有限元法的收敛性
- 格式:docx
- 大小:30.08 KB
- 文档页数:2
广州有道计算机科技有限公司有限元分析FEA有限元法(FEA,Finite Element Analysis)的基本概念是用较简单的问题代替复杂问题后再求解。
它将求解域看成是由许多称为有限元的小的互连子域组成,对每一单元假定一个合适的(较简单的)近似解,然后推导求解这个域总的满足条件(如结构的平衡条件),从而得到问题的解。
这个解不是准确解,而是近似解,因为实际问题被较简单的问题所代替。
由于大多数实际问题难以得到准确解,而有限元不仅计算精度高,而且能适应各种复杂形状,因而成为行之有效的工程分析手段。
有限元分析(FEA,Finite Element Analysis)利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。
还利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。
大型通用有限元商业软件:如ANSYS可以分析多学科的问题,例如:机械、电磁、热力学等;电机有限元分析软件NASTRAN等。
还有三维结构设计方面的UG、CATIA、Proe等都是比较强大的。
国产有限元软件:FEPG、SciFEA、,JiFEX、KMAS等有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件。
有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。
1.弹性力学和材料力学在研究对象上的区别?材料力学的研究对象是杆状构件,即长度远大于宽度和厚度的构件;弹性力学除了研究杆状构件外,还研究板、壳、块,甚至是三维物体等,研究对象要广泛得多。
2.理想弹性体的五点假设?连续性假设,完全弹性假设,均匀性假设,各向同性假定,小位移和小变形的假定。
3.什么叫轴对称问题,采用什么坐标系分析?为什么?工程实际中,对于一些几何形状、载荷以及约束条件都对称于某一轴线的轴对称体,其体内所有的位移、应变和应力也都对称于此轴线,这类问题称为轴对称问题。
通常采用圆柱坐标系r、θ、z分析。
这是因为,当弹性体的对称轴为z轴时,所有的应力分量、应变分量和位移分量都将只是r和z的函数,而与无θ关。
4.梁单元和杆单元的区别?杆单元只能承受拉压荷载,梁单元那么可以承受拉压弯扭荷载。
具体的说,杆单元其实就是理论力学常说的二力杆,它只能在结点受载荷,且只有结点上的荷载合力通过其轴线时,杆件才有可能平衡,像均布荷载、中部集中荷载等是无法承当的,通常用于网架、桁架的分析;而梁单元那么根本上适用于各种情况〔除了楼板之类〕,且经过适当的处理〔如释放自由度、耦合等〕,梁单元也可以当作杆单元使用。
5.薄板弯曲问题与平面应力问题的区别?平面应力问题与薄板弯曲问题的弹性体几何形状都是薄板,但前者受力特点是平行于板面且沿厚度均布载荷作用,变形发生在板面内;后者受力特点是垂直于板面的力的作用,板将变成有弯有扭的曲面。
平面应力问题有三个独立的应力分量和三个独立的应变分量,薄板弯曲问题每个结点有三个自由度,但是只有一个是独立的其余两个可以被它表示。
6.有限单元法结构刚度矩阵的特点?对称性,奇异性,主对角元恒正,稀疏性,非零元素呈带状分布。
7.有限单元法的收敛性准那么?完备性要求,协调性要求。
完备性要求:如果出现在泛函中场函数的最高阶导数是m阶,那么有限元解收敛的条件之一是单元内场函数的试探函数至少是m次完全多项式,或者说试探函数中必须包括本身和直至m阶导数为常数的项,单元的插值函数满足上述要求时,我们称单元是完备的。
1有限元是近似求解_一般连续_场问题的数值方法2有限元法将连续的求解域离散为若干个子域_,得到有限个单元,单元和单元之间用节点相连3从选择未知量的角度来看,有限元法分为三类位移法. 