距离保护调试方法
- 格式:doc
- 大小:64.31 KB
- 文档页数:3
相间距离保护定值的手动校验方法在现代工业生产中,定值设备的精确度和稳定性对生产过程的控制至关重要。
为了确保定值设备的准确性,手动校验方法是常用的一种方式。
本文将介绍一种以相间距离保护定值的手动校验方法,通过使用这种方法可以有效地提高定值设备的可靠性和准确性。
我们需要明确相间距离的概念。
相间距离是指两个相邻定值设备之间的距离,可以是时间、空间或其他物理量。
相间距离的设定是基于定值设备的工作原理和要求,通常由生产工艺或标准规定。
在手动校验过程中,我们可以利用相间距离来保护定值。
具体步骤如下:第一步,确定相间距离的设定值。
根据定值设备的要求和标准规定,确定相间距离的数值。
这个数值应该能够满足定值设备的稳定性和准确性要求。
第二步,选择适当的校验方法。
根据定值设备的类型和性质,选择合适的校验方法。
常见的校验方法包括时间测量、空间测量、电压测量等。
第三步,进行校验操作。
按照校验方法的要求,对定值设备进行校验操作。
在校验过程中,需要保持相间距离的稳定性和准确性。
可以通过使用专用工具、仪器和设备来提高校验的精确度。
第四步,记录校验结果。
在进行校验操作的同时,及时记录校验结果。
校验结果应包括校验数值、校验时间、校验人员等信息。
校验结果的记录可以用于后续的分析和比对。
第五步,分析校验结果。
对校验结果进行分析,比对校验数值与设定值的差异。
如果校验数值与设定值存在较大差异,需要及时调整定值设备或校验方法,以确保定值设备的准确性。
通过以上步骤,我们可以使用相间距离保护定值的手动校验方法来提高定值设备的可靠性和准确性。
这种方法具有简单、灵活、易操作的特点,适用于各种类型的定值设备。
需要注意的是,手动校验方法需要经过专业培训和实践操作才能熟练掌握。
校验人员应具备相应的技术知识和操作技能,以确保校验结果的准确性和可靠性。
总结起来,以相间距离保护定值的手动校验方法是一种有效的定值设备校验方式。
通过合理设定相间距离、选择适当的校验方法和记录分析校验结果,可以提高定值设备的可靠性和准确性。
实验三、距离保护及方向距离保护整定实验一、实验目的1.熟悉阶段式距离保护及方向距离保护的工作原理和基本特性。
2.掌握时限配合、保护动作阻抗(距离)和对DKB、YB的实际整定调试方法。
二、预习与思考1.什么是距离保护?距离保护的特点是什么?2.什么是距离保护的时限特性?3.什么是方向距离保护?方向距离保护的特点是什么?4.方向距离保护的Ⅰ段和Ⅱ段为什么在单电源或多电源任何形状的电网中都能够保证有选择性地切除故障线路?5.阶段式距离保护中各段保护是如何进行相关性配合的?6.在整定距离保护动作阻抗时,是否要考虑返回系数。
三、原理说明1.距离保护的作用和原理电力系统的迅速发展,使系统的运行方式变化增大,长距离重负荷线路增多,网络结构复杂化。
在这些情况下,电流、电压保护的灵敏度、快速性、选择性往往不能满足要求。
电流、电压保护是依据保护安装处测量电流、电压的大小及相应的动作时间来判断故障是否发生以及是否属于内部故障,因而受系统的运行方式及电网的接线形式影响较大。
针对被保护的输电线路或元件,在其一端装设的继电保护装置,如能测量出故障点至保护安装处的距离并与保护范围对应的距离比较,即可判断出故障点的位置从而决定其行为。
这种方式显然不受运行方式和接线的影响。
这样构成的保护就是距离保护。
以上设想,表示在图5-1中。
图中线路A侧装设着距离保护,由故障点到保护安装处间的距离为l,按该保护的保护范围整定的距离为l zd,如上所述,距离保护的动作原理可用方程表示:l≤l zd。
满足此方程时表示故障点在保护范围内,保护动作;反之,则不应动作。
图5-1 距离保护原理说明Z—表示距离保护装置距离比较的方程两端同乘以一个不为零且大于零的z1(输电线每千米的正序阻抗值)得到:Z d = z1l ≤ z1l zd ( 5-1 )式(5-1)称为动作方程或动作条件判别式。
