
第6课时 双曲线1.了解双曲线的定义、几何图形和标准方程及简单性质. 2.了解双曲线的实际背景及双曲线的简单应用. 3.理解数形结合的思想.【梳理自测】一、双曲线的概念已知点F 1(-4,0)和F 2(4,0),一曲线上的动点P 到F 1,F 2距离之差为6,该曲线方程是________.答案:x 29-y27=1(x≥3)◆此题主要考查了以下内容:平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离的差的绝对值为常数(小于|F 1F 2|且不等于零)的点的轨迹叫做双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫做焦距.集合P ={M||MF 1|-|MF 2||=2a},|F 1F 2|=2c ,其中a 、c 为常数且a >0,c >0; (1)当2a <2c 时,P 点的轨迹是双曲线; (2)当2a =2c 时,P 点的轨迹是两条射线; (3)当2a >2c 时,P 点不存在. 二、双曲线标准方程及性质1.(教材改编)双曲线x 210-y22=1的焦距为( )A .3 2B .4 2C .3 3D .4 32.双曲线y 2-x 2=2的渐近线方程是( )A .y =±xB .y =±2xC .y =±3xD .y =±2x3.已知双曲线x 2a 2-y25=1的右焦点为(3,0),则该双曲线的离心率等于( )A .31414 B .324 C .32D .434.双曲线mx2+y2=1的虚轴长是实轴长的2倍,则m=________.答案:1.D 2.A 3.C 4.-1 4◆此题主要考查了以下内容:考向一双曲线的定义及标准方程(1)(2014·陕西师大附中模拟)设过双曲线x2-y2=9左焦点F1的直线交双曲线的左支于点P,Q,F2为双曲线的右焦点.若|PQ|=7,则△F2PQ的周长为( ) A.19 B.26C.43 D.50(2)已知双曲线x2a2-y2b2=1(a>0,b>0)和椭圆x216+y29=1有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为________.【审题视点】(1)利用双曲线定义|PF2|-|QF2|=2a及三角形周长的计算求解.(2)已知双曲线的焦点及离心率求双曲线方程.【典例精讲】(1)如图,由双曲线的定义可得⎩⎪⎨⎪⎧|PF 2|-|PF 1|=2a ,|QF 2|-|QF 1|=2a ,将两式相加得|PF 2|+|QF 2|-|PQ|=4a , ∴△F 2PQ 的周长为|PF 2|+|QF 2|+|PQ| =4a +|PQ|+|PQ|=4×3+2×7=26.(2)椭圆x 216+y 29=1的焦点坐标为F 1(-7,0),F 2(7,0),离心率为e =74.由于双曲线x 2a 2-y 2b 2=1与椭圆x 216+y 29=1有相同的焦点,因此a 2+b 2=7.又双曲线的离心率e =a 2+b 2a =7a ,所以7a =274,所以a =2,b 2=c 2-a 2=3,故双曲线的方程为x 24-y23=1.【答案】 (1)B (2)x 24-y23=1【类题通法】 (1)涉及到双曲线上的点到焦点的距离问题时,经常考虑双曲线的定义. (2)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y2n =1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便;(3)当已知双曲线的渐近线方程bx±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(4)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y2b 2=λ(λ≠0),据其他条件确定λ的值.1.