大学物理(中国矿业大学出版社)第十二章习题
- 格式:doc
- 大小:176.00 KB
- 文档页数:3
第十二章 磁介质中的磁场12-1 一螺绕环的平均半径为R =0.08m, 其上绕有N =240匝线圈, 电流强度为I=0.30A 时充满管内的铁磁质的相对磁导率µr =5000, 问管内的磁场强度和磁感强度各为多少?分析 螺绕环磁场几乎都集中在环内, 磁场线是一系列圆心在对称轴上的圆.如果圆环的截面积很小,可认为环内各点的磁场强度大小相等,等于以平均半径R 为半径的圆上的磁场强度.解 H=nI A/m2.143A/m 08.0230.02402=⨯⨯==ππRNIT90.0T 2.14350001047r 0=⨯⨯⨯===-πμμμH H B12-2 在图12-6所示的实验中,环形螺线管共包含500匝线圈, 平均周长为50cm, 当线圈中的电流强度为2.0A 时, 用冲击电流计测得介质内的磁感强度为2.0T , 求这时(1)待测材料的相对磁导率r μ,(2)磁化面电流线密度s j .分析 磁场强度和磁感强度B 的关系为H H B r 0μμμ==,从而可求出r μ. 解 (1) A/m 2000A/m 5.02500=⨯==L NI nI H 7961021040.270r =⨯⨯⨯==-πμμHB(2)由于磁化面电流产生的附加磁感强度为B '=B-B 0,得s00)(j nI B μμμ=-='则 A/m1059.1)1(6r 0s ⨯=-=-=nI nI j μμμμ12-3 将一直径为10cm 的薄铁圆盘放在B 0=0.4×10-4 T 的均匀磁场中, 使磁感线垂直于盘面, 已知盘中心的磁感强度为B c =0.1T, 假设盘被均匀磁化,磁化面电流可视为沿圆盘边缘流动的一圆电流.求(1)磁化面电流大小;(2)盘的轴线上距盘心0.4m 处的磁感强度.分析 铁盘在外磁场B 0中要被磁化, 产生附加磁场.附加磁场与外磁场B 0同向,所以盘中心的磁感强度B c =B 0+B c ˊ.如果将磁化面电流I s 视为沿圆盘边缘流动的圆电流.解 (1)磁化面电流I s 在环心c 处产生的附加磁场的磁感强度为 RI B sc20μ='盘中心的总磁感强度为cc B B B '+=0从已知条件可见,对于铁磁质,有c B B <<0,即c c B B '≈,得A1096.7223c0s ⨯=='=μμRBB R I c(2)距c 点x 处的磁场可视为外磁场B 0与磁化面电流磁场B ˊ的叠加,即有T 1091.1)(242/32220-⨯=+='x RRI B s μ401031.2-⨯='+=B B B T12-4 半径为R 的载流长直导线,电流强度为I ,外面裹有一层厚度为b 的磁介质,其相对磁导率为r μ,(1)求磁介质中任一点的磁场强度H 和磁感强度B 的大小;(2)若沿磁介质的内外表面流动的磁化面电流方向与轴线平行,试证明二电流等大反向并求其大小.分析 长直载流直导线的磁场线是以轴线为中心的一系列同心圆.应用有磁介质的安培环路定理时只须计算闭合回路所包围的传导电流,而应用真空中的安培环路定理时应计算闭合回路所包围的传导电流和磁化面电流. 解 (1) 介质内rIH B rI H πμμπ2 2===(2) 假设介质为顺磁质,介质内表面磁化面电流I s 方向如图12-4所示,在介质内任一点磁感强度B=B 0+B ’,因 rIB πμ2==0B rIπμ20 rI B πμ2s0='得rI rI B s πμμπμ2)(200-=='即有 I I )1(r s -=μ设介质外表面磁化面电流为I s ˊ,应用介质中的安培环路定律,可得介质外任一点磁场强度为rI H π2=应用真空中的安培环路定理,介质外有)(d s s 0I I I '++=⋅⎰μlB即 )(2s s 0I I I rB '++=μπrI I I B πμ2)(s s 0'++=又因 B=µ0H=rIπμ20由以上两式得II I )1(r s s --=-='μ即介质内外表面磁化面电流大小相等, 方向相反.。
第十二章 电磁感应及电磁场基本方程12–1 如图12-1所示,矩形线圈abcd 左半边放在匀强磁场中,右半边在磁场外,当线圈以ab 边为轴向纸外转过60º过程中,线圈中 产生感应电流(填会与不会),原因是 。
解:线圈以ab 边为轴向纸外转过60º过程中,尽管穿过磁感应线的线圈面积发生了变化,但线圈在垂直于磁场方向的投影的面积并未发生变化,因而穿过整个线圈的磁通量并没有发生变化,所以线圈中不会产生感应电流。
因而应填“不会”;“通过线圈的磁通量没有发生变化”。
12–2 产生动生电动势的非静电力是 力,产生感生电动势的非静电力是 力。
解:洛仑兹力;涡旋电场力(变化磁场激发的电场的电场力)。
12–3 用绝缘导线绕一圆环,环内有一用同样材料导线折成的内接正方形线框,如图12-2所示,把它们放在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,当匀强磁场均匀减弱时,圆环中与正方形线框中感应电流大小之比为___________。
解:设圆环的半径为a,圆环中的感应电动势1E 大小为2111d d d πd d d ΦB BS a t t t===E 同理,正方形线框中的感应电动势2E 大小为2212d d d 2d d d ΦB BS a t t t===E而同材料的圆环与正方形导线的电阻之比为12R R ==。
所以圆环与正方形线框中的感应电流之比为122I I a ==12–4 如图12-3所示,半径为R 的3/4圆周的弧形刚性导线在垂直于均匀磁感强度B 的平面内以速度v 平动,则导线上的动生电动势E = ,方向为 。
图12–5图12–4abdc图12–1Ba图12–2图12–3解:方法一:用动生电动势公式()d l =⨯⋅⎰B l v E 求解。
选积分路径l 的绕行方向为顺时针方向,建立如图12-4所示的坐标系,在导体上任意处取导体元d l ,d l 上的动生电动势为d ()d cos d B R θθ=⨯⋅B l =v v E所以导线上的动生电动势为3π3πd cos d 0BRBR θθ-===>⎰⎰v E E由于ε>0,所以动生电动势的方向为顺时方向,即bca 方向。