力法混合法4以_节点位移_为基本未知量的求解方法称为位移法.5以_节点力_为基本未知量的求解方法称为力法.6一部分以__节点位移__,另一部分以_节点力_为基本未知量的求解方法称为混合法.7直梁在外力的作用下,横截面的内力有剪力_和_弯矩_两个. 8平面刚架结构在外力的作用下,横截面上的内力有轴力_ 、剪力_和弯矩.9进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角10平面刚架结构中,已知单元e的坐标变换矩阵[T e]和在局部坐标系x’O’y’下的单元刚度矩阵[K’]e,则单元在真体坐标系xOy下的单元刚度矩阵为_ [K]e= [Te]T[K’]e[Te]13弹性力学问题的方程个数有15个,未知量的个数有15个. 14弹性力学平面问题的方程个数有8_个,未知量个数有8_个15几何方程是研究__应变___和_位移之间关系的方程16物理方程是描述_应力_和_应变_关系的方程17平衡方程反映了_应力__和_位移_之间关系的18把经过物体内任意一点各个_ 截面上的应力状况叫做__该点_的应力状态19形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_ 20 形函数是_三角形_单元内部坐标的_线性位移_函数,他反映了单元的_位移_状态21在进行节点编号时,要尽量使用同一单元的相邻节点的狭长的带状尽可能小,以使最大限度地缩小刚度矩阵的带宽,节省存储,提高计算效率.22三角形单元的位移模式为_线性位移模式_-23矩形单元的位移模式为__线性位移模式_24在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性25单元刚度矩阵描述了_节点力_和_节点位移之间的关系26在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的_完备性和协调性要求27三节点三角形单元内的应力和应变是_常数,四节点矩形单元内的应力和应变是线性_变化的28在矩形单元的边界上,位移是线性_变化的29整体刚度是一个呈_ 狭长的带状_分布的稀疏矩阵30整体刚度[K]是一个奇异阵,在排除刚体位移_后,它正义阵1从选择未知量的角度来看,有限元法可分为三类(力法,位移法,混合法)2下列哪有限元特点的描述中,哪种说法是错误的(D需要使用于整个结构的插值函数)3几何方程研究的是(A应变和位移)之间关系的方程式4物理方程是描述(D应力和应变)关系的方程5平衡方程研究的是(C应力和位移)之间关系的方程式6在划分单元时,下列哪种说话是错误的(A一般首选矩形单元)7下列哪种单元的单元刚度矩阵必须通过积分才能得到(D矩形单元)8单元的刚度矩阵不取决于下列哪种因素(B单元位置)9可以证明,在给定载荷的作用下,有限元计算模型的变形与实际结构变形之间的关系为(B前者小于后者)10ANSYS按功能作用可分为若干个处理器,其中(B求解器)用于施加载荷和边界条件11下列有关有限元分析法的描述中,哪种说话是错误的(B单元之间通过其边界连接成组合体)12下列关于等参数单元的描述中,哪些说话是错误的(C将规则单元变换为不规则单元后,易于构造位移模式)13从选择未知量的角度来看,有限元可以分为三类,混合法的未知量是(C节点力和节点位移)14下列对有限元特点的描述中,哪种说话是错误的(B对有限元求解域问题没有较好的处理方法)15在划分单元时,下列哪种说话错误(D自由端不能取为节点) 16对于平面问题,选择单元一般首选(D三角形单元或等参单元)17下列哪种说法不是形函数的性质(C三角形单元任一条边上的形函数,与三角形的三个节点坐标都有关)18下列四种假设中,哪种分析不属于分析弹性力学的基本假设(C大变形假设)19下列四种假设中,哪种不属于分析弹性力学的基本假设(B 有限变形假设)20下列关于三角形单元说法中哪种是错误的(C在单元的公共边上应力和应变的值是连续的)21下列关于矩形单元的说法哪项是错误的(D其形函数是线形的)22应用圣维南原理简化边界条件时,静力等效是指前后的力系的(D主矢量相同,对于同一点的主矩也相同)24描述同一点的应力状态需要的应力分量是(C6个)25在选择多项式作为单元的位移模式时.多项式阶次的确定,要考虑解答的收敛性,哪种说法不是单元必须满足的要求(D 对称性)1、试述节点力和节点载荷的区别。
有限元收敛问题引言有限元方法是一种常用的数值计算方法,广泛应用于工程学和科学领域。
在使用有限元方法进行数值计算时,我们通常关注的一个重要问题就是收敛性。
收敛性指的是当离散网格逐渐细化时,数值解是否能够趋近于真实解。
有限元收敛问题是指在使用有限元方法求解偏微分方程时,通过增加网格的细化程度来提高数值解的精度。
本文将介绍有限元收敛问题的定义、判定准则以及影响因素,并对其进行详细讨论。
有限元收敛问题定义在开始讨论之前,我们先来明确一下什么是有限元收敛问题。