根据下列条件,求双曲线方程:(1)与双曲线x 29-y216=1有共同的渐近线,且过点(-3,23);(2)与双曲线x 216-y24=1有公共焦点,且过点(32,2).解析:(1)设所求双曲线方程为x 29-y216=λ(λ≠0),将点(-3,23)代入得λ=14,∴所求双曲线方程为x 29-y 216=14,即x 294-y24=1. (2)设双曲线方程为x 216-k -y24+k =1,将点(32,2)代入得k =4(k =-14舍去). ∴所求双曲线方程为x 212-y28=1.考向二 双曲线的性质及应用(1)(2014·哈尔滨模拟)已知P 是双曲线x 2a 2-y2b2=1(a >0,b >0)上的点,F 1,F 2是其焦点,双曲线的离心率是54,且PF 1→·PF 2→=0,若△PF 1F 2的面积为9,则a +b 的值为( )A .5B .6C .7D .8(2)F 1、F 2分别是双曲线x 2a 2-y2b 2=1(a >0,b >0)的左、右焦点,过F 1的直线l 与双曲线的左、右两支分别交于A 、B 两点.若△ABF 2是等边三角形,则该双曲线的离心率为( )A .2B .7C .13D .15【审题视点】 (1)利用PF 1→ ·PF 2→=0及e =54转化为a ,b 的方程组.(2)利用双曲线定义及余弦定理求a 与c 的关系. 【典例精讲】 (1)由PF 1→·PF 2→=0,得PF 1→⊥PF 2→,设|PF 1→|=m ,|PF 2→|=n ,不妨设m >n ,则m 2+n 2=4c 2,m -n =2a ,12mn =9,c a =54,解得⎩⎪⎨⎪⎧a =4,c =5, ∴b =3,∴a +b =7,故选C . (2)如图,由双曲线定义得,|BF 1|-|BF 2|=|AF 2|-|AF 1|=2a ,因为△ABF 2是正三角形,所以|BF 2|=|AF 2|=|AB|,因此|AF 1|=2a ,|AF 2|=4a ,且∠F 1AF 2=120°,在△F 1AF 2中,4c 2=4a 2+16a 2+2×2a ×4a ×12=28a 2,所以e =7,故选B .【答案】 (1)C (2)B【类题通法】 (1)求双曲线的离心率,就是求c 与a 的比值,一般不需要具体求出a ,c 的值,只需列出关于a ,b ,c 的方程或不等式解决即可.(2)双曲线的离心率与渐近线方程之间有着密切的联系,二者之间可以互求.2.(2014·济南模拟)过双曲线x 2a 2-y2b 2=1(a >0,b >0)的一个焦点F 作一条渐近线的垂线,若垂足恰在线段OF(O 为原点)的垂直平分线上,则双曲线的离心率为________.解析:如图所示,不妨设F 为右焦点,过F 作FP 垂直于一条渐近线,垂足为P ,过P 作PM⊥OF 于M.由已知得M 为OF 的中点,由射影定理知|PF|2=|FM||FO|,又F(c ,0),渐近线方程为bx -ay =0,∴|PF|=bcb 2+a2=b ,∴b 2=c 2·c ,即2b 2=c 2=a 2+b 2,∴a 2=b 2,∴e =c a = 1+b2a2= 2.答案: 2考向三 直线与双曲线的综合应用已知双曲线C :x 2a2-y 2=1(a >0)与l :x +y =1相交于两个不同的点A 、B ,l与y 轴交于点P ,若PA →=512PB →,则a =________.【审题视点】 联立方程组,利用P 、A 、B 坐标之间的关系,建立a 的方程. 【典例精讲】 因为双曲线C 与直线l 相交于两个不同的点,故知方程组⎩⎪⎨⎪⎧x 2a2-y 2=1,x +y =1有两组不同的实数解,消去y 并整理,得(1-a 2)x 2+2a 2x -2a 2=0,实数a 应满足⎩⎪⎨⎪⎧a >0,1-a 2≠0,4a 4+8a 2(1-a 2)>0, 解得0<a <2且a≠1. 