1.1有一质点沿着x 轴作直线运动,t 时刻的坐标为234.52x t t =-,试求:⑴ 第2秒内的平均速度⑵ 第2秒末的瞬时速度⑶ 第2秒内的路程。
解:⑴ 当1t s =时,1 2.5x m = 当2t s =时,218162x m =-=平均速度为 ()212 2.50.5m v x x =-=-=-⑵第2秒末的瞬时速度()22966m s t dxv t t dt===-=-⑶ 第2秒内的路程:(在此问题中必须注意有往回走的现象)当1.5t s =时,速度0v =,2 3.375x m =;当1t s =时,1 2.5x m = ;当2t s =时,32x m =;所以路程为:3.375 2.5 3.3752 2.25m -+-=1.8一艘正在沿直线行驶的电船,在发动机关闭后,其加速度方向与速度方向相反,即dv/dt=-k v ∧2,试证明电艇在关闭发动机后又行驶x 距离时的速度为v=v0e ∧-kx 式中,v0是关闭发动机后的速度。
证明:由题可知:2dv dx kv kv dt dt =-=- 所以有: d v k v d x=- 变换为: dvkdx v=- 两边同时积分就可得到:00vx v dv kdx v =-⎰⎰ 0ln v v v kx =-即0ln v kx v =- 所以有0k xv v e -=1.9迫击炮射击山顶上的一个目标,已知初速度为v0,抛射角为⊙,上坡与水平面成a 角,求炮弹的射程及到达山坡时的速度。
解:炮弹的运动轨迹如上图的虚线所示,如图建立坐标轴,x y 。
将初速度0v 沿坐标轴分解可得0000cos sin x yv v v v θθ=⎧⎨=⎩ ⑴ 加速度g 沿坐标轴分解可得s i nc o s x ya g a g αα=-⎧⎨=-⎩ ⑵ 在任意时刻t 的速度为 0000cos sin sin cos x x x yy y v v a t v gt v v a t v gt θαθα=+=-⎧⎨=+=-⎩⑶任意时刻t 的位移为2200220011cos sin 2211sin cos 22x x y y x v t a t v t gt y v t a t v t gt θαθα⎧=+=-⎪⎪⎨⎪=+=-⎪⎩⑷ ⑴ 炮弹射程为0y =时,所对应的x 。
第12章 机械振动 习题及答案1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1);(2);(3);(4).答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。
对于简谐振动,有,故(3)表示简谐振动。
2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍?(1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。
解:当时,(1)劲度系数k 不变。
(2)频率不变。
(3)总机械能(4)最大速度(5) 最大加速度3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期.解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有111x k F x k F -=-=串222x k F -=又有 21x x x +=2211k F k F k Fx +==串 所以串联弹簧的等效倔强系数为2121k k k k k +=串即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为2121)(222k k k k m k mT +===ππωπ串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为212k k mT +='π4. 完全相同的弹簧振子,时刻的状态如图所示,其相位分别为多少?解:对于弹簧振子,时,,(a ),故km(a)kmv(b)kmv(c)km(d),故(b ),故,故(c ),故,故 (d ),故 ,故5、如图所示,物体的质量为m ,放在光滑斜面上,斜面与水平面的夹角为θ,弹簧的倔强系数为k ,滑轮的转动惯量为I ,半径为R 。
大学物理(下)十一章十二章作业与解答————————————————————————————————作者:————————————————————————————————日期:第十一章恒定磁场一. 选择题1.在一平面内,有两条垂直交叉但相互绝缘的导线,流经两条导线的电流大小相等,方向如图,在哪些区域中有可能存在磁感应强度为零的点?(A) 在Ⅰ、Ⅲ象限(B) 在Ⅰ、Ⅳ象限(C) 在Ⅱ、Ⅲ象限(D) 在Ⅱ、Ⅳ象限[ ]2. 载流导线在同一平面内,形状如图,在圆心O处产生的磁感应强度大小为(A)(B)(C)(D) [ ]注意见第11章课件最后的总结的那个图,半圆载流回路在圆心处的磁感强度是多少?3. 一圆形回路1及一正方形回路2,圆的直径与正方形边长相等,二者中通有大小相同电流,则它们在各自中心处产生的磁感应强度大小之比为(A) 0.90(B) 1.00(C) 1.11(D) 1.22 [ ]注意教材page304,及课件最后总结的那个图4. 在磁感应强度为的均匀磁场中做一半径为r的半球面S,S边线所在平面的法线方向单位矢量与的夹角为θ,则通过半球面S的磁通量(取半球面向外为正)为(A)(B)(C)(D)[ ]5. 如图,无限长载流直导线附近有一正方形闭合曲面S,当S向导线靠近时,穿过S的磁通量和S上各点的磁感应强度的大小B将(A) 增大,B增强(B) 不变,B不变(C) 增大,B不变(D) 不变,B增强[ ]6. 取一闭合积分回路L,使若干根载流导线穿过它所围成的面,若改变这些导线之间的相互间隔,但不越出积分回路,则(A) 回路L内的电流的代数和不变,L上各点的不变(B) 回路L内的电流的代数和不变,L上各点的改变(C) 回路L内的电流的代数和改变,L上各点的不变(D) 回路L内的电流的代数和改变,L上各点的改变[ ]7. 