表明距离保护是反应故障点到保护安装处间的距离(或阻抗)并与规定的保护范围(距离或阻抗)进行比较,从而决定是否动作的一种保护装置。
线路距离保护校验方法
1.若相邻段距离保护出现误动作或无法动作,可以检查其故障指示点是否正确,或者检查保护线路是否受到外部干扰。
2.若距离保护装置误动作频繁,可以检查保护线路是否有干扰信号,或者检查距离保护装置的参数设置是否正确。
3.若距离保护装置无法动作,可以检查距离保护装置与线路的接线是否正常,或者检查装置的设置参数是否正确。
4.若距离保护装置误报故障,可以检查系统中是否存在故障,或者检查距离保护装置是否设置合理。
距离保护调试方法应用研究【摘要】基于对国内四大保护装置生产厂家的距离保护装置进行现场校验的结果,以距离保护的基本原理为依据,对比分析了各厂家距离保护的异同点。
在现有的理论原理和分析结果的基础上,对现场校验的方法进行了更深入地研究,给出了距离保护圆特性和四边形特性的最佳校验方法,这对实际生产具有积极的指导和借鉴作用。
【关键词】距离保护;圆特性;四边形特性;校验方法1.引言距离保护是一种反映输电线路一端电气量变化的保护[1]。
与电流保护和电压保护相比,距离保护的性能受系统运行方式的影响较小[2-3]。
距离保护的动作行为可以反应出短路点到保护安装处距离的远近,并可根据距离的远近确定动作时间,其灵敏度相较于方向保护和差动保护来说更高。
相对其他常见的保护策略,距离保护能够更准确得选择并较快的切除故障,在现今运行方式多变、结构复杂的电力系统中,一旦发生事故,距离保护的这种工作特性尤为重要。
因此,距离保护在电力系统中获得了广泛的应用。
目前,距离保护在110kV~220kV及以下电压等级的线路上作为主保护,在220kV及以上电压等级的线路上作为后备保护使用。
国内的微机保护研究开始于20世纪70年代末期、80年代初期[4],虽然起步晚,然而由于我国继电保护工作者的不懈努力,进展却很快[5-6]。
随着特高压交流网架工程的推进,以及跨区同步电网的构建,电力系统的网架结构和运行方式日益复杂和多变,这对继电保护灵敏性、选择性、快速性、准确性的执行质量提出了更高的要求。
作为继电保护的一种,距离保护在电力系统输电网络中的应用最为广泛。
如何更好的提高距离保护动作的可靠性对电网稳定运行有着深远的影响,这也是继电保护生产厂家所一直致力于的研究课题。
本文在现场试验的基础上,对国内多个厂家的距离保护产品进行比较,给出了距离保护的一般性校验方法。
这对指导电网公司的安全生产具有一定的借鉴作用,对提高系统的安全性和稳定性具有重大意义。
2.距离保护基本原理距离保护是一种利用阻抗元件反应输电线路故障的保护[7],其功能特性有两点:首先,它能区分正常运行和短路故障;其次,它能反映短路点的远近,如果短路点距离小于整定值,则动作保护。
相间距离保护调试公式
保护调试是一个复杂的过程,因为涉及到多个参数,必须经过精确的计算才能做出正确的决策,以保证设备的安全性与可靠性。
典型的保护调试公式是一组用于计算给定分段间距离的方程式,即:1)电压比:A=V1/V2,其中V1为第一个分段电压,V2为第二个分段电压;
2)时间比:T=t1/t2,其中t1为第一个分段时间,t2为第二个分段时间;
3)长度比:L=l1/l2,其中l1为第一个分段长度,l2为第二个分段长度;
4)绝缘比:I=n1/n2,其中n1为第一个分段绝缘电阻,n2为第二个分段绝缘电阻;
5)频率比:F=f1/f2,其中f1为第一个分段频率,f2为第二个分段频率;
在进行相间距离保护调试时,必须考虑上述参数,并以正确的公式进行计算,以确定合理的调度策略。
例如,如果需要计算两个电网之间的相间距离,可以参考以下公式:Z12=1/[(V1/V2)2+(t1/t2)2+(l1/l2)2+(n1/n2)2+(f1/f2)2]0.5
其中,V1、V2、t1、t2、l1、l2、n1、n2、f1、f2分别表示两个电网之间的电压、时间、长度、绝缘电阻和频率比;