设A(x 1,y 1)、B(x 2,y 2), 由一元二次方程根与系数的关系, 得x 1+x 2=2a2a 2-1,①x 1x 2=2a2a 2-1,②又P(0,1),由PA →=512PB →,得(x 1,y 1-1)=512(x 2,y 2-1),从而x 1=512x 2,③ 由①③,解得⎩⎪⎨⎪⎧x 1=517·2a 2a 2-1,x 2=1217·2a 2a 2-1代入②, 得517×1217×⎝ ⎛⎭⎪⎫2a 2a 2-12=2a 2a 2-1, 即2a 2a 2-1=28960,解得a =1713,⎝ ⎛⎭⎪⎫a =-1713舍去. 【答案】1713【类题通法】 (1)判断直线l 与双曲线E 的位置关系时,通常将直线l 的方程Ax +By +C =0(A 、B 不同时为0)代入双曲线E 的方程F(x ,y)=0,消去y(也可以消去x)得到一个关于变量x(或变量y)的一元方程.即⎩⎪⎨⎪⎧Ax +By +C =0F (x ,y )=0,消去y 后得ax 2+bx +c =0.由此转化为两点坐标的关系.(2)特殊情况考虑与渐近线平行的直线与双曲线的位置关系,数形结合求解.3.已知点A(-2,0),点B(2,0),且动点P 满足|PA|-|PB|=2,则动点P 的轨迹与直线y =k(x -2)有两个交点的充要条件为k∈________.解析:由已知得动点P 的轨迹为一双曲线的右支且2a =2,c =2,则b =c 2-a 2=1,∴P 点的轨迹方程为x 2-y 2=1(x >0),其一条渐近线方程为y =x.若P 点的轨迹与直线y =k(x -2)有两个交点,则需k∈(-∞,-1)∪(1,+∞).答案:(-∞,-1)∪ (1,+∞)双曲线与渐近线的关系不清致误(2014·浙江温州适应性测试)已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( )A .y =±22xB .y =±24xC .y =±xD .y =±22x 或y =±24x 【正解】 依题意c =3a ,∴c 2=9a 2.又c 2=a 2+b 2, ∴b 2a 2=8,b a =22,a b =24.故选D . 【答案】 D【易错点】 (1)默认为双曲线焦点在x 轴其渐近线为y =±ba x ,而错选为A .(2)把双曲线认为等轴双曲线而错选为C .(3)把a ,b ,c 的关系与椭圆c 2=a 2-b 2混淆致错.【警示】 (1)对于方程x 2a 2-y 2b 2=1来说,求渐近线方程就相当于求ba 的值,但要分焦点的位置是在x 轴还是在y 轴上,此题没有给出焦点的位置,其渐近线斜率有四种情况.(2)渐近线为y =±b a x 所对应的双曲线为x 2a 2-y2b 2=λ(λ≠0).当λ>0时,表示焦点在x 轴上,当λ<0时,焦点在y 轴上.1.(2013·高考福建卷)双曲线x 24-y 2=1的顶点到其渐近线的距离等于( )A .25B .45C .255 D .455解析:选C .求出双曲线的顶点和渐近线,再利用距离公式求解.双曲线的渐近线为直线y =±12x ,即x±2y =0,顶点为(±2,0),∴所求距离为d =|±2±0|5=255. 2.(2013·高考广东卷)已知中心在原点的双曲线C 的右焦点为F(3,0),离心率等于32,则C 的方程是( )A .x 24-y 25=1 B .x 24-y25=1 C .x 22-y 25=1 D .x 22-y25=1 解析:选B .求双曲线的标准方程需要确定焦点位置及参数a ,b 的值.右焦点为F(3,0)说明两层含义:双曲线的焦点在x 轴上;c =3.又离心率为c a =32,故a =2,b 2=c 2-a 2=32-22=5,故C 的方程为x 24-y25=1,选B .3.(2013·高考北京卷)双曲线x 2-y2m=1的离心率大于2的充分必要条件是( )A .m >12B .m ≥1C .m >1D .m >2解析:选C .用m 表示出双曲线的离心率,并根据离心率大于2建立关于m 的不等式求解.∵双曲线x 2-y2m=1的离心率e =1+m ,又∵e >2,∴1+m >2,∴m >1.4.