如图,两根导线ab和cd沿半径方向被接到一个截面处处相等的铁环上,恒定电流I 从a端流入而从d端流出,则磁感应强度沿闭合路径L的积分等于(A)(B)(C)(D)[ ]8. 一电荷为q的粒子在均匀磁场中运动,下列说法正确的是(A) 只要速度大小相同,粒子所受的洛仑兹力就相同(B) 在速度不变的前提下,若电荷q变为 -q,则粒子受力反向,数值不变(C) 粒子进入磁场后,其动能和动量都不变(D) 洛仑兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆[ ]9. 质量为m、电量为q的粒子,以速度v垂直射入均匀磁场中,则粒子运动轨道包围范围的磁通量与磁感应强度的大小之间的关系曲线为[ b ]注意见P317,(11.30)10. 如图,长直载流导线与一圆形电流共面,并与其一直径相重合(两者间绝缘),设长直电流不动,则圆形电流将(A) 向上运动(B) 绕旋转(C) 向左运动(D) 向右运动(E) 不动[ ]11. 磁场中有一载流圆线圈,其既不受力也不受力矩作用,这说明(A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行(B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行(C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直(D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直[ ]注意见P325 第二段表述,11.36式12. 用细导线均匀密绕成长为l、半径为a(l >>a)、总匝数为N的螺线管,管内充满相对磁导率为的均匀磁介质,线圈中载有电流I,则管中任一点(A) 磁感应强度大小为(B) 磁感应强度大小为(C) 磁场强度大小为(D) 磁场强度大小为[ ]二. 填空题13.如图,电流元在P点产生的磁感应强度的大小为___________________.14. 真空中有一载有电流I的细圆线圈,则通过包围该线圈的闭合曲面S的磁通量Φ=________________. 若通过S面上某面元的磁通为,而线圈中电流增加为2I时,通过该面元的磁通为,则_______________.0 ; 1︰215. 如图,两平行无限长载流直导线中电流均为I,两导线间距为a,则两导线连线中点P的磁感应强度大小,磁感应强度沿图中环路L的线积分_______________________.0 ;16. 恒定磁场中,磁感应强度对任意闭合曲面的积分等于零,其数学表示式是____________,这表明磁感应线的特征是_________________________. ;闭合曲线17. 一长直螺线管是由直径的导线密绕而成,通以的电流,其内部的磁感应强度大小B =_____________________.(忽略绝缘层厚度)18. 带电粒子垂直磁感应线射入匀强磁场,它做______________运动;带电粒子与磁感应线成300角射入匀强磁场,则它做__________________运动;若空间分布有方向一致的电场和磁场,带电粒子垂直于场方向入射,则它做__________________运动.圆周;螺旋线;变螺距的螺旋线19. 在霍尔效应实验中,通过导电体的电流和的方向垂直(如图).如果上表面的电势较高,则导电体中的载流子带___________电荷;如果下表面的电势较高,则导电体中的载流子带___________电荷.正;负20. 如图,一载流导线弯成半径为R的四分之一圆弧,置于磁感应强度为的均匀磁场中,导线所受磁场力大小为______________,方向为_____________.; y轴正向注意:积分IRBdθ,θ的积分上下限?21. 如图,半径为R的半圆形线圈通有电流I,线圈处在与线圈平面平行指向右的均匀磁场中,该载流线圈磁矩大小为___________,方向____________;线圈所受磁力矩的大小为_________________,方向_____________.;垂直纸面向外;;向上22. 磁场中某点,有一半径为R、载有电流I的圆形实验线圈,其所受的最大磁力矩为M,则该点磁感应强度的大小为_________________.注意见教材324页三. 计算题23. 如图,两长直导线互相垂直放置,相距为d,其中一根导线与z轴重合,另一与x轴平行且在Oxy平面内,设导线中皆通有电流I,求y轴上与两导线等距的P点处的磁感应强度.解:长直载流导线在距其r处的磁感应强度为两长直载流导线在P点产生的磁感应强度方向一沿z轴方向,一沿x轴负方向且方向平行于Oxz平面与Oxy面成45o,如图示。
第四篇 气体动理论 热力学基础求解气体动理论和热力学问题的基本思路和方法热运动包含气体动理论和热力学基础两部分.气体动理论从物质的微观结构出发,运用统计方法研究气体的热现象,通过寻求宏观量与微观量之间的关系,阐明气体的一些宏观性质和规律.而热力学基础是从宏观角度通过实验现象研究热运动规律.在求解这两章习题时要注意它们处理问题方法的差异.气体动理论主要研究对象是理想气体,求解这部分习题主要围绕以下三个方面:(1) 理想气体物态方程和能量均分定理的应用;(2) 麦克斯韦速率分布率的应用;(3)有关分子碰撞平均自由程和平均碰撞频率.热力学基础方面的习题则是围绕第一定律对理想气体的四个特殊过程(三个等值过程和一个绝热过程)和循环过程的应用,以及计算热力学过程的熵变,并用熵增定理判别过程的方向.1.近似计算的应用一般气体在温度不太低、压强不太大时,可近似当作理想气体,故理想气体也是一个理想模型.气体动理论是以理想气体为模型建立起来的,因此,气体动理论所述的定律、定理和公式只能在一定条件下使用.我们在求解气体动理论中有关问题时必须明确这一点.然而,这种从理想模型得出的结果在理论和实践上是有意义的.