第六章613迭代法的收敛性
- 格式:ppt
- 大小:290.00 KB
- 文档页数:17
迭代法的误差
x
迭代法的误差
迭代法是一种数值计算方法,它将非线性的问题转化为迭代求解,可以达到比较明显的效果。
但是,由于迭代求解的非精确性和计算过程中产生的误差,迭代法的收敛性存在一定的误差。
一、迭代收敛性误差
①收敛性误差:收敛性误差是指迭代求解过程中,由于某种原因,迭代收敛时出现的误差。
通常会出现收敛性误差,这是由于迭代收敛的过程中,循环迭代的次数越多,迭代误差就越大。
②终止误差:终止误差指的是迭代收敛终止时产生的误差,即迭代收敛到某一次时出现的误差,此时误差主要由初始值造成的。
二、迭代误差的控制
①收敛条件的选择:根据问题的特性,选择适当的终止条件,使得迭代过程中不断逼近最优解。
②选择合适的迭代步长:大步长将加快迭代,但是可能会使得迭代误差增大;小步长会使得迭代进行的更加稳定,但是可能会增加迭代次数,因此,选择一个合适的步长是十分重要的。
③提高计算的精度:提高计算的精度能够有效的提高计算结果的准确性,从而减少迭代误差,但是提高精度会增加计算的复杂度和耗时,应适当取舍。
三、迭代误差的影响
①影响收敛速度:迭代误差会影响迭代收敛的速度,造成迭代收敛时间的延长,从而影响求解结果的准确性和可行性。
②影响迭代结果的准确性:由于迭代误差的存在,迭代收敛的结果会出现一定的误差,从而导致最终的迭代结果出现一定的偏差,影响结果的准确性。
第六章课后习题解答(1)()()123(1)()213(1)()()312(01.21125551154213351010(1,1,1),17( 4.0000186,2.99999k k k k k k k k k Tx x x x x x x x x x x+++ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-(17)解:(a )因系数矩阵按行严格对角占优,故雅可比法与高斯-塞德尔均收敛。
(b )雅可比法的迭代格式为取迭代到次达到精度要求(1)()()123(1)(1)()213(1)(1)(1)312(0)(8)15,2.0000012)21125551154213351010(1,1,1),8( 4.0000186,2.9999915,2.0000012)Tk k k k k k k k k TTx x x x x x x x x x++++++-ìïï=---ïïïïïï=-+íïïïïï=-++ïïïî==-高斯塞德尔法的迭代格式为x 取迭代到次达到精度要求1212:00.40.4.0.400.80.40.80||(0.8)(0.80.32)()1.09282031,00.40.4()00.160.6400.0320.672DL U I BD L U l l l l--骣--÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--÷ç桫-=-+-=>-æ--çççç=-=-ççççèlJJJS解(a )雅可比法的迭代矩阵B()BB故雅可比迭代法不收敛高斯塞德尔法迭代矩阵131()||||0.81022101220||022023002SJBDL U I BD L Ul l¥--ö÷÷÷÷÷÷÷÷÷÷ç÷ø?<骣-÷ç÷ç÷ç÷ç÷=+=--ç÷ç÷÷ç÷ç÷--ç÷桫-=骣-÷ç÷ç÷ç÷ç÷=-=-ç÷ç÷÷ç÷ç÷ç桫llSJJ SB故高斯-塞德尔迭代法收敛。
数值分析智慧树知到课后章节答案2023年下湖南师范大学第一章测试1.在数值计算中因四舍五入产生的误差称为()A:观测误差 B:方法误差 C:舍入误差 D:模型误差答案:舍入误差2.当今科学活动的三大方法为()。
A:科学计算 B:实验C:数学建模 D:理论答案:科学计算;实验;理论3.计算过程中如果不注意误差分析,可能引起计算严重失真。
A:错 B:对答案:对4.算法设计时应注意算法的稳定性分析。
A:对 B:错答案:对5.在进行数值计算时,每一步计算所产生的误差都是可以准确追踪的。
A:错 B:对答案:错第二章测试1.A: B: C: D:答案:2.某函数过(0,1),(1,2)两点,则其关于这两点的一阶差商为A:3 B:0 C:2 D:1 答案:13.A: B: C: D:答案:4.下列说法不正确的是A:高次多项式插值不具有病态性质 B:分段线性插值逼近效果依赖于小区间的长度 C:分段线性插值的导数一般不连续D:分段线性插值的几何图形就是将插值点用折线段依次连接起来答案:分段线性插值的几何图形就是将插值点用折线段依次连接起来5.下列关于分段线性插值函数的说法,正确的是A:对于光滑性不好的函数优先用分段线性插值 B:对于光滑性较好的函数优先用分段线性插值 C:一次函数的分段线性插值函数是该一次函数本身 D:二次函数的分段线性插值函数是该二次函数本身答案:对于光滑性不好的函数优先用分段线性插值;一次函数的分段线性插值函数是该一次函数本身6.A: B: C:D:答案:;;7.同一个函数基于同一组插值节点的牛顿插值函数和拉格朗日插值函数等价。
A:错 B:对答案:对第三章测试1.A: B:C:D:答案:2.以下哪项是最佳平方逼近函数的平方误差A: B: C:D:答案:3.当区间为[-1,1],Legendre多项式族带权 ( ) 正交。
A: B: C: D:答案: 4.n次Chebyshev多项式在 (-1,1) 内互异实根的个数为A:n+1 B:n-1 C:nD:n+2 答案:n5.用正交函数族做最小二乘法有什么优点A:每当逼近次数增加1时,系数需要重新计算 B:得到的法方程非病态C:不用解线性方程组,系数可简单算出 D:每当逼近次数增加1时,之前得到的系数不需要重新计算答案:得到的法方程非病态;不用解线性方程组,系数可简单算出;每当逼近次数增加1时,之前得到的系数不需要重新计算6.用正交多项式作基求最佳平方逼近多项式,当n较大时,系数矩阵高度病态,舍入误差很大。
关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。
在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。
牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。
近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。
牛顿迭代法正是将局部线性化的方法用于求解方程。
一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。
方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达x 1。
即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。
详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。
该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。
设x n 是方程解x *的近似,迭代格式 )()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。