(2013·高考湖北卷)已知0<θ<π4,则双曲线C 1:x 2cos 2θ-y 2sin 2θ=1与C 2:y2sin 2θ-x2sin 2θtan 2θ=1的( )A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等解析:选D .先根据θ的范围,确定双曲线方程的类型,判断焦点所在的坐标轴,然后分析双曲线C 1和C 2的实轴长、虚轴长、焦距、离心率是否相等.双曲线C 1的焦点在x 轴上,a =cos θ,b =sin θ,c =1,因此离心率e 1=1cos θ;双曲线C 2的焦点在y 轴上,由于0<θ<π4,所以a =sin θ,b =sin θtan θ,c =sin 2θ+sin 2θtan 2θ,因此离心率e 2=sin 2θ+sin 2θtan 2θsin θ=sin θ1+tan 2θsin θ=1cos θ. 故两条双曲线的实轴长、虚轴长、焦距都不相等,离心率相等。
高二数学双曲线试题答案及解析1.以双曲线的中心为顶点,且以该双曲线的右焦点为焦点的抛物线方程是 .【答案】【解析】设抛物线方程为,由已知可得双曲线的右焦点坐标为(3,0),所以,抛物线方程为.【考点】双曲线的性质与抛物线的方程2.已知中心在原点的双曲线的渐近线方程是,且双曲线过点(Ⅰ)求双曲线的方程;(Ⅱ)过双曲线右焦点作倾斜角为的直线交双曲线于,求.【答案】(1);(2)6【解析】(1)设双曲线的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与双曲线的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)设双曲线方程为:,点代入得:,所以所求双曲线方程为:(2)直线的方程为:,由得:,.【考点】(1)双曲线的方程;(2)直线与双曲线的综合问题.3.设双曲线的一条渐近线与抛物线y=x2+1只有一个公共点,则双曲线的离心率为()A.B.5C.D.【答案】C【解析】将双曲线的渐进线方程代如抛物线方程y=x2+1中化简得,由只有一公共点可知即,所以即,答案选C.【考点】1.双曲线的渐进线方程;2.直线与抛物线的位置关系4.已知抛物线的准线与双曲线交于两点,点为抛物线的焦点,若为直角三角形,则双曲线的离心率是()A.B.C.2D.3【答案】B【解析】抛物线的准线为,它与双曲线交于两点,则坐标为,抛物线的焦点,因为为直角三角形,则有,从而有,,因此,故选择B.【考点】圆锥曲线的性质.5.若双曲线的左、右焦点分别为F1,F2,线段F1F2被抛物线的焦点分成5:3两段,则此双曲线的离心率为______.【答案】【解析】由已知设已知双曲线的焦半径为c,则且左右两焦点的坐标分别为:,又抛物线的焦点坐标为,由已知有即:,故应填入:.【考点】双曲线的离心率.6.在平面直角坐标系中,已知中心在坐标原点的双曲线经过点,且它的右焦点与抛物线的焦点相同,则该双曲线的标准方程为.【答案】.【解析】由于抛物线的焦点坐标为:,由已知得:双曲线C的右焦点F的坐标为,又因为双曲线C的中心在坐标原点,所以可设所求双曲线C的方程为:且,从而有:,故设所求双曲线C的方程为:.【考点】双曲线.7.若双曲线的离心率为2,则等于()A.B.C.D.1【答案】D.【解析】由,又∵.【考点】双曲线的标准方程.8.与双曲线有共同的渐近线,并且过点A(6,8)的双曲线的标准方程为__________.【答案】【解析】设所求双曲线为,把点(6,8)代入,得,解得λ=-4,∴所求的双曲线的标准方程为.故答案为:.【考点】双曲线的性质和应用.9.若双曲线的渐近线与方程为的圆相切,则此双曲线的离心率为.【答案】【解析】先根据双曲线方程求得双曲线的渐近线,进而利用圆心到渐近线的距离为圆的半径求得和的关系,进而利用求得和的关系,则双曲线的离心率可求.【考点】双曲线的简单性质.10.已知中心在坐标原点,焦点在轴上的双曲线的渐近线方程为,则此双曲线的离心率为()A.B.C.D.5【答案】B【解析】由题意,得,所以离心率=,故选B.