例如理想气体的内能公式以及由此得出的理想气体的摩尔定容热容2/m V,iR C =和摩尔定压热容()2/2m P,R i C +=都是近似公式,它们与在通常温度下的实验值相差不大,因此,除了在低温情况下以外,它们还都是可以使用的.在实际工作时如果要求精度较高,摩尔定容热容和摩尔定压热容应采用实验值.本书习题中有少数题给出了在某种条件下m V,C 和m P,C 的实验值就是这个道理.如习题中不给出实验值,可以采用近似的理论公式计算.2.热力学第一定律解题过程及注意事项热力学第一定律E W Q Δ+=,其中功⎰=21d V V V ρW ,内能增量T R i M m E Δ2Δ⋅=.本章习题主要是第一定律对理想气体的四个特殊过程(等体、等压、等温、绝热)以及由它们组成的循环过程的应用.解题的主要过程:(1) 明确研究对象是什么气体(单原子还是双原子),气体的质量或物质的量是多少? (2) 弄清系统经历的是些什么过程,并掌握这些过程的特征.(3) 画出各过程相应的p -V 图.应当知道准确作出热力学过程的p -V 图,可以给出一个比较清晰的物理图像.(4) 根据各过程的方程和状态方程确定各状态的参量,由各过程的特点和热力学第一定律就可计算出理想气体在各过程中的功、内能增量和吸放热了.在计算中要注意Q 和W 的正、负取法.3.关于内能的计算理想气体的内能是温度的单值函数,是状态量,与过程无关,而功和热量是过程量,在两个确定的初、末状态之间经历不同的过程,功和热量一般是不一样的,但内能的变化是相同的,且均等于()12m V,ΔT T C Mm E -=.因此,对理想气体来说,不论其经历什么过程都可用上述公式计算内能的增量.同样,我们在计算某一系统熵变的时候,由于熵是状态量,以无论在始、末状态之间系统经历了什么过程,始、末两个状态间的熵变是相同的.所以,要计算始末两状态之间经历的不可逆过程的熵变,就可通过计算两状态之间可逆过程熵变来求得,就是这个道理.4.麦克斯韦速率分布律的应用和分子碰撞的有关讨论深刻理解麦克斯韦速率分布律的物理意义,掌握速率分布函数f (v )和三种统计速率公式及物理意义是求解这部分习题的关键.三种速率为M RT /2P =v ,M RT π/8=v ,M RT /32=v .注意它们的共同点都正比于M T /,而在物理意义上和用途上又有区别.P v 用于讨论分子速率分布图.v 用于讨论分子的碰撞;2v 用于讨论分子的平均平动动能.解题中只要抓住这些特点就比较方便.根据教学基本要求,有关分子碰撞内容的习题求解比较简单,往往只要记住平均碰撞频率公式v n d Z 22=和平均自由程n d Z λ2π2/1/==v ,甚至只要知道n Z ⋅∝v ,n /1∝λ及M T /∝v 这种比值关系就可求解许多有关习题.第十二章 气体动理论12 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强(C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析与解 理想气体分子的平均平动动能23k /kT =ε,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程nkT p =,当两者分子数密度n 相同时,它们压强也相同.故选(C).12 -2 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,方均根速率之比()()()4:2:1::2/12C 2/12B 2/12A =v v v ,则其压强之比C B A ::p p p 为( )(A) 1∶2∶4 (B) 1∶4∶8(C) 1∶4∶16 (D) 4∶2∶1分析与解 分子的方均根速率为M RT /3=2v ,因此对同种理想气体有3212C 2B 2A ::::T T T =v v v ,又由物态方程nkT ρ,当三个容器中分子数密度n 相同时,得16:4:1::::321321==T T T p p p .故选(C). 12 -3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为0T 时,气体分子的平均速率为0v ,分子平均碰撞次数为0Z ,平均自由程为0λ ,当气体温度升高为04T 时,气体分子的平均速率v 、平均碰撞频率Z 和平均自由程λ分别为( ) (A) 004,4,4λλZ Z ===0v v (B) 0022λλ===,,Z Z 0v v (C) 00422λλ===,,Z Z 0v v (D) 0042λλ===,,Z Z 0v v 分析与解 理想气体分子的平均速率M RT π/8=v ,温度由0T 升至04T ,则平均速率变为0v 2;又平均碰撞频率v n d Z 2π2=,由于容器体积不变,即分子数密度n 不变,则平均碰撞频率变为0Z 2;而平均自由程n d λ2π2/1=,n 不变,则珔λ也不变.因此正确答案为(B).12 -4 已知n 为单位体积的分子数,()v f 为麦克斯韦速率分布函数,则()v v d nf 表示( )(A) 速率v 附近,dv 区间内的分子数(B) 单位体积内速率在v v v d +~区间内的分子数(C) 速率v 附近,dv 区间内分子数占总分子数的比率(D) 单位时间内碰到单位器壁上,速率在v v v d ~+ 区间内的分子数分析与解 麦克斯韦速率分布函数()()v v d /d N N f =,而v /N n =,则有()V N nf /d d =v v .即表示单位体积内速率在v v v d ~+ 区间内的分子数.正确答案为(B).12 -5 一打足气的自行车内胎,在C 07o1.=t 时,轮胎中空气的压强为Pa 100451⨯=.p ,则当温度变为C 037o2.=t 时,轮胎内空气的压强2p 2p 为多少?(设内胎容积不变)分析 胎内空气可视为一定量的理想气体,其始末状态均为平衡态,由于气体的体积不变,由理想气体物态方程RT Mm pV =可知,压强p 与温度T 成正比.由此即可求出末态的压强.解 由分析可知,当K 15310037152732...