第七节 迭代法及其收敛性
- 格式:ppt
- 大小:93.00 KB
- 文档页数:5
关于牛顿迭代法的课程设计实验指导非线性方程(或方程组)问题可以描述为求 x 使得f (x ) = 0。
在求解非线性方程的方法中,牛顿迭代法是求非线性方程(非线性方程组)数值解的一种重要的方法。
牛顿是微积分创立者之一,微积分理论本质上是立足于对世界的这种认识:很多物理规律在微观上是线性的。
近几百年来,这种局部线性化方法取得了辉煌成功,大到行星轨道计算,小到机械部件设计。
牛顿迭代法正是将局部线性化的方法用于求解方程。
一、牛顿迭代法及其收敛速度牛顿迭代法又称为牛顿-拉夫逊方法(Newton-Raphson method ),是一种在实数域和复数域上通过迭代计算求出非线性方程的数值解方法。
方法的基本思路是利用一个根的猜测值x 0做初始近似值,使用函数f (x )在x 0处的泰勒级数展式的前两项做为函数f (x )的近似表达式。
由于该表达式是一个线性函数,通过线性表达式替代方程中的求得近似解x 1。
即将方程f (x ) = 0在x 0处局部线性化计算出近似解x 1,重复这一过程,将方程f (x ) = 0在x 1处局部线性化计算出x 2,求得近似解x 2,……。
详细叙述如下:假设方程的解x *在x 0附近(x 0是方程解x *的近似),函数f (x )在点x 0处的局部线化表达式为)()()()(000x f x x x f x f '-+≈由此得一次方程 0)()()(000='-+x f x x x f求解,得 )()(0001x f x f x x '-= 如图1所示,x 1比x 0更接近于x *。
该方法的几何意义是:用曲线上某点(x 0,y 0)的切线代替曲线,以该切线与x 轴的交点(x 1,0)作为曲线与x 轴的交点(x *,0)的近似(所以牛顿迭代法又称为切线法)。
设x n 是方程解x *的近似,迭代格式)()(1n n n n x f x f x x '-=+ ( n = 0,1,2,……) 就是著名的牛顿迭代公式,通过迭代计算实现逐次逼近方程的解。
牛顿迭代法与连续分数在求解平方根中的收敛性判断在结合牛顿迭代法和连续分数法求解平方根的过程中,实际上主要关注的是牛顿迭代法的收敛性,因为连续分数法在这一上下文中更多是用于表示或分析结果,而不是作为求解过程的直接部分。
然而,为了完整性,我将分别讨论牛顿迭代法和连续分数表示中的收敛性判断。
牛顿迭代法的收敛性判断牛顿迭代法在求解平方根时,其收敛性通常是非常快的,特别是当初始猜测值选择得当(比如选择被开方数的一半作为初始值)时。
要判断牛顿迭代法是否收敛,你可以:1.检查相邻项之差:2.在每次迭代后,计算当前近似值x n+1与前一次近似值xn之间的差的绝对值|xn+1−xn|。
如果这个值小于某个预定的阈值ϵ(例如,ϵ=10−6或更小,取决于你需要的精度),则可以认为迭代已经收敛,并可以接受xn+ 1作为平方根的近似值。
3.设置最大迭代次数:4.为了防止无限循环(尽管这在牛顿迭代法求解平方根时非常罕见,但理论上是可能的),你可以设置一个最大迭代次数M。
如果迭代次数超过M仍未达到预定的精度,则停止迭代并接受当前的最佳近似值,或者报告一个错误。
连续分数表示的收敛性在讨论连续分数表示的“收敛性”时,我们需要澄清一点:连续分数本身是一个无穷序列,它精确地表示了一个无理数(或某些有理数)。
然而,在实际应用中,我们只能计算这个序列的有限项来近似无理数。
1.连续分数序列的构造:2.连续分数是通过一系列递归步骤构造的,每一步都基于前一步的结果。
这个过程在数学上是精确的,并且不会产生类似于数值方法中的“收敛”或“发散”问题(除非在计算过程中引入了数值误差)。
3.有限项近似的精度:4.当我们使用连续分数的有限项来近似无理数时,近似的精度取决于所取项的数量。
项数越多,近似值通常越精确。
但是,由于我们无法计算无限项,因此必须根据实际需求选择一个足够多的项数来平衡计算复杂性和所需精度。
结合使用时的收敛性判断在结合牛顿迭代法和连续分数法时,你主要关注牛顿迭代法的收敛性。
迭代法也称辗转法,是一种不断用变量的旧值递推新值的过程,跟迭代法相对应的是直接法(或者称为一次解法),即一次性解决问题。
迭代算法是用计算机解决问题的一种基本方法,它利用计算机运算速度快、适合做重复性操作的特点,让计算机对一组指令(或一定步骤)进行重复执行,在每次执行这组指令(或这些步骤)时,都从变量的原值推出它的一个新值,迭代法又分为精确迭代和近似迭代。
比较典型的迭代法如“二分法”和"牛顿迭代法”属于近似迭代法。
方法介绍迭代法是一类利用递推公式或循环算法通过构造序列来求问题近似解的方法。
例如,对非线性方程,利用递推关系式,从开始依次计算,来逼近方程的根的方法,若仅与有关,即,则称此迭代法为单步迭代法,一般称为多步迭代法;对于线性方程组,由关系从开始依次计算来过近方程的解的方法。
若对某一正整数,当时,与k 无关,称该迭代法为定常迭代法,否则称之为非定常迭代法。
称所构造的序列为迭代序列。