【考点】双曲线的几何意义.11.设F1,F2分别是双曲线的左、右焦点.若点P在双曲线上,且·=0,则|+|=( )A.B.C.D.【答案】B【解析】因为·=0,所以,则|+|==|2|=|2|=,故选B.【考点】1.双曲线的性质;2.向量加法和数量积的几何意义.12.双曲线的渐近线方程为( )A.B.C.D.【答案】C【解析】令,解得【考点】双曲线渐近线的求法.13.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是()A.B.C.D.【答案】C【解析】因为双曲线的一个焦点到一条渐近线的距离为所以因此因为双曲线的渐近线方程为所以该双曲线的渐近线方程是.【考点】双曲线的渐近线方程14.已知F1、F2为双曲线的左、右焦点,点P在C上,,则P到x轴的距离为()A.B.C.D.【答案】B【解析】由余弦定理得,所以即由三角形面积得解得,因此P到x轴的距离为.【考点】双曲线定义15.我们把离心率为e=的双曲线(a>0,b>0)称为黄金双曲线.如图,是双曲线的实轴顶点,是虚轴的顶点,是左右焦点,在双曲线上且过右焦点,并且轴,给出以下几个说法:①双曲线x2-=1是黄金双曲线;②若b2=ac,则该双曲线是黄金双曲线;③如图,若∠F1B1A2=90°,则该双曲线是黄金双曲线;④如图,若∠MON=90°,则该双曲线是黄金双曲线.其中正确的是()A.①②④B.①②③C.②③④D.①②③④【答案】D【解析】①由双曲线x2-=1,可得离心率e=,即可判断出该双曲线是否是黄金双曲线;②由b2=ac,可得c2-a2-ac=0,化为e2-e-1=0,又e>1,解得e,即可判断出该双曲线是否是黄金双曲线;③如图,由∠F1B1A2=90°,可得|B1F1|2+|B1A2|2=|F1A2|2,可得b2+c2+b2+a2=(a+c)2,化为c2-ac-a2=0,即可判断出该双曲线是否是黄金双曲线;④如图,由∠MON=90°,可得MN⊥x轴,|MF2|=,可得△MOF2是等腰直角三角形,得到c=,即可判断出该双曲线是否是黄金双曲线.【考点】圆锥曲线的综合应用.16.已知双曲线-=1(a>0,b>0)的左、右焦点分别为F1(-c,0)、F2(c,0).若双曲线上存在点P,使,则该双曲线的离心率的取值范围是________.【答案】【解析】根据正弦定理与题中等式,算出=e(e是椭圆的离心率).作出椭圆的左准线l,作PQ⊥l于Q,根据椭圆的第二定义得=e,所以|PQ|=|PF2|=.设P(x,y),将|PF1|、|PF2|表示为关于a、c、e、x的式子,利用|PF2|+|PF1|=2a解出x=.最后根据椭圆上点的横坐标满足-a≤x≤a,建立关于e的不等式并解之,即可得到该椭圆离心率的取值范围.【考点】(1)正弦定理;(2)椭圆的定义;(3)椭圆的几何性质.17.设P是双曲线上一点,该双曲线的一条渐近线方程是,分别是双曲线的左、右焦点,若,则等于 ( )A.2B.18C.2或18D.16【答案】C【解析】因为双曲线渐近线方程是,所以又因为,所以等于2或18【考点】双曲线定义,渐近线方程18.已知,,,则动点的轨迹是()A.双曲线B.圆C.椭圆D.抛物线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.19.过点的双曲线的渐近线方程为为双曲线右支上一点,为双曲线的左焦点,点则的最小值为 .【答案】8【解析】由题可设双曲线方程为:,把代入得=1,所以双曲线方程为:,设双曲线右焦点为,∵P在双曲线右支上及由双曲线定义可知,∴,当点P为线段与双曲线交点时.【考点】1.双曲线的定义;2.双曲线的标准方程;3.双曲线的几何性质.20.已知,,,则动点的轨迹是()A.圆B.椭圆C.抛物线D.双曲线【答案】D【解析】∵<=4∴由双曲线定义知点P的轨迹是双曲线.【考点】双曲线的定义.21.双曲线的渐近线方程为()A.B.C.D.【答案】D【解析】因为双曲线的方程为,故,所以该双曲线的渐近线方程为,故选D.【考点】双曲线的性质.22.已知动点的坐标满足方程,则的轨迹方程是()A.B.C.D.【答案】C【解析】这个方程相信读者一定可以化简出最终结论(无非就是移项平方去根号),但如果考虑到方程中各式子的几何意义的话,可能解法更好,此方程表示点与到点的距离比到点的距离之差为8,而这正好符合双曲线的定义,点的轨迹是双曲线,只不过是右支。
