教你区分定类、定序、定距、定比变量
- 格式:doc
- 大小:26.00 KB
- 文档页数:3
测量:定类、定序、定距、定比研究方法02测量(measurement)是指根据一定的法则,将某种物体或现象所具有的属性或特征用数字或符号表示出来的过程,主要作用是确定一个特定分析单位的特定属性的类别或水平。
在社会研究中,变量按照取值的性质可以分为定类变量、定序变量、定距变量、定比变量。
定类变量称为定性变量,后三个变量称为定量变量。
变量的解释和运用离不开测量,不同的变量需要相应的测量尺度。
史蒂文斯于1951年创立了测量尺度分类法,将测量尺度分为定类尺度、定序尺度、定距尺度、定比尺度。
定类尺度定类尺度(nominal scale),也称为类别尺度、定名尺度,是用于测量定类变量的尺度,是测量尺度中最低的一种。
定类尺度在本质上是一种分类体系,即把研究对象的不同属性或特征加以区分,标以不同的名称或符号,确定其类别。
定类尺度所分的类别必须兼具穷尽性和互斥性,即既要相互排斥,互不交叉重叠,又包罗各种可能的情况。
所测量的每一个对象,都会在分类体系中占据一个类别,并且只占据一个类别。
性别、种族、职业、宗教、籍贯、婚姻状况等是典型的定类尺度。
定类尺度的数学特征是“等于”或“不等于”。
测量给出的数字仅仅是识别调查对象或对调查对象进行分类的标签或编码,不具备任何数学特性,也不能说明其本质特征。
定类尺度具有对称性和传递性。
对称性,即如果甲与乙同类,则乙也一定与甲同类;如果甲与乙不同类,则乙也一定不会与甲同类。
传递性,如果甲与乙同类,乙与丙同类,则甲与丙一定也同类。
对于任何一门学科来说,分类都是基础。
其他几种层次的测量,也都把分类作为其最低限度的操作,都包含着定类尺度的分类功能。
在社会现象的测量中,大量的变量都是定类变量,分类是最基本的目标和最经常的操作。
定类尺度可分为标记和类别两种①标记标记可作为一个识别的记号。
数字当用作标记时,不表示数量的多少,也不能做加减乘除运算。
例如,体育运动中用号码区分运动员:3号球员、6号球员、9号球员……但不能说9号球员>6号球员、3号球员+6号球员=9号球员或者9号球员x3号球员=18号球员。
1、数据的计量尺度有哪些?各自特征(1)定类尺度:计量层次最低;对事物进行平行的分类;各类别可以指定数字代码表示;使用时必须符合类别穷尽和互斥的要求;数据表现为“类别”;具有=或的数学特性(2)定序尺度:对事物分类的同时给出各类别的顺序;比定类尺度精确;未测量出类别之间的准确差值;数据表现为“类别”,但有序;具有>或<的数学特性(例如,产品分为一等品、二等品、三等品、次品等)(3)定距尺度:对事物的准确测度;比定序尺度精确;数据表现为“数值”;没有绝对零点;具有+或—的数学特性,但是倍数关系不成立(如气温可以有温差,但不能有倍数关系)(4)定比尺度:对事物的准确测度;与定距尺度处于同一层次;数据表现为“数值”;有绝对零点;具有或的数学特性,也可+或—,倍数关系成立(如年龄可以有差值也可以有倍数关系)&以上四种计量尺度对事物的测量层次由低级到高级、由粗略到精确逐步地进,高层次计量尺度有低层次计量尺度的全部特征,反之不成立。
·对测量尺度层次的判断(1)较低层次的测量尺度测量精度低,而较高层次的测量尺度测量精度高。
(2)较低层次的测量尺度计算方法少,而较高层次的测量尺度计算方法多。
(3)较低层次的测量尺度信息数量少,而较高层次的测量尺度信息数量多。
2、条形图与直方图的不同(1)直方图表示定量数据(定距、定比数据),条形图表示定性数据(定类、定序数据)(2)条形图是用条形的长度表示各类别频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或百分比,宽度则表示各组的组距,高度与宽度均有意义(3)直方图的各矩形通常是连续排列,条形图则是分开排列3、均值、中位数和众数的特点及之间的关系(1)众数:不受极端值影响、具有不惟一性、数据分布偏斜程度较大时应用(2)中位数:不受极端值影响、数据分布偏斜程度较大时应用(3)均值:易受极端值影响、数学性质优良、数据对称分布或接近对称分布时应用 ·当分布为适度偏态时,三者之间近似的数量关系是:众数与算术平均数的距离是中位数与算术平均数距离的3倍,即:e M X M X -=-30根据这一关系,可以得到以下三个关系式:4、为什么要计算离散系数?如何运用离散系数判断平均数的代表性?(1)离散系数:标准差与其相应的均值之比,是对数据相对离散程度的测度,消除了数据水平高低和计量单位的影响,用于对不同组别数据离散程度的比较,用V 表示。