迭代法应用迭代法的主要研究课题是对所论问题构造收敛的迭代格式,分析它们的收敛速度及收敛范围。
迭代法的收敛性定理可分成下列三类:①局部收敛性定理:假设问题解存在,断定当初始近似与解充分接近时迭代法收敛;②半局部收敛性定理:在不假定解存在的情况下,根据迭代法在初始近似处满足的条件,断定迭代法收敛于问题的解;③大范围收敛性定理:在不假定初始近似与解充分接近的条件下,断定迭代法收敛于问题的解。
迭代法在线性和非线性方程组求解,最优化计算及特征值计算等问题中被广泛应用。
迭代法算法迭代是数值分析中通过从一个初始估计出发寻找一系列近似解来解决问题(一般是解方程或者方程组)的过程,为实现这一过程所使用的方法统称为迭代法(Iterative Method)。
一般可以做如下定义:对于给定的线性方程组(这里的x、B、f同为矩阵,任意线性方程组都可以变换成此形式),用公式(代表迭代k次得到的x,初始时k=0)逐步带入求近似解的方法称为迭代法(或称一阶定常迭代法)。
常用算法——迭代法迭代法是一种常见的算法设计方法,它通过重复执行一定的操作来逐步逼近问题的解。
迭代法是一种简单有效的求解问题的方法,常用于求解数值问题、优化问题以及函数逼近等领域。
本文将介绍迭代法的基本概念、原理以及常见的应用场景。
一、迭代法的基本概念迭代法的思想是通过反复应用一些函数或算子来逐步逼近问题的解。
对于一个需要求解的问题,我们首先选择一个初始解或者近似解,然后通过不断迭代更新来逼近真实解。
迭代法的核心是找到一个递推关系,使得每次迭代可以使问题的解越来越接近真实解。
常见的迭代法有不动点迭代法、牛顿迭代法、梯度下降法等。
这些方法的求解过程都是基于迭代的思想,通过不断逼近解的过程来得到问题的解。
二、迭代法的原理迭代法的基本原理是通过不断迭代求解迭代方程的解,从而逼近问题的解。
迭代法的求解过程通常分为以下几个步骤:1.选择适当的初始解或者近似解。
初始解的选择对迭代法的收敛性和效率都有影响,一般需要根据问题的特点进行合理选择。
2.构建递推关系。
通过分析问题的特点,构建递推关系式来更新解的值。
递推关系的构建是迭代法求解问题的核心,它决定了每次迭代如何更新解的值。
3.根据递推关系进行迭代。
根据递推关系式,依次更新解的值,直到满足收敛条件为止。
收敛条件可以是解的变化小于一定阈值,或者达到一定的迭代次数。
4.得到逼近解。
当迭代停止时,得到的解即为问题的逼近解。
通常需要根据实际问题的需求来判断迭代停止的条件。
三、迭代法的应用迭代法在数值计算、优化问题以及函数逼近等领域有广泛的应用。
下面将介绍迭代法在常见问题中的应用场景。
1.数值计算:迭代法可以用于求解方程的根、解线性方程组、求解矩阵的特征值等数值计算问题。
这些问题的解通常是通过迭代的方式逼近得到的。
2.优化问题:迭代法可以应用于各种优化问题的求解,如最大值最小化、参数估计、模式识别等。
迭代法可以通过不断调整参数的值来逼近问题的最优解。
3.函数逼近:迭代法可以应用于函数逼近问题,通过不断迭代来逼近一个函数的近似解。
迭代法原理迭代法是一种常见的数值计算方法,也是一种解决问题的有效途径。
它的基本思想是通过不断迭代更新,逐步逼近问题的解。
在实际应用中,迭代法被广泛应用于数值分析、优化算法、计算机模拟等领域,具有较强的实用性和普适性。
迭代法的原理非常简单,它通过不断重复一个固定的计算过程,直到满足某个终止条件为止。
通常情况下,迭代法的过程可以描述为,首先选取一个初始值作为迭代的起点,然后根据某种规则进行迭代更新,直到满足预设的终止条件为止。
在每一次迭代中,都会根据当前的值计算出下一步的值,然后用新的值替代旧的值,不断迭代更新,直到满足终止条件。
迭代法的核心在于不断重复的更新过程,这种更新过程可以是简单的数值计算,也可以是复杂的函数迭代。
在实际应用中,迭代法通常用于求解方程的近似解、优化问题的最优解等。
通过不断迭代更新,可以逐步逼近问题的解,达到较高的精度要求。
迭代法的原理简单清晰,但在实际应用中需要注意一些问题。
首先,迭代法的收敛性是一个重要的问题,即迭代过程是否能够收敛到问题的解。
在一些情况下,迭代法可能会出现发散的情况,导致无法得到有效的解。
因此,在应用迭代法时,需要对问题的性质和迭代过程进行充分的分析,以确保迭代法能够有效收敛。
其次,迭代法的收敛速度也是一个重要的问题。
在实际应用中,迭代法的收敛速度直接影响到计算的效率和精度。
一般来说,迭代法的收敛速度越快,计算所需的迭代次数就越少,计算效率就越高。
因此,如何提高迭代法的收敛速度,是一个需要重点关注的问题。
总的来说,迭代法作为一种常见的数值计算方法,具有较强的实用性和普适性。
通过不断迭代更新,可以逐步逼近问题的解,解决一些复杂的数值计算和优化问题。
在实际应用中,需要注意迭代法的收敛性和收敛速度等问题,以确保迭代法能够有效地解决问题。
在数值计算、优化算法、计算机模拟等领域,迭代法都发挥着重要的作用,成为解决问题的有效途径。
通过对迭代法原理的深入理解和实际应用,可以更好地利用迭代法解决实际问题,提高计算效率和精度,推动科学技术的发展。