人教版高二数学选修1-1双曲线及其标准方程练习题
一、选择题
1.平面内到两定点E 、F 的距离之差的绝对值等于|EF |的点的轨迹是( )
A .双曲线
B .一条直线
C .一条线段
D .两条射线
2.已知方程x 21+k -y 2
1-k
=1表示双曲线,则k 的取值范围是( ) A .-1<k <1 B .k >0 C .k ≥0 D .k >1或k <-1
3.动圆与圆x 2+y 2=1和x 2+y 2-8x +12=0都相外切,则动圆圆心的轨迹为( )
A .双曲线的一支
B .圆
C .抛物线
D .双曲线
4.以椭圆x 23+y 24
=1的焦点为顶点,以这个椭圆的长轴的端点为焦点的双曲线方程是 A.x 23-y 2=1 B .y 2-x 23=1 C.x 23-y 24=1 D.y 23-x 24
=1 5.“ab <0”是“曲线ax 2+by 2=1为双曲线”的( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
6.已知双曲线的两个焦点为F 1(-5,0)、F 2(5,0),P 是此双曲线上的一点,且PF 1⊥PF 2,|PF 1|·|PF 2|
=2,则该双曲线的方程是( )
A.x 22-y 23=1
B.x 23-y 22=1
C.x 24-y 2=1 D .x 2
-y 24=1 7.椭圆x 24+y 2m 2=1与双曲线x 2m 2-y 22
=1有相同的焦点,则m 的值是( ) A .±1 B .1 C .-1 D .不存在
8.已知点F 1(-4,0)和F 2(4,0),曲线上的动点P 到F 1、F 2距离之差为6,则曲线方程为( )
A.x 29-y 27=1
B.x 29-y 27
=1(y >0) C.x 29-y 27=1或x 27-y 29=1 D.x 29-y 27
=1(x >0) 9.已知双曲线的左、右焦点分别为F 1、F 2,在左支上过F 1的弦AB 的长为5,若2a =8,那么△ABF 2
的周长是( )
A .16
B .18
C .21
D .26
10.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b
=1(a >0,b >0)有相同的焦点,P 是两曲线的一个交点,则|PF 1|·|PF 2|的值为( )
A .m -a
B .m -b
C .m 2-a 2 D.m -b
二、填空题
11.双曲线的焦点在x 轴上,且经过点M (3,2)、N (-2,-1),则双曲线标准方程是________.
12.过双曲线x 23-y 24
=1的焦点且与x 轴垂直的弦的长度为________.
13.如果椭圆x 24+y 2a 2=1与双曲线x 2a -y 22
=1的焦点相同,那么a =________.
14.一动圆过定点A (-4,0),且与定圆B :(x -4)2+y 2=16相外切,则动圆圆心的轨迹方程为________.
三、解答题
15.设双曲线与椭圆x 227+y 236
=1有共同的焦点,且与椭圆相交,在第一象限的交点A 的纵坐标为4,求此双曲线的方程.
16.已知双曲线x 2
-y 22=1的焦点为F 1、F 2,点M 在双曲线上且MF 1→·MF 2→=0,求点M 到x 轴的距离.
人教版高二数学选修1-1双曲线及其标准方程练习题答案及详解
1、D
2、A 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.