(一)定类尺度*~4Dc SY又称类别尺度,按事物的某种属性对其进行平行的分类或分组。
(只能测度事物之间的类别差,其他差别无法得知)例:按照性别将人口分为男、女两类,按肤色分为白种人、黄种人、棕种人、黑种人四类,按洲别分为亚洲人、欧洲人、美洲人、非洲人、澳洲人五类。
(二)定序尺度又称顺序尺度,是对事物之间等级差别和顺序差别的一种测度。
它不仅可以测度类别差,还可以测度次序差。
(不能测量类别之间的准确差值,只能比较大小,不能进行加、减、乘、除数学运算)例:人可以根据年龄分为幼年、少年、青年、中年、壮年、老年等类。
满意程度可分为非常满意、比较满意、没有不满、不满意、很不满意几类。
IYD 7MD KDy(j(三)定距尺度#j h~7y/y;A又称间隔尺度,是对事物类别或次序之间距离的测度。
该尺度通常使用自然或物理单位作为计量尺度。
例:30°C和20℃之间相差10℃,-30°C和-20℃之间也是相差10℃。
再比如,1等星比2等星亮10倍,0等星比1等星亮10倍,-1等星又比0等星亮10倍。
定距数据可以进行加、减运算,不能进行乘、除运算。
其原因为定距尺度中没有绝对零点(定距尺度中的“0”是作为比较的标准,不表示没有)。
(四)定比尺度又称比率尺度,由于定比尺度有绝对零点(定比尺度中的“0”表示没有,或者是理论上的极限)。
因此,不仅可以进行加减运算,还可以进行乘除运算。
例如,绝对温度300K(27℃)时理想气体的体积273K(0℃)时的1.1倍,温度比也是1.1倍,则绝对温度和体积都是定比尺度。
一般来说,定比尺度的数据不可能取负值。
一般也不会取零值,因为要么就是不存在了,要么就是极限情况。
如,绝对零度只能无限接近,不可能完全达到。
如果一个物体的体积为零,那么它要么不存在,要么是数学中的抽象概念,比如,几何中的点、线、面的体积都为零。
而一个人的年龄为0时呢?作为社会学意义上的人,可以认为它是极限(开始);作为生物学上的人,则是定距尺度的。
定类变量定序变量定距变量定比变量定类变量定类变量变量的一种,根据定性的原则区分总体各个案类别的变量。
定类变量的值只能把研究对象分类,也即只能决定研究对象是同类抑或不同类,具有=与≠的数学性质。
例如性别区分为男性和女性两类;出生地区分为农村、城市、城镇三类;民族背景区分为汉、蒙、回、苗、壮、藏、维吾尔等;婚姻状况区分为未婚、已婚、分居、离婚、丧偶等类。
这些变量的值,只能区别异同,属于定类层次。
设计定类变量的各个类别时,要注意两个原则。
一个是类与类之间要互相排斥,也即每个研究对象只能归入一类;另一个是所有研究对象均有归属,不可遗漏。
例如性别分为男女两类,它既概括了人的性别的全部类别,同时类别之间又具有排斥性。
定序变量变量的一种,区别同一类别个案中等级次序的变量。
定序变量能决定次序,也即变量的值能把研究对象排列高低或大小,具有>与<的数学特质。
它是比定类变量层次更高的变量,因此也具有定类变量的特质,即区分类别(=,≠)。
例如文化程度可以分为大学、高中、初中、小学、文盲;工厂规模可以分为大、中、小;年龄可以分为老、中、青。
这些变量的值,既可以区分异同,也可以区别研究对象的高低或大小。
但是,各个定序变量的值之间没有确切的间隔距离。
比如大学究竟比高中高出多少,大学与高中之间的距离和初中与小学之间的距离是否相等,通常是没有确切的尺度来测量的。
定序变量在各个案上所取的变量值只具有大于或小于的性质,只能排列出它们的顺序,而不能反映出大于或小于的数量或距离。
定距变量也是变量的一种,区别同一类别个案中等级次序及其距离的变量。
它除了包括定序变量的特性外,还能确切测量同一类别各个案高低、大小次序之间的距离,因而具有加与减的数学特质。
但是,定距变量没有一个真正的零点。
例如,摄氏温度这一定距变量说明,摄氏40度比30度高10度,摄氏30度比20度又高10度,它们之间高出的距离相等,而摄氏零度并不是没有温度。
又比如调查数个地区的工人占全部劳动人口的比率时,发现甲、乙,丙、丁、戊五个地区的比率分别是2%、10%、35%、20%、10%。