=+=T ,轮胎内空气压强为Pa 1043451122⨯==./T p T p可见当温度升高时,轮胎内气体压强变大,因此,夏季外出时自行车的车胎不宜充气太足,以免爆胎.12 -6 有一个体积为35m 1001⨯.的空气泡由水面下m 050.深的湖底处(温度为C 4o )升到湖面上来.若湖面的温度为C 017o.,求气泡到达湖面的体积.(取大气压强为Pa 10013150⨯=.p ) 分析 将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式gh p p ρ+=0求出, 其中ρ为水的密度( 常取33m kg 1001⋅⨯=.ρ).解 设气泡在湖底和湖面的状态参量分别为(p 1 ,V 1 ,T 1 )和(p 2 ,V 2 ,T 2 ).由分析知湖底处压强为gh ρp gh ρp p +=+=021,利用理想气体的物态方程222111T V p T V p = 可得空气泡到达湖面的体积为()3510120121212m 1011.6//-⨯=+==T p V T gh ρp T p V T p V12 -7 氧气瓶的容积为32m 1023-⨯.,其中氧气的压强为Pa 10317⨯.,氧气厂规定压强降到Pa 10016⨯.时,就应重新充气,以免经常洗瓶.某小型吹玻璃车间,平均每天用去3m 400.压强为Pa 100115⨯.的氧气,问一瓶氧气能用多少天? (设使用过程中温度不变)分析 由于使用条件的限制,瓶中氧气不可能完全被使用.为此,可通过两条不同的思路进行分析和求解:(1) 从氧气质量的角度来分析.利用理想气体物态方程RT Mm pV =可以分别计算出每天使用氧气的质量3m 和可供使用的氧气总质量(即原瓶中氧气的总质量1m 和需充气时瓶中剩余氧气的质量2m 之差),从而可求得使用天数()321m m m n /-=.(2) 从容积角度来分析.利用等温膨胀条件将原瓶中氧气由初态(Pa 1030171⨯=.p , 321m 1023-⨯=.V )膨胀到需充气条件下的终态(Pa 1000162⨯=.p ,2V 待求),比较可得2p 状态下实际使用掉的氧气的体积为12V V -.同样将每天使用的氧气由初态(Pa 1001153⨯=.p ,33m 400.=V )等温压缩到压强为p 2的终态,并算出此时的体积V′2 ,由此可得使用天数应为()212V V V n '-=/. 解1 根据分析有RT V Mp m RT V Mp m RT V Mp m /;/;/333222111===则一瓶氧气可用天数()()5.9//33121321===-=V p V p p m m m n解2 根据分析中所述,由理想气体物态方程得等温膨胀后瓶内氧气在压强为Pa 1000162⨯=.p 时的体积为 2112p V p V /=每天用去相同状态的氧气容积2332p V p V /='则瓶内氧气可用天数为()()5.9//33121212=-='-=V p V p p V V V n12 -8 设想太阳是由氢原子组成的理想气体,其密度可当作是均匀的.若此理想气体的压强为Pa 1035114⨯..试估计太阳的温度.(已知氢原子的质量Pa 1067127H -⨯=.m ,太阳半径kg 1067127H -⨯=.m ,太阳质量kg 1099130S ⨯=.m )分析 本题可直接运用物态方程nkT p =进行计算.解 氢原子的数密度可表示为()⎥⎦⎤⎢⎣⎡⋅==3S H S H S π34//R m m V m m n S 根据题给条件,由nkT p = 可得太阳的温度为()K 1016.13/π4/7S 3S H ⨯===k m R pm nk p T说明 实际上太阳结构并非本题中所设想的理想化模型,因此,计算所得的太阳温度与实际的温度相差较大.估算太阳(或星体)表面温度的几种较实用的方法在教材第十五章有所介绍.12 -9 一容器内储有氧气,其压强为Pa 100115⨯.,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析 在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为30d V =,由数密度的含意可知n V /10=,d 即可求出.解 (1) 单位体积分子数325m 10442⨯==./kT p n(2) 氧气的密度-3m kg 301⋅===.//RT pM V m ρ(3) 氧气分子的平均平动动能J 102162321k -⨯==./kT ε(4) 氧气分子的平均距离m 10453193-⨯==./n d通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.12 -10 2.0×10-2 kg 氢气装在4.0×10-3 m 3 的容器内,当容器内的压强为3.90×105Pa 时,氢气分子的平均平动动能为多大?分析 理想气体的温度是由分子的平均平动动能决定的,即23k /kT =ε.因此,根据题中给出的条件,通过物态方程pV =m/MRT ,求出容器内氢气的温度即可得k ε.解 由分析知氢气的温度mRMPV T =,则氢气分子的平均平动动能为 ()8932323k ./===mR pVMk kT ε12 -11 温度为0 ℃和100 ℃时理想气体分子的平均平动动能各为多少?欲使分子的平均平动动能等于1eV ,气体的温度需多高?解 分子在0℃和100 ℃时平均平动动能分别为J 10655232111-⨯==./kT εJ 10727232122-⨯==./kT ε由于1eV =1.6×10-19 J ,因此,分子具有1eV 平均平动动能时,气体温度为K 10737323k ⨯==./k T ε这个温度约为7.5 ×103 ℃.12 -12 某些恒星的温度可达到约1.0 ×108K ,这是发生聚变反应(也称热核反应)所需的温度.通常在此温度下恒星可视为由质子组成.求:(1) 质子的平均动能是多少? (2) 质子的方均根速率为多大?