给定一个偏微分方程及其边界条件,在使用有限元方法离散化后,我们可以得到一个离散形式的代数方程组。
通过求解这个代数方程组,我们可以得到一个数值解。
如果我们将网格逐渐细化,即将离散网格划分为更小的单元,然后再次求解代数方程组得到新的数值解。
如果随着网格细化,新的数值解逐渐趋近于真实解,那么我们就说有限元方法在这个问题上具有收敛性。
有限元收敛问题判定准则在实际应用中,我们如何判断使用有限元方法求解的数值解是否满足收敛性呢?以下是一些常用的判定准则:1. 网格细化首先,我们需要逐渐增加网格的细化程度。
通过将离散网格划分为更小的单元来提高数值解的精度。
通常情况下,我们会使用不同层次的网格进行计算,并比较不同网格下得到的数值解之间的差异。
2. 解析解比较如果我们能够得到偏微分方程的解析解,那么可以将数值解与解析解进行比较。
通过计算数值解与解析解之间的误差,并观察误差随着网格细化程度增加时是否逐渐减小来判断收敛性。
3. 收敛阶验证除了与解析解进行比较外,还可以对数值解的收敛阶进行验证。
收敛阶指的是当网格细化程度增加时,数值解误差与网格尺寸之间的关系。
通常情况下,我们希望数值解误差与网格尺寸之间存在线性或二次关系。
通过计算不同网格下的数值解误差和网格尺寸,并绘制误差与网格尺寸的对数-log 图,可以得到收敛阶。
如果收敛阶满足预期的要求,那么我们可以认为有限元方法在该问题上具有收敛性。
一、基本有限元网格概念1.单元概述ﻫ几何体划分网格之前需要确定单元类型.单元类型的选择应该根据分析类型、形状特征、计算数据特点、精度要求和计算的硬件条件等因素综合考虑。
为适应特殊的分析对象和边界条件,一些问题需要采用多种单元进行组合建模。
ﻫ 2.单元分类选择单元首先需要明确单元的类型,在结构有限元分析中主要有以下一些单元类型:平面应力单元、平面应变单元、轴对称实体单元、空间实体单元、板单元、壳单元、轴对称壳单元、杆单元、梁单元、弹簧单元、间隙单元、质量单元、摩擦单元、刚体单元和约束单元等。
根据不同的分类方法,上述单元可以分成以下不同的形式。
ﻫ3。
按照维度进行单元分类根据单元的维数特征,单元可以分为一维单元、二维单元和三维单元。
ﻫ一维单元的网格为一条直线或者曲线。
直线表示由两个节点确定的线性单元。
曲线代表由两个以上的节点确定的高次单元,或者由具有确定形状的线性单元。
杆单元、梁单元和轴对称壳单元属于一维单元,如图1~图3所示。
ﻫ二维单元的网格是一个平面或者曲面,它没有厚度方向的尺寸.这类单元包括平面单元、轴对称实体单元、板单元、壳单元和复合材料壳单元等,如图4所示。
二维单元的形状通常具有三角形和四边形两种,在使用自动网格剖分时,这类单元要求的几何形状是表面模型或者实体模型的边界面。
采用薄壳单元通常具有相当好的计算效率。
ﻫﻫ三维单元的网格具有空间三个方向的尺寸,其形状具有四面体、五面体和六面体,这类单元包括空间实体单元和厚壳单元,如图5所示.在自动网格划分时,它要求的是几何模型是实体模型(厚壳单元是曲面也可以)。
ﻫ4.按照插值函数进行单元分类根据单元插值函数多项式的最高阶数多少,单元可以分为线性单元、二次单元、三次单元和更高次的单元。
线性单元具有线性形式的插值函数,其网格通常只具有角节点而无边节点,网格边界为直线或者平面.这类单元的优点是节点数量少,在精度要求不高或者结果数据梯度不太大的情况下,采用线性单元可以得到较小的模型规模.但是由于单元位移函数是线性的,单元内的位移呈线性变化,而应力是常数,因此会造成单元间的应力不连续,单元边界上存在着应力突变,如图6所示。
1有限元是近似求解_一般连续_场问题的数值方法2有限元法将连续的求解域离散为若干个子域_,得到有限个单元,单元和单元之间用节点相连3从选择未知量的角度来看,有限元法分为三类位移法. 力法混合法4以_节点位移_为基本未知量的求解方法称为位移法.5以_节点力_为基本未知量的求解方法称为力法.6一部分以__节点位移__,另一部分以_节点力_为基本未知量的求解方法称为混合法.7直梁在外力的作用下,横截面的内力有剪力_和_弯矩_两个.8平面刚架结构在外力的作用下,横截面上的内力有轴力_ 、剪力_和弯矩.9进行直梁有限元分析,平面刚架单元上每个节点的节点位移为挠度和转角10平面刚架结构中,已知单元e的坐标变换矩阵[T]和在局部坐标系x’O’y’下的单元刚度矩阵[K’],则单元在真体坐标系xOy下的单元刚度矩阵为_ [K]= [T][K’] [T]13弹性力学问题的方程个数有15个,未知量的个数有15个.14弹性力学平面问题的方程个数有8_个,未知量个数有8_个15几何方程是研究__应变___和_位移之间关系的方程16物理方程是描述_应力_和_应变_关系的方程17平衡方程反映了_应力__和_位移_之间关系的18把经过物体内任意一点各个_ 截面上的应力状况叫做__该点_的应力状态19形函数在单元上节点上的值,具有本点为_1_.