机器学习中数据一般分为四种,分别为标称型数据(Nominal),排序型数据(Ordinal),间隔型数据(Interval)和比率型数据(Ratio),分别对应定类,定序,定距和定比。
一、标称型数据(Nominal)
互斥,无序但是有类别。
变量的不同取值仅仅代表不同类的事物,这样的变量称为定类变量。
比如:性别,肤色就是定类变量,对于这种变量来说,加减乘除的运算时没有意义的。
二、排序型数据(Ordinal)
有顺序,有类别,但是无运算意义。
变量的值不仅可以代表事物的类别,还可以表示事物的某种特性的顺序或大小,这样的变量叫做定序变量。
比如文化程度:小学,中学,高中,大学等,这些数据可以排序,也有一定的实际意义,但是运算没有意义。
三、间隔型数据(Interval)
本质是数据之间的间隔,变量之间的值可以比较大小,差值有实际意义,此类变量可以成为定距变量。
比如年龄,月平均收入等,都是定距变量。
四、比率型数据(Ratio)
0点有明确的定义,比如质量,高度。
定比变量和定距变量在市场调查中一般不加以区分,二者区别在于,定距变量为0时不表示没有,只是值为0,定比变量为0时表示没有。
定类变量定序变量定距变量定比变量
定类变量变量的一种,根据定性的原则区分总体各个案类别的变量。
定类变量的值只能把研究对象分类,也即只能决定研究对象是同类抑或不同类,具有=与≠的数学性质。
例如性别区分为男性和女性两类;出生地区分为农村、城市、城镇三类;民族背景区分为汉、蒙、回、苗、壮、藏、维吾尔等;婚姻状况区分为未婚、已婚、分居、离婚、丧偶等类。
这些变量的值,只能区别异同,属于定类层次。
设计定类变量的各个类别时,要注意两个原则。
一个是类与类之间要互相排斥,也即每个研究对象只能归入一类;另一个是所有研究对象均有归属,不可遗漏。
例如性别分为男女两类,它既概括了人的性别的全部类别,同时类别之间又具有排斥性。
定序变量变量的一种,区别同一类别个案中等级次序的变量。
定序变量能决定次序,也即变量的值能把研究对象排列高低或大小,具有>与<的数学特质。
它是比定类变量层次更高的变量,因此也具有定类变量的特质,即区分类别(=,≠)。
例如文化程度可以分为大学、高中、初中、小学、文盲;工厂规模可以分为大、中、小;年龄可以分为老、中、青。
这些变量的值,既可以区分异同,也可以区别研究对象的高低或大小。
但是,各个定序变量的值之间没有确切的间隔距离。
比如大学究竟比高中高出多少,大学与高中之间的距离和初中与小学之间的距离是否相等,通常是没有确切的尺度来测量的。
定序变
量在各个案上所取的变量值只具有大于或小于的性质,只能排列出它们的顺序,而不能反映出大于或小于的数量或距离。
定距变量也是变量的一种,区别同一类别个案中等级次序及其距离的变量。
它除了包括定序变量的特性外,还能确切测量同一类别各个案高低、大小次序之间的距离,因而具有加与减的数学特质。
但是,定距变量没有一个真正的零点。
例如,摄氏温度这一定距变量说明,摄氏40度比30度高10度,摄氏30度比20度又高10度,它们之间高出的距离相等,而摄氏零度并不是没有温度。
又比如调查数个地区的工人占全部劳动人口的比率时,发现甲、乙,丙、丁、戊五个地区的比率分别是2%、10%、35%、20%、10%。
甲区与丙区相差3 3%,丙区与丁区相差15%。
这也是一个定距变量。
定距变量各类别之间的距离,只能用加减而不能用乘除或倍数的形式来说明它们之间的关系。
定比变量也是区别同一类别个案中等级次序及其距离的变量。
定比变量除了具有定距变量的特性外,还具有一个真正的零点,因而它具有乘与除(×、÷)的数学特质。
例如年龄和收入这两个变量,固然是定距变量,同时又是定比变量,因为其零点是绝对的,可以作乘除的运算。
如A月收入是60元,而B是30元,我们可以算出前者是后者的两倍。
智力商数这个变量是定距变量,但不是定比变量,因为其0分只具有相对的意义,不是绝对的或固定的,不能说某人的智商
是0分就是没有智力;同时,由于其零点是不固定的,即使A是14 0分而B是70分,我们也不能说前者的智力是后者的两倍,只能说两者相差70分。
因为0值是不固定的,如果将其向上移高20分,则A的智商变为120分而B变成50分,两者的相差仍是70分,但A却是B的2.4倍,而不是原先的两倍了。
摄氏温度这一变量也如此。
定比变量是最高测量层次的变量。