分析 将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度 i =3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系2/32/2kT m =v ,可得方均根速率2v .解 (1) 由分析可得质子的平均动能为 J 1007.22/32/3152k -⨯===kT m εv(2) 质子的方均根速率为1-62s m 1058.132⋅⨯==mkT v 12 -13 试求温度为300.0 K 和2.7 K(星际空间温度)的氢分子的平均速率、方均根速率及最概然速率.分析 分清平均速率v 、方均根速率2v 及最概然速率p v 的物理意义,并利用三种速率相应的公式即可求解.解 氢气的摩尔质量M =2 ×10-3kg·mol -1 ,气体温度T 1 =300.0K ,则有 1-31s m 1078.18⋅⨯==M πRT v 1-312s m 1093.13⋅⨯==M RT v 1-31p s m 1058.12⋅⨯==MRT v 气体温度T 2=2.7K 时,有 1-31s m 1069.18⋅⨯==M πRT v 1-322s m 1083.13⋅⨯==MRT v1-31p s m 1050.12⋅⨯==MRT v 12 -14 如图所示,Ⅰ、Ⅱ两条曲线分别是氢气和氧气在同一温度下的麦克斯韦分子速率分布曲线.试由图中数据求:(1)氢气分子和氧气分子的最概然速率;(2) 两种气体所处的温度;(3) 若图中Ⅰ、Ⅱ分别表示氢气在不同温度下的麦克斯韦分子速率分布曲线.则哪条曲线的气体温度较高?分析 由MRT 1p 2=v 可知,在相同温度下,由于不同气体的摩尔质量不同,它们的最概然速率v p 也就不同.因22O H M M <,故氢气比氧气的v p 要大,由此可判定图中曲线Ⅱ所标v p =2.0 ×103 m·s -1 应是对应于氢气分子的最概然速率.从而可求出该曲线所对应的温度.又因曲线Ⅰ、Ⅱ所处的温度相同,故曲线Ⅰ中氧气的最概然速率也可按上式求得.同样,由M RT2p =v 可知,如果是同种气体,当温度不同时,最概然速率v p 也不同.温度越高,v p 越大.而曲线Ⅱ对应的v p 较大,因而代表气体温度较高状态.解 (1) 由分析知氢气分子的最概然速率为()13H p s m 100.222H 2-⋅⨯==M RT v利用M O2 /M H2 =16 可得氧气分子最概然速率为()()12H p O p s m 100.54/22-⋅⨯==v v (2) 由M RT2p =v 得气体温度K 1081.42/22p⨯==R M T v (3) Ⅱ代表气体温度较高状态.12 -15 日冕的温度为2.0 ×106K ,所喷出的电子气可视为理想气体.试求其中电子的方均根速率和热运动平均动能.解 方均根速率16e2s m 105.93-⋅⨯==m kT v 平均动能J 10142317k -⨯==./kT ε 12 -16 在容积为2.0 ×10-3m 3 的容器中,有内能为6.75 ×102J 的刚性双原子分子某理想气体.(1) 求气体的压强;(2) 设分子总数为5.4×1022 个,求分子的平均平动动能及气体的温度.分析 (1) 一定量理想气体的内能RT i M m E 2=,对刚性双原子分子而言,i =5.由上述内能公式和理想气体物态方程pV =mM RT 可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p =nkT 可求气体温度.气体分子的平均平动动能可由23k /kT ε=求出.解 (1) 由RT i M m E 2=和pV =mM RT 可得气体压强 ()Pa 1035125⨯==./iV E p(2) 分子数密度n =N/V ,则该气体的温度()()Pa 106235⨯===.//nk pV nk p T气体分子的平均平动动能为J 104972321k -⨯==./kT ε12 -17温度相同的氢气和氧气,若氢气分子的平均平动动能为6.21×10-21J ,试求(1) 氧气分子的平均平动动能及温度;(2) 氧气分子的最概然速率. 分析 (1) 理想气体分子的平均平动动能23k /kT ε=,是温度的单值函数,与气体种类无关.因此,氧气和氢气在相同温度下具有相同的平均平动动能,从而可以求出氧气的温度.(2) 知道温度后再由最概然速率公式M RT 2p =v 即可求解v p . 解 (1) 由分析知氧气分子的平均平动动能为J 102162321k -⨯==./kT ε,则氧气的温度为:K 30032k ==k εT /(2) 氧气的摩尔质量M =3.2 ×10-2 kg·mol -1 ,则有 12p s m 1095.32-⋅⨯==M RTv12 -18 声波在理想气体中传播的速率正比于气体分子的方均根速率.问声波通过氧气的速率与通过氢气的速率之比为多少? 设这两种气体都是理想气体并具有相同的温度.分析 由题意声波速率u 与气体分子的方均根速率成正比,即2v ∝u ;而在一定温度下,气体分子的方均根速率M /12∝v ,式中M 为气体的摩尔质量.因此,在一定温度下声波速率M u /1∝.解 依据分析可设声速M A u /1=,式中A 为比例常量.则声波通过氧气与氢气的速率之比为2502222O H O H .==M M u u12 -19 已知质点离开地球引力作用所需的逃逸速率为gr v 2=,其中r 为地球半径.(1) 若使氢气分子和氧气分子的平均速率分别与逃逸速率相等,它们各自应有多高的温度;(2) 说明大气层中为什么氢气比氧气要少.(取r =6.40 ×106 m)分析 气体分子热运动的平均速率MπRT 8=v ,对于摩尔质量M 不同的气体分子,为使v 等于逃逸速率v ,所需的温度是不同的;如果环境温度相同,则摩尔质量M 较小的就容易达到逃逸速率.解 (1) 由题意逃逸速率gr 2=v ,而分子热运动的平均速率M πRT 8=v .