Z12是计算出的相间距离,它表示两个电网之间的相间距离;。
距离保护的调试
1、相间距离保护的调试
由于:AB
AB AB I
U Z = 令1805,05∠=∠=B A I I 这样AB I 的角度为0,AB
Z 的角度与AB U 的相同。
o A AB 30+=ϕϕ,只需找到A ϕ的角度范围即可。
幅值为AB U /AB I 。
因此只需改变A U 的角度和幅值即可。
无论A U 角度如何变化,A U 、B U 、C U 的角度始终保持正序。
距离调试:
令1805,05∠=∠=B A I I ,A U 、B U 、C U 设正常电压57.74,设A U 的角度为0度,将A U 的幅值,直到动作。
至少要做三组精确值,这样可以确定一个圆。
角度范围:因为线路正序阻抗角已知,可以先估算一下大致角度,在试验。
时间:至少要降到动作值的百分之20。
注意:做距离I 段时要把其他各段退出。
2、接地距离保护的调试
接地距离有一个零序补偿系数,A Z =A U /A I (1+k),A U 、B U 、C U 设正常电压57.74,角度为0、--120、120。
A I =3010-∠,B I =C I =0。
注意:A I 的幅值必须大于零序四段定值,才判断有接地故障。
降A U 的值,直到动作。
准确值至少要做三组。
角度、时限同上。
3、零序过流 只加电流即可
零序电流是装置自己合成的,无需外部接线。
只需把
I、C I方向设置相反,逐渐加其中一个电流,即可找到动作值。
B。
距离保护模块整定及功能试验方法在REX500系列中距离保护,有普通的距离保护、高速距离保护、高频距离保护,距离保护。
其中所含得模块有选相元件PHS (Phase Selection )、启动元件GFC (General Fault Criteria )、距离模块(ZM )、高速距离保护(HS )、振荡检测模块(PSD )、PT 断线检测。
1、PHS 试验方法及要求1、接地距离选相元件检验分别模拟A 相、B 相、C 相单相接地故障,故障电流I=IN ,故障电压为:当相角为0°时 U = m ·RFPE ·I ;当相角为90°时 U =m ·[X1PE+31(X0PE -X1PE)]·I m : 系数,分别为0.95、1.05 RFPE : 单相接地距离电阻值;X1PE : 接地距离的正序电抗值;X0PE : 接地距离的零序电抗值;选相元件应在m=0.95时可靠动作,在m=1.05时不动作。
试验时候:注意对应选相元件二进制值的变化:(在HMI 中)ServiceFunctionsImpedencePhaseSelectionSTFWLn : (n 表示对应的相别)2、相间距离选相元件检验分别模拟AB 、BC 、CA 相间短路故障,故障电流I=IN ,故障电压为:当相角为0°时 U = m ·RFPP ·I ;当相角为90°时 U =m ·2·X1PP ·I ;m :系数,分别为0.95、1.05RFPP :相间距离电阻值X1PP :相间距离的正序电抗值选相元件应在m=0.95时可靠动作,在m=1.05时不动作。
试验时候:注意对应选相元件二进制值的变化:(在HMI 中)Service FunctionsImpedencePhaseSelectionSTFWLn : (n 表示对应的相别)2、GFC 试验方法及要求(分为电阻、电流选相)1、接地距离选相元件检验(正相与反相实验方法相同)分别模拟A 相、B 相、C 相单相接地故障,故障电流I=IN ,故障电压为:当相角为0°时 U = Max { m ·RFPE ·I , m ·RLd ·I };当相角为90°时 U =m ·[X1PE+31(X0PE -X1PE)]·I m : 系数,分别为0.95、1.05;RLd : 负荷电阻;RFPE : 单相接地距离电阻值;X1PE : 接地距离的正序电抗值;X0PE : 接地距离的零序电抗值;选相元件应在m=0.95时可靠动作,在m=1.05时不动作。