它点为零的性质,并且在三角形单元的任一节点上,三个行函数之和为_1_20 形函数是_三角形_单元内部坐标的_线性位移_函数,他反映了单元的_位移_状态21在进行节点编号时,要尽量使用同一单元的相邻节点的狭长的带状尽可能小,以使最大限度地缩小刚度矩阵的带宽,节省存储,提高计算效率.22三角形单元的位移模式为_线性位移模式_-23矩形单元的位移模式为__线性位移模式_24在选择多项式位移模式的阶次时,要求_所选的位移模式应该与局部坐标系的方位无关的性质为几何_各向同性25单元刚度矩阵描述了_节点力_和_节点位移之间的关系26在选择多项式作为单元的位移模式时,多项式阶次的确定,要考虑解答的收敛性,即要满足单元的_完备性和协调性要求27三节点三角形单元内的应力和应变是_常数,四节点矩形单元内的应力和应变是线性_变化的28在矩形单元的边界上,位移是线性_变化的29整体刚度是一个呈_ 狭长的带状_分布的稀疏矩阵30整体刚度[K]是一个奇异阵,在排除刚体位移_后,它正义阵1从选择未知量的角度来看,有限元法可分为三类(力法,位移法,混合法)2下列哪有限元特点的描述中,哪种说法是错误的(D需要使用于整个结构的插值函数)3几何方程研究的是(A应变和位移)之间关系的方程式4物理方程是描述(D应力和应变)关系的方程5平衡方程研究的是(C应力和位移)之间关系的方程式6在划分单元时,下列哪种说话是错误的(A一般首选矩形单元)7下列哪种单元的单元刚度矩阵必须通过积分才能得到(D矩形单元)8单元的刚度矩阵不取决于下列哪种因素(B单元位置)9可以证明,在给定载荷的作用下,有限元计算模型的变形与实际结构变形之间的关系为(B前者小于后者)10ANSYS按功能作用可分为若干个处理器,其中(B求解器)用于施加载荷和边界条件11下列有关有限元分析法的描述中,哪种说话是错误的(B单元之间通过其边界连接成组合体)12下列关于等参数单元的描述中,哪些说话是错误的(C将规则单元变换为不规则单元后,易于构造位移模式)13从选择未知量的角度来看,有限元可以分为三类,混合法的未知量是(C节点力和节点位移) 14下列对有限元特点的描述中,哪种说话是错误的(B对有限元求解域问题没有较好的处理方法)15在划分单元时,下列哪种说话错误(D自由端不能取为节点)16对于平面问题,选择单元一般首选(D三角形单元或等参单元)17下列哪种说法不是形函数的性质(C三角形单元任一条边上的形函数,与三角形的三个节点坐标都有关)18下列四种假设中,哪种分析不属于分析弹性力学的基本假设(C大变形假设)19下列四种假设中,哪种不属于分析弹性力学的基本假设(B有限变形假设)20下列关于三角形单元说法中哪种是错误的(C在单元的公共边上应力和应变的值是连续的) 21下列关于矩形单元的说法哪项是错误的(D其形函数是线形的)22应用圣维南原理简化边界条件时,静力等效是指前后的力系的(D主矢量相同,对于同一点的主矩也相同)24描述同一点的应力状态需要的应力分量是(C6个)25在选择多项式作为单元的位移模式时.多项式阶次的确定,要考虑解答的收敛性,哪种说法不是单元必须满足的要求(D对称性)1、试述节点力和节点载荷的区别。
有限元方法超收敛性综述专业方向计算数学学号082111026 姓名何果一、有限元方法简介有限元法的基本思想是将结构离散化,用有限个容易分析的单元来表示复杂的对象,单元之间通过有限个节点相互连接,然后根据变形协调条件综合求解。
由于单元的数目是有限的,节点的数目也是有限的,所以称为有限元法(Finite Element Method)。
在19世纪末及20世纪初,数学家瑞雷和里兹首先提出可对全定义域运用展开函数来表达其上的未知函数。
1915年,数学家伽辽金提出了选择展开函数中形函数的伽辽金法,该方法被广泛地用于有限元。
1943年,数学家库朗德第一次提出了可在定义域内分片地使用展开函数来表达其上的未知函数。