当v v = 时,有RMrg πT 4= 由于氢气的摩尔质量13H mol kg 10022--⋅⨯=.M ,氧气的摩尔质量12O mol kg 10232--⋅⨯=.M ,则它们达到逃逸速率时所需的温度分别为K 10891K,101815O 4H 22⨯=⨯=..T T(2) 根据上述分析,当温度相同时,氢气的平均速率比氧气的要大(约为4倍),因此达到逃逸速率的氢气分子比氧气分子多.按大爆炸理论,宇宙在形成过程中经历了一个极高温过程.在地球形成的初期,虽然温度已大大降低,但温度值还是很高.因而,在气体分子产生过程中就开始有分子逃逸地球,其中氢气分子比氧气分子更易逃逸.另外,虽然目前的大气层温度不可能达到上述计算结果中逃逸速率所需的温度,但由麦克斯韦分子速率分布曲线可知,在任一温度下,总有一些气体分子的运动速率大于逃逸速率.从分布曲线也可知道在相同温度下氢气分子能达到逃逸速率的可能性大于氧气分子.故大气层中氢气比氧气要少.12 -20 容积为1m 3 的容器储有1mol 氧气,以v =10m·s -1 的速度运动,设容器突然停止,其中氧气的80%的机械运动动能转化为气体分子热运动动能.试求气体的温度及压强各升高了多少.分析 容器作匀速直线运动时,容器内分子除了相对容器作杂乱无章的热运动外,还和容器一起作定向运动.其定向运动动能(即机械能)为m v 2/2.按照题意,当容器突然停止后,80%定向运动动能转为系统的内能.对一定量理想气体内能是温度的单值函数,则有关系式:()T R M m mv E Δ25%80Δ2⋅=⋅=成立,从而可求ΔT .再利用理想气体物态方程,可求压强的增量. 解 由分析知T R M m m E Δ252/8.0Δ2⋅==v ,其中m 为容器内氧气质量.又氧气的摩尔质量为12m ol kg 1023--⋅⨯=.M ,解得ΔT =6.16 ×10-2 K当容器体积不变时,由pV =mRT/M 得Pa 51.0ΔΔ==T VR M m p 12 -21 有N 个质量均为m 的同种气体分子,它们的速率分布如图所示.(1) 说明曲线与横坐标所包围的面积的含义;(2) 由N 和0v 求a 值;(3) 求在速率0v /2到30v /2 间隔内的分子数;(4) 求分子的平均平动动能.分析 处理与气体分子速率分布曲线有关的问题时,关键要理解分布函数()v f 的物理意义. ()v v d /d N N f =,题中纵坐标()v v d /d N Nf =,即处于速率v 附近单位速率区间内的分子数.同时要掌握()v f 的归一化条件,即()1d 0=⎰∞v v f .在此基础上,根据分布函数并运用数学方法(如函数求平均值或极值等),即可求解本题.解 (1) 由于分子所允许的速率在0 到20v 的范围内,由归一化条件可知图中曲线下的面积()1d 0=⎰∞v v f 即曲线下面积表示系统分子总数N .(2 ) 从图中可知, 在0 到0v 区间内,()0/v v v a Nf ;而在0 到20v 区间,()αNf =v .则利用归一化条件有v v v v v ⎰⎰+=000200d d v v a a N (3) 速率在0v /2到30v /2间隔内的分子数为12/7d d Δ2/300000N a a N =+=⎰⎰v v v v v v v (4) 分子速率平方的平均值按定义为()v v f v v v d /d 02022⎰⎰∞∞==N N 故分子的平均平动动能为20220302K 3631d d 2121000v v v v v v v v v v m N a N a m m ε=⎥⎦⎤⎢⎣⎡+==⎰⎰ 12 -22 试用麦克斯韦分子速率分布定律导出方均根速率和最概然速率. 分析 麦克斯韦分子速率分布函数为()⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=kT m kT m f 2exp π2π4222/3v v v 采用数学中对连续函数求自变量平均值的方法,求解分子速率平方的平均值,即⎰⎰=N Nd d 22v v , 从而得出方均根速率.由于分布函数较复杂,在积分过程中需作适当的数学代换.另外,最概然速率是指麦克斯韦分子速率分布函数极大值所对应的速率,因而可采用求函数极值的方法求得.解 (1) 根据分析可得分子的方均根速率为2/1242/302/1022d 2exp π2π4/d ⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎰⎰∞v v v v v kT m kT m N N N令222/x kT m =v ,则有 2/12/12/104273.13d 2π42⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡=⎰∞-m RT m kT x e x m kT x v(2) 令()0d d =v v f ,即 02exp 222exp 2π2π42222/3=⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛kT m kT m kT m T k m v v v v v 得 2/12/141.12⎪⎭⎫ ⎝⎛≈⎪⎭⎫ ⎝⎛==m RT m kT P v v12 -23 导体中自由电子的运动可看作类似于气体分子的运动(故称电子气).设导体中共有N 个自由电子,其中电子的最大速率为v F (称为费米速率).电子在速率v v v d ~+之间的概率为()()⎪⎩⎪⎨⎧>>>=v v v v v v 0,0 d π4d F 2A N A N N (1)画出分布函数图;(2) 用N 、v F 定出常数A ;(3) 证明电子气中电子的平均动能53F /εε=,其中22F F /mv =ε.分析 理解速率分布函数的物理意义,就不难求解本题.速率分布函数()vv d d 1N N f =,表示在v 附近单位速率区间的粒子数占总粒子数的百分比.它应满足归一化条件()()⎰⎰=∞F 00d d v v v v v f f , 因此根据题给条件可得()v v ~f 的函数关系,由此可作出解析图和求出A .在()v v ~f 函数关系确定的情况下,由()v v v v d 22f ⎰=可以求出v2 ,从而求出2/2v m ε=. 