7.2 迭代法及其收敛性
- 格式:ppt
- 大小:4.65 MB
- 文档页数:40
数值分析中的迭代法收敛性分析迭代法是数值分析领域中常用的一种数值计算方法,通过迭代逼近的方式求解数值问题。
在使用迭代法时,我们需要关注其收敛性,即迭代过程是否能够逼近问题的解。
本文将探讨数值分析中的迭代法收敛性分析方法。
一、迭代法的基本概念迭代法是一种通过逐次逼近的方式求解数值问题的方法。
在求解问题时,我们通过不断使用公式迭代计算,直到满足某个特定的条件为止。
迭代法在实际应用中广泛使用,例如求解方程组、求解最优化问题等。
二、迭代法的数学模型我们可以用以下数学模型描述迭代法的过程:设迭代公式为:x_(n+1) = g(x_n),其中x_n表示第n次迭代的结果,g(x)为迭代函数。
三、迭代法的收敛性在使用迭代法时,我们希望迭代过程能够收敛到问题的解。
迭代法的收敛性分析是判断迭代过程是否能够收敛的关键。
1.线性收敛如果迭代法满足以下条件:1)对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*| ≤ C (0 < C < 1),其中x*为问题的解,那么称迭代法是线性收敛的。
2)线性收敛的迭代法需要满足条件|x_1 - x*| / |x_0 - x*| ≤ C (0 < C <1)。
2.超线性收敛如果迭代法满足以下条件:对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*|^p ≤ C (0 < C < 1, p > 1),那么称迭代法是超线性收敛的。
3.二次收敛如果迭代法满足以下条件:对于任意的x_0,如果|x_n - x*| / |x_(n-1) - x*|^2 ≤ C (0 < C < 1),那么称迭代法是二次收敛的。
四、判断迭代法的收敛性在实际应用中,判断迭代法的收敛性是非常重要的。
下面介绍几种常用的判断方法。
1.收敛准则根据数列极限的定义,如果一个数列{x_n}满足:对于任意ε > 0,存在正整数N,当n > N时,有|x_n - x*| < ε,则称{x_n}收敛于x*。
数值分析中的迭代方法与收敛性分析迭代方法是数值分析中一种重要的算法,用于求解数值问题。
迭代方法基于一个初始猜测解,并通过不断迭代逼近真实解。
本文将介绍迭代方法的基本原理以及如何进行收敛性分析。
一、迭代方法的原理迭代方法的基本原理是通过不断更新猜测解来逼近真实解。
假设我们要求解一个方程f(x)=0,其中f(x)表示一个函数。
我们可以通过选择一个初始猜测解x0,然后使用迭代公式x_{k+1}=g(x_k)来生成下一个近似解x_{k+1},其中g(x_k)是一个迭代函数。
通过不断迭代,我们希望逐渐接近真实解。
二、常见的迭代方法在数值分析中,有许多常见的迭代方法被广泛应用于求解不同类型的数值问题。
以下是几种常见的迭代方法:1. 不动点迭代法不动点迭代法通过将方程f(x)=0转化为等价的x=g(x)的形式来求解。
其中g(x)是一个迭代函数,可以通过不断迭代x_{k+1}=g(x_k)逼近真实解。
不动点迭代法的收敛性通常需要满足收敛性条件,如Lipschitz条件或收缩映射条件。
2. 牛顿迭代法牛顿迭代法通过利用函数的导数信息来加速收敛速度。
迭代公式为x_{k+1}=x_k-\frac{f(x_k)}{f'(x_k)},其中f'(x_k)表示函数f(x_k)的导数。
牛顿迭代法的收敛性通常需要满足局部收敛性条件,如满足Lipschitz条件和拟凸性条件。
3. 雅可比迭代法雅可比迭代法用于求解线性方程组Ax=b,其中A是系数矩阵,b是常数向量。
迭代公式为x_{k+1}=D^{-1}(b-(L+U)x_k),其中D、L和U分别是矩阵A的对角线、下三角和上三角部分。
雅可比迭代法的收敛性要求系数矩阵A满足严格对角占优条件。
三、迭代方法的收敛性分析在使用迭代方法求解数值问题时,我们需要进行收敛性分析,以确定迭代方法是否能够逼近真实解。
常用的迭代收敛性分析方法包括:1. 收敛域分析收敛域分析用于确定迭代方法的收敛域,即迭代过程中能够保证收敛的初始猜测解的范围。
数值计算中的迭代法与收敛性分析数值计算是现代科学技术中不可或缺的一部分,主要解决数学问题的计算和应用问题的模拟。
其中,在数学问题的计算中,经常需要使用迭代法。
本文将从迭代法的基本概念、应用、收敛的定义和分类、收敛性分析以及优化中的迭代法等几个方面论述迭代法与收敛性分析。
一、迭代法的基本概念和应用迭代法是指通过对一个初值的反复迭代求解来逼近某个方程的解或某个函数的极值的方法。
通常来说,迭代法都需要给出迭代序列的计算公式,将初值代入迭代公式计算,得到下一项的迭代结果,不断迭代,直到达到预定的迭代次数或满足收敛精度要求为止。
在数值计算中,迭代法的应用十分广泛,例如求解非线性代数方程、求解常微分方程初值问题、解方程组、求解最优化问题等。
二、收敛的定义和分类在迭代方法求解问题时,我们需要考虑其迭代序列的收敛性问题。
收敛是指迭代序列随着迭代次数的增加,逐渐逼近欲求解的精确解。
在数值计算中,可以用迭代序列中后面几项的误差与该序列最后一项的关系来描述收敛情况。
如果迭代序列中的误差随着迭代次数的增加而逐渐趋于零,那么该迭代序列就是收敛的;反之,如果误差在某个阶段始终无法收敛,那么该迭代序列就是发散的。
按照算法的不同,迭代可以分为简单迭代和牛顿迭代等多种迭代方法。
而根据问题的不同性质,迭代的收敛性可以分为线性收敛和非线性收敛两种情况。
在常见的迭代算法中,如牛顿迭代等,通常都需要对迭代的收敛性进行分析,并根据问题特点选择适当的算法。
三、收敛性分析收敛性分析是数值计算中非常重要的一部分,其主要目的就是分析迭代序列的收敛性,找到迭代公式使其遵循收敛性的要求。
对于某些特定的迭代算法,分析收敛的方法也不相同。
下面我们以简单迭代法和牛顿迭代法两种常见的迭代算法为例,简单分析一下如何对其进行收敛性分析。
(1)简单迭代法的收敛性分析对于简单迭代法,其基本的思路就是对于方程f(x)=0,在x_0处展开泰勒公式,得到x_(k+1)和x_k間的关系式,根据其收敛的条件来选择迭代公式。