这实际上就是有限元的做法。
有限元方法是解偏微分方程数值解一中行之有效的数值计算方法,广泛应用与科学与工程计算各领域,它已经取得了巨大的成功。
冯康先生在1965年著名的论文《基于变分原理的差分格式》中第一次独立阐明了有限元方法的实施数学实质和理论基础,这是第一次系统的采用连续的工具特别是偏微分方程的工具来处理离散化的技术,更确切地说,有限元法就是为了对一些工程问题求得近似解的一种数值方法,从数学的角度来讲,有限元法是从变分原理或加权残数法出发,通过区域剖分和分片插值,通常是分片多项式插值,把偏微分方程的求解化为线性方程组的求解。
然而,直接从有限元解计算所得的导数在单元边界不连续且整体精度不高,网格加密呵有限元次数增加能适当改善精度,然而随着网格的加密和多项式次数的提高,有限元方法产生的线性代数方程组的阶将暗几何级数增长,但是计算机技术发展的速度总是赶不上有限元方法对它的这种需求。
因而怎样对有限元方法所得到得数值结果事后进行某种加工(这种加工工作量极小)来提高有限元解及其导数的精度是有限元研究的一项重要内容。
在这一方面前辈们已经做出的很多出色的工作。
二、有限元的超收敛性历史回顾和当前进展有限元的超收敛现象最早由工程师发现,早在1967年ZienkiewiczCheung 就在《The finite element in structural and continuum mechanics》中指出在计算在计算中发现线性有限元解得导数在某些特殊点上有特别高的精度。
有限元法的收敛性
有限元法是一种数值分析方法,因此应考虑收敛性问题。
有限元法的收敛性是指:当网格逐渐加密时,有限元解答的序列收敛到精确解;或者
当单元尺寸固定时,每个单元的自由度数越多,有限元的解答就越趋近于精确解。
有限元的收敛条件包括如下四个方面:
1)单元内,位移函数必须连续。
多项式是单值连续函数,因此选择多项式作为位移
函数,在单元内的连续性能够保证。
2)在单元内,位移函数必须包括常应变项。
每个单元的应变状态总可以分解为不依
赖于单元内各点位置的常应变和由各点位置决定的变量应变。
当单元的尺寸足够小时,单
元中各点的应变趋于相等,单元的变形比较均匀,因而常应变就成为应变的主要部分。
为
反映单元的应变状态,单元位移函数必须包括常应变项。
3)在单元内,位移函数必须包括刚体位移项。
一般情况下,单元内任一点的位移包
括形变位移和刚体位移两部分。
形变位移与物体形状及体积的改变相联系,因而产生应变;刚体位移只改变物体位置,不改变物体的形状和体积,即刚体位移是不产生变形的位移。
空间一个物体包括三个平动位移和三个转动位移,共有六个刚体位移分量。
由于一个单元牵连在另一些单元上,其他单元发生变形时必将带动单元做刚体位移,
由此可见,为模拟一个单元的真实位移,假定的单元位移函数必须包括刚体位移项。
4)位移函数在相邻单元的公共边界上必须协调。
对一般单元而言,协调性是指相邻
单元在公共节点处有相同的位移,而且沿单元边界也有相同的位移,也就是说,要保证不
发生单元的相互脱离开裂和相互侵入重叠。
要做到这一点,就要求函数在公共边界上能由
公共节点的函数值唯一确定。
对一般单元,协调性保证了相邻单元边界位移的连续性。
但是,在板壳的相邻单元之间,还要求位移的一阶导数连续,只有这样,才能保证结构的应变能是有界量。
总的说来,协调性是指在相邻单元的公共边界上满足连续性条件。
前三条又叫完备性条件,满足完备条件的单元叫完备单元;第四条是协调性要求,满足协调性的单元叫协调单元;否则称为非协调单元。
完备性要求是收敛的必要条件,四条全部满足,构成收敛的充分必要条件。
在实际应用中,要使选择的位移函数全部满足完备性和协调性要求是比较困难的,在某些情况下可以放松对协调性的要求。
需要指出的是,有时非协调单元比与它对应的协调单元还要好,其原因在于近似解的性质。
假定位移函数就相当于给单元施加了约束条件,使单元变形服从所加约束,这样的替代结构比真实结构更刚一些。
但是,这种近似结构由于允许单元分离、重叠,使单元的刚度变软了,或者形成了(例如板单元在单元之间的绕度连续,而转角不连续时,刚节点变为铰接点)对于非协调单元,上述两种影响有误差相消的可能,因此利用非协调单元有时也会得到很好的结果。
在工程实践中,非协调元必须通过“小片试验后”才能使用。
文章来源:元计算科技发展有限公司。