距离保护的基本原理及应用举例
- 格式:ppt
- 大小:1.30 MB
- 文档页数:71
第三章距离保护第三章:电网距离保护1.距离保护的定义和基本原理:距离保护:是利用短路时电压、电流同时变化的特征,测量电压与电流的壁纸,反映故障点到保护安装处的距离而工作的保护。
基本原理:按照继电保选择性的要求,安装在线路两端的距离保护仅在下路MN内部故障时,保护装置才应该立即动作,将相应的断路器跳开,而在保护区的反方向或本线路之外正方向短路时,保护装置不应动作。
与电流速断保护一样,为了保证在下级线路的出口处短路时保护不误动作,在保护区的正方向(对于线路MN的M侧保护来说,正方向就是由M指向N的方向)上设定一个小于本线路全长的保护范围,用整定距离Lset来表示。
当系统发生短路故障时,首先判断故障的方向,若故障位于保护区的正方向上,则设法测出故障点到保护安装处的距离Lk,并将Lk与Lset相比较,若Lk小于Lset,说明故障发生在保护范围之内,这时保护应立即动作,跳开相应的断路器;若LK大于Lset,说明故障发生在保护范围之外,保护不应动作,对应的断路器不会跳开。
若故障位于保护区的反方向上,则无需进行比较和测量,直接判断为区外故障而不动作。
}通常情况下,距离保护可以通过测量短路阻抗的方法来间接地测量和判断故障距离。
2.几种继电器的方式:苹果特性:有较高的耐受过渡电阻的能力,耐受过负荷的能力比较差;橄榄特性正好相反。
电抗特性:动作情况至于测量阻抗中的电抗分量有关,与电阻无关,因而它有很强的耐过渡电阻的能力。
但是它本身不具有方向性,且在负荷阻抗情况下也可能动作,所以通常它不能独立应用,而是与其他特性复合,形成具有复合特性的阻抗原件。
电阻特性:通常也与其他特性复合,形成具有复合特性的阻抗原件。
多边形特性:能同时兼顾耐受过渡电阻的能力和躲负荷的能力。
3测量阻抗:Zm定义为保护安装处测量电压Um&与测量电流Im&之比,即Um&/Im& 动作阻抗:使阻抗原件处于临界动作状态对应的阻抗(Zop)。
距离保护测距原理距离保护测距原理是一种常见的测距技术,主要用于测量物体和障碍物之间的距离,以达到在不碰撞的情况下保护物体或者在特定距离范围内进行自动控制的目的。
下面将对距离保护测距原理进行详细介绍。
距离保护测距原理主要是通过测量物体与障碍物之间的时间差,从而计算出它们之间的距离。
常见的距离保护测距技术包括超声波测距、激光测距、红外线测距等。
超声波测距是利用超声波的传播速度来测量距离的。
传感器会向目标物体发射超声波,当超声波碰撞到目标物体后会被反射回来,传感器会接收到反射的超声波,并计算出从发射超声波到接收到反射超声波所经过的时间差,从而得出目标物体与传感器之间的距离。
超声波测距精度较高,并且可以实现非接触测距,适用于较短距离测量。
激光测距是利用激光的传播速度来测量距离的。
传感器会发射一束激光束,激光束会碰撞到目标物体上后反射回传感器,传感器会计算出从发射激光到接收到反射激光所经过的时间差,进而得出目标物体与传感器之间的距离。
激光测距精度非常高,能够实现较大范围的测距,广泛应用于工业自动化控制以及无人驾驶等领域。
红外线测距是利用红外线的传播速度来测量距离的。
传感器会发射一束红外线,红外线会碰撞到目标物体上后反射回传感器,传感器通过计算出从发射红外线到接收到反射红外线所经过的时间差,得出目标物体与传感器之间的距离。
红外线测距具有较高的精度,但受到环境因素的影响较大。
距离保护测距原理的核心是通过测量时间差来计算距离,实际应用中需要考虑到各种可能的干扰因素。
例如,如果目标物体表面反射率不同,会导致反射回传感器的波束强弱不一,从而影响测距精度。
此外,环境中可能存在其他的障碍物或者杂散光源,这些都会对测距结果产生干扰。
因此,在实际应用中需要进行有效的算法处理和系统校准来提高测距精度和稳定性。
总之,距离保护测距原理主要通过测量物体与障碍物之间的时间差,从而计算出它们之间的距离。
根据不同的技术原理,距离保护测距技术可以分为超声波测距、激光测距、红外线测距等。
距离保护的基本原理大多电流电压保护,其保护范围要随系统运行方式的变化而变化。
对长距离、重负荷线路,由于线路的最大负荷电流可能与线路末端短路时的短路电流相差甚微,采用电流电压保护,其灵敏性也常常不能满足要求。
距离保护是广泛运用在110KV及以上电压输电线路中的一种保护装置。
一、距离保护的基本原理4.1 距离保护的基本原理前面介绍的各种电流电压保护,其保护范围要随系统运行方式的变化而变化。
对长距离、重负荷线路,由于线路的最大负荷电流可能与线路末端短路时的短路电流相差甚微,采用电流电压保护,其灵敏性也常常不能满足要求。