解 (1) 由题设可知,电子的速率分布函数()()()⎪⎩⎪⎨⎧>>>=F F 2 00 π4v v v v v v N A f ,其分布函数图如图所示. (2) 利用分析中所述归一化条件,有1d π4F02=⎰v v v NA 得 3F π4/3v N A = (3) ()53d N 4ππd 2F 20022F v v v v v v v v ===⎰⎰∞f 5/32/F 2εm ε==v12 -24 一飞机在地面时,机舱中的压力计指示为Pa 100115⨯.,到高空后压强降为Pa 101184⨯..设大气的温度均为27.0 ℃.问此时飞机距地面的高度为多少?(设空气的摩尔质量为2.89 ×10-2 kg·mol -1 )分析 当温度不变时,大气压强随高度的变化主要是因为分子数密度的改变而造成.气体分子在重力场中的分布满足玻耳兹曼分布.利用地球表面附近气压公式()kT mgh p p /ex p 0-=,即可求得飞机的高度h .式中p 0 是地面的大气压强.解 飞机高度为 ()()m 1093.1/ln /ln 300⨯===p p MgRT p p mg kT h 12 -25 在压强为Pa 1001.15⨯下,氮气分子的平均自由程为6.0×10-6cm,当温度不变时,在多大压强下,其平均自由程为1.0mm 。
第十二章习题 12.1 解:4
1Gs 10T -=
24
07
022110105A 2410
I dB B I d μπππμπ---⨯⨯⨯=⇒===⨯ 12.2 解:02
sin 4Idl dB r μθ
π=
()21000122sin sin cos cos 444L I Idl I B d r a a
θθμμμθθθθθπππ===-⎛⎛⎜⎜⎠⎠ 图中的12
π
θ=,2θπ→,所以可以得到:
00cos cos 424I I
B a a
μμππππ⎛⎫=
-=
⎪⎝⎭,方向垂直于纸面向里。
12.3 解:两条长直导线电流在其延长线上O 点的磁感应强度为零。
1
4弧长在O 点的磁感应强度的大小为:1
0022
48R I I
B dl R
R
πμμπ==
⎰
方向为垂直于纸面向里。
12.4 解:PO 导线在A 点产生的磁感应强度为零,OQ 在A 点产生的磁感应强度为:
(
)()40012cos cos cos 60
cos180 1.7310T 2sin 60
2sin 60
I
I
B a a μμθθππ-=
-=-=⨯
12.5 解:铁环不通电流,两条直线电流在O 点处产生的磁感应强度为零。
因此环中心O 处的磁感应强度为:0B =。
12.6 解:面的法线方向:1ˆˆ:abcd n
i =-,2ˆˆ:befc n k =-,343ˆˆˆ:55
aefd n i k =+ ˆ0.2B i = ,21ˆ1200cm S i =- ,22ˆ900cm S k =- ,23
ˆˆ1200900cm S i k =+ ⑴ 110.024Wb m B S Φ=∙=-
⑵ 2
20Wb m B S Φ=∙=
⑶ 330.024Wb m B S Φ=∙=
12.7 解:⑴ 001222I I
B B d d
μμππ==
=
7502
2241020
4.010T 4010
I B d μπππ---⨯⨯⨯===⨯⨯⨯
⑵ ()1
1
0022r r m S r I I B dS ldx x d x μμππ+⎡⎤
Φ=∙=+⎢⎥-⎣⎦
⎛⎜
⎠⎰ 10
1
660ln
ln 910 2.210Wb 2r r r Il x
x d
μπ+--==⨯=⨯-
12.9 解:载流导线在磁场中的受力情况为:重力mg (竖直向下),安培力F 安(竖直向上),
绳子对它的拉力T (竖直向上)。
⑴ 当0T =时,F mg BIl mg =⇒=安 电流()0.196A 9.8mg
I g Bl
=
==,若10g =,则得到0.2A I = ⑵ 当F mg >安,即0.196A 0.2A I >(或)时,导线会向上运动。
12.10 解:矩形回路的上下两边所受的安培力大小相等,方向相反,作用在一条直线上,互
相抵消。
左右两条边所受的安培力分别为:1F ,2F。
0111222I F B I l I l a μπ==
,(方向向左)()
01
22222I F B I l I l a b μπ==+(方向向右) 合力为:()()
01010121222222I I I I bl
F F F I l I l a a b a a b μμμπππ=-=
-=
++ 代入数据得:3
1.2810N F -=⨯,方向向左。
12.11 解:43
cos 200.50.15010cos30 4.310Nm M NBIS θ--==⨯⨯⨯⨯⨯=⨯
12.12 解:⑴ 线圈磁矩的大小为:()
262
2008.01501036Am m p NIS -==⨯⨯⨯=
⑵ 力矩的最大值为:()26
200 4.08.015010
144Nm M NBIS -==⨯⨯⨯⨯=
12.13 解:⑴ 在半圆弧段上,取一电流元Idl ,其受力方向垂直于纸面向里。
所受元力矩为:
dM r dF =⨯
,方向沿转轴向上,其中:cos r R θ=
cos cos dF IBdl IBR d θθθ==,θ为半径R 与磁场B 方向的夹角。
2
2
cos dM IBR d θθ=
9022
22901cos 7.8510Nm 2
M IBR d IBR θθπ--=
==⨯⎰
⑵ m M p B =⨯
,m p 垂直于纸面向外,M 沿转轴向上。
221
sin
7.8510Nm 22
m M p B ISB R IB π
π-====⨯
力矩所作的功为:()207.8510J A I I BS -=∆Φ=-=⨯
12.14 解:⑴ 2v BqR qvB m v R m
=⇒= ()41926
31
7.010 1.610 3.010 3.710m 9.1110
BqR v m ----⨯⨯⨯⨯⨯===⨯⨯ ⑵ 电子的动能: 2
312121810.59.1110 3.710 6.210J 2
k E mv --==⨯⨯⨯⨯=⨯。