3、A 设动圆半径为r ,圆心为O ,x 2+y 2=1的圆心为O 1,圆x 2+y 2-8x +12=0的圆心为O 2,
由题意得|OO 1|=r +1,|OO 2|=r +2, ∴|OO 2|-|OO 1|=r +2-r -1=1<|O 1O 2|=4, 由双曲线的定义知,动圆圆心O 的轨迹是双曲线的一支.
4、B 由题意知双曲线的焦点在y 轴上,且a =1,c =2, ∴b 2=3,双曲线方程为y 2
-x 23=1. 5、C ab <0⇒曲线ax 2+by 2=1是双曲线,曲线ax 2+by 2=1是双曲线⇒ab <0.
6、C ∵c =5,|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2,∴(|PF 1|-|PF 2|)2+2|PF 1|·|PF 2|=4c 2,
∴4a 2=4c 2-4=16,∴a 2=4,b 2=1.
7、A 验证法:当m =±1时,m 2=1,对椭圆来说,a 2=4,b 2=1,c 2=3.
对双曲线来说,a 2=1,b 2=2,c 2=3,故当m =±1时,它们有相同的焦点.
直接法:显然双曲线焦点在x 轴上,故4-m 2=m 2+2.∴m 2=1,即m =±1.
8、D 由双曲线的定义知,点P 的轨迹是以F 1、F 2为焦点,实轴长为6的双曲线的右支,其方程为:
x 29-y 27
=1(x >0) 9、D |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8,∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16,
∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26.
10、A 设点P 为双曲线右支上的点,由椭圆定义得|PF 1|+|PF 2|=2m ,
由双曲线定义得|PF 1|-|PF 2|=2a .∴|PF 1|=m +a ,|PF 2|=m -a ,∴|PF 1|·|PF 2|=m -a . 11、x 273-y 2
75
=1 12、833
∵a 2=3,b 2=4,∴c 2=7,∴c =7,该弦所在直线方程为x =7, 由⎩⎪⎨⎪⎧
x =7x 23-y 24=1得y 2=163,∴|y |=433,弦长为833. 13、1 由题意得a >0,且4-a 2=a +2,∴a =1.
14、 x 24-y 212
=1(x ≤-2) 设动圆圆心为P (x ,y ),由题意得|PB |-|P A |=4<|AB |=8, 由双曲线定义知,点P 的轨迹是以A 、B 为焦点,且2a =4,a =2的双曲线的左支.
其方程为:x 24-y 212
=1(x ≤-2). 15、椭圆x 227+y 236=1的焦点为(0,±3),由题意,设双曲线方程为:y 2a 2-x 2
b 2=1(a >0,b >0), 又点A (x 0,4)在椭圆x 227+y 236=1上,∴x 20=15,又点A 在双曲线y 2a 2-x 2b 2=1上,∴16a 2-15b 2=1, 又a 2+b 2=
c 2=9,∴a 2=4,b 2
=5,所求的双曲线方程为:y 24-x 25=1. 16、解法一:
设M (x M ,y M ),F 1(-3,0),F 2(3,0),MF 1→=(-3-x M ,-y M ),MF 2→=(3-x M ,-y M )
∵MF 1→·MF 2→=0,∴(-3-x M )·(3-x M )+y 2M =0,
又M (x M ,y M )在双曲线x 2
-y 22=1上,∴x 2M -y 2M 2=1, 解⎩⎪⎨⎪⎧ (-3-x M )(3-x M )+y 2M =1x 2M -y 2M 2=1得y M =±233, ∴M 到x 轴的距离是|y M |=233
. 解法二:连结OM ,设M (x M ,y M ),∵MF 1→·MF 2→=0,
∴∠F 1MF 2=90°,∴|OM |=12
|F 1F 2|=3, ∴x 2M +y 2M =3① 又x 2M -y 2M 2
=1② 由①②解得y M =±233, ∴M 到x 轴的距离是|y M |=233
.。