距离保护是广泛运用在110KV 及以上电压输电线路中的一种保护装置。
一、距离保护的基本原理输电线路的长度是一定的,其阻抗也基本一定。
在其范围内任何一点故障,故障点至线路首端的距离都不一样,也就是阻抗不一样,都会小于总阻抗。
距离保护就是反应故障点至保护安装处之间的距离,并根据该距离的大小确定动作时限的一种继电保护装置。
距离保护的核心元件阻抗继电器。
电流保护很简单可靠,经济,但是对于35KV及以上的结构复杂,运行方式变化较大的高原电网,特别是线路的阻抗值较大,短路电流较小而负荷电流较大的情况下,电流保护很困难满足要求,因此必须设计更为完善的保护方式,距离保护是目前高压输电线路保护的重要方式,并作为线路的主要保护广泛运用于35KV及以上的高压电网中,我国电气化铁道牵引变电所110KV,220KV 电源进线及27.5KV馈线都是一句力保护座位短路故障的主保护。
距离保护是反映测量阻抗下降而动作的保护,是欠值保护,量阻抗值ZK为测量电压UK与测量电流IK之比。
故保护装置需要测量电流和电压两个电气量。
当线路发生短路故障时,短路电流急剧增大、而电压降低,不难看出,ZK降低的程度相对于电压降低、电流增大的程度更加显著,因此距离保护比电流保护或电压保护的灵敏度更高,其他性能也更完善。
距离保护的核心元件是阻抗继电器。
距离保护原理概述距离保护是反映故障点至保护安装处的距离,并根据距离的远近确定动作时间的一种保护。
故障点距保护安装处越近,保护的动作时间就越短,反之就越长,从而保证动作的选择性。
测量故障点至保护安装处的距离,实际上就是用阻抗继电器测量故障点至保护安装处的阻抗。
因此,距离保护也叫阻抗保护。
1、距离保护的原理保护安装处母线电压与线路电流之比称为测量阻抗。
故障时,反映了保护安装处至故障点的阻抗。
将此测量阻抗与整定阻抗Zset进行比较,当ZmZset时,说明故障点在保护范围内,保护动作;当Zm>Zset时,说明故障点在保护范围外,保护不动作。
测量阻抗只与故障点到保护安装处的距离l成正比,基本不受运行方式的影响。
所以距离保护的范围基本不随运行方式变化而变化。
目前广泛采用的是三段式阶梯型距离保护。
距离保护I、II、III段的整定计算与上一期的零序保护类似。
为保证选择性,距离I段保护范围为被保护线路全场的80%~85%,瞬时动作。
距离II段的保护范围为被保护线路的全长及下一段线路的30%~40%,动作时限要与下一线路的距离I段动作时限配合,大一个时限级差0.5s。
距离三段为后备保护,其保护范围较长,一般包括本线路及下一线路全长,动作时限比下一线路距离II段相配合。
如图所示,当K点发生短路故障时,从保护2安装处到K点的距离为L2,保护2将以t2I的时限动作;从保护1安装处到K点的距离为L1,保护1将以t1II的时间动作,t1II>t2I,保护2将动作跳闸,切除故障。
所以离故障点近的保护总是先动作,因此在复杂网络中保证了动作的选择性。
2、保护安装处电压计算公式线路上K点发生短路时,保护安装处的某相的相电压应该是该相故障点电压与该相线路压降之和。
如果假设线路的正序阻抗Z1等于负序阻抗Z2,则保护安装处相电压的计算公式为:这里的k为零序补偿系数,k3I0的物理意义是三相零序电流在输电线路的相间互感阻抗上的压降。
距离保护基本工作原理
通过讲解距离保护的定义和主要装置初步了解距离保护基本工作原理。
1. 距离保护的定义是反应故障点至保护安装地点之间的距离(或阻抗),并根据距离的远近而确定动作时间的一种保护装置,反应了短路点到保护安装点之间阻抗大小(距离的长短)。
2. 距离保护的主要装置主要元件是距离(阻抗)继电器,它可根据其端子所加的电压和电流测知保护安装处至短路点间的阻抗值,此阻抗称为继电器的测量阻抗。
当短路点距保护安装处近时,其测量阻抗小,动作时间短;就近原则。
当短路点距保护安装处远时,其测量阻抗大,动作时间长;保证了保护有选择性地切除故障线路。
图1距离保护的主要装置
保护2测量阻抗为:距离保护的动作时间与保护安装地点至短路点之间距离的关系,称为距离保护的时限特性。
为满足速动性,选择性和灵敏性的要求,应用具有三段动作范围的阶梯型时限特性,并分别称为距离保护的Ⅰ、Ⅱ、Ⅲ段。
距离保护的第I段是瞬时动作的,t1是保护本身的固有动作时间。
保护2的整定值:保护1的整定值:距离Ⅱ段整定值的选择与限时电流速断的相似,即应使其不超出下一条线路距离Ⅰ段的保护范围,同时带有高出一个△t的时限,以保证选择性。
当保护1第Ⅰ段末端短路时,保护2的
测量电阻为:1可靠系数K,则保护2的起动电阻为。