三极管及放大电路基础教案设计
- 格式:doc
- 大小:314.50 KB
- 文档页数:18
授课主要内容或板书设计教学过程主要教学内容及步骤新课导入新课讲授放大电路(又称放大器)广泛应用于各种电子设备中,如音响设备、视听设备、精密测量仪器、自动控制系统等。
放大电路的功能是将微弱的电信号(电压、电流)进行放大得到所需的信号。
3.1 放大器概述一、放大器――其作用是将输入的微弱信号放大成幅度足够大且与原来信号变化规律一致的电信号。
输入输出信号源――提供放大电路的输入信号,它具有一定的内阻。
负载――接收输出的放大信号并使之发挥作用的装置,如扬声器、显象管二、对放大器的基本要求a)有足够的放大倍数(A)――是衡量放大器放大能力的参数,有电压放大倍数(A V)、电流放大倍数(Ai)、功率放大倍数(AP)b)要有一定宽度的通频带c)非线性失真要小非线性失真――放大电路中的晶体三极管是非线性器件,在放大信号的过程中,放大了的信号与原信号相比,波形将产生畸变,这种现象叫非线性失真d)工作要稳定三、放大器的输入四、放大器的输出3.2三极管基本放大电路四、基本放大电路的组成放大器信号源负载教学过程主要教学内容及步骤小结V――为放大管,其到电流放大作用,是该放大器的核心元件。
UBB――基极偏置电源,为发射极提供正向偏置电压。
RB――基极偏置电阻,由它决定基极直流电流IBUCC――集电极直流电源,通过RC为集电极提供反向偏置电压。
RC――集电极电阻,作用是通过RC把三极管的电流放大作用转换成电压放大作用。
C1、C2――为输入和输出耦合电容。
作用是能使交流信号顺利通过同时隔断信号源与输入端之间、集电极与负载之间的直流通路RL――为输出负载Ui――为输入信号UO――为输出信号五、电路中电流和电压符号的规定(1)用大写字母带小写下标(“大大”)表示直流分量IB、UC(2)用小写字母带小写下标(“小小”)表示交流分量i b、、、v c(3)用小写字母带大写下标(“小大”)表示直流分量和交流分量的叠加i B(4)用大写字母带小写下标(“大小”)表示交流分量的有效值U O、、U i六、放大器的静态工作点静态――放大器无信号输入时的直流工作状态静态工作点--由这些电流电压共同确定的点,用Q来表示包含有:UBEQ、IBQ、ICQ、UCEQI BQ=(U CC-U BEQ)/R B(U BE,硅管0.7伏,锗管0.3伏)I CQ=βI BQU CE=U CC-I CQ R C一个放大器的静态工作点的设置是否,是放大器能否正常工作的重要条件。
三极管及基本放大电路教案课程名称:三极管及基本放大电路课程时长:2小时课程对象:高中物理学生教学目标:1.了解三极管的基本结构和工作原理。
2.理解三极管的放大特性和应用。
3.掌握基本放大电路的设计和计算方法。
教学准备:1.三极管和相关电路的实物模型。
2. PowerPoint演示文稿。
3.实验器材和电路板。
教学过程:Step 1: 引入(10分钟)a.向学生解释现在我们要学习的内容:三极管及其在基本放大电路中的应用。
b.显示三极管的实物模型,并解释它的基本结构。
c.引导学生思考:三极管是如何工作的?我们为什么要学习它?Step 2: 三极管的工作原理(20分钟)a. 使用PowerPoint演示文稿,详细解释三极管的工作原理,包括发射极、基极和集电极之间的关系。
b.引导学生观察示意图,并帮助学生理解电流流动的过程。
c.通过演示实物模型,展示三极管的工作原理。
Step 3: 三极管的放大特性(20分钟)a.解释三极管的放大特性,包括电压放大系数、电流放大系数和功率放大系数。
b.使用示意图和示波器显示放大效果,帮助学生更好地理解放大特性。
Step 4: 三极管基本放大电路设计(30分钟)a.介绍基本放大电路的种类,如共射放大电路、共基放大电路和共集放大电路。
b. 使用PowerPoint演示文稿和实物模型,逐步讲解这些电路的特点和设计方法。
c.通过示波器演示放大效果,让学生亲自动手设计和制作一个基本放大电路。
Step 5: 实验演示(20分钟)a.分发实验器材和电路板,组织学生进行实验演示。
b.引导学生观察实验现象,记录数据,并帮助学生分析实验结果。
Step 6: 总结与提问(10分钟)a.对本节课的内容进行总结,并再次强调三极管的重要性和应用。
b.提问学生关于三极管和基本放大电路的问题,并进行讨论。
课后作业:1.复习本节课内容,整理笔记。
2.阅读相关教科书内容,进一步理解三极管的工作原理和应用。
3.设计一个简单的基本放大电路,并计算电流和电压放大系数。
三极管及放大电路基础教案章节一:三极管概述教学目标:1. 了解三极管的定义、结构和工作原理。
2. 掌握三极管的类型和符号。
教学内容:1. 三极管的定义:三极管是一种半导体器件,具有放大电信号的功能。
2. 三极管的结构:三极管由发射极、基极和集电极组成。
3. 三极管的工作原理:通过基极控制发射极和集电极之间的电流。
4. 三极管的类型:NPN型和PNP型。
5. 三极管的符号:NPN型三极管符号为“N”,PNP型三极管符号为“P”。
教学活动:1. 讲解三极管的定义、结构和工作原理。
2. 展示三极管的实物图和符号图。
3. 引导学生通过实验观察三极管的工作状态。
章节二:放大电路基础教学目标:1. 了解放大电路的定义和作用。
2. 掌握放大电路的基本组成和原理。
教学内容:1. 放大电路的定义:放大电路是一种通过反馈作用放大电信号的电路。
2. 放大电路的作用:放大微弱的信号,使其具有足够的功率驱动负载。
3. 放大电路的基本组成:电源、三极管、输入电阻、输出电阻和反馈电阻。
4. 放大电路的原理:通过三极管的放大作用,实现电信号的放大。
教学活动:1. 讲解放大电路的定义、作用和基本组成。
2. 展示放大电路的原理图和实际电路图。
3. 引导学生通过实验观察放大电路的工作状态。
章节三:三极管的放大特性教学目标:1. 了解三极管的放大特性。
2. 掌握三极管的放大原理。
教学内容:1. 三极管的放大特性:三极管的放大能力与基极电流、集电极电流和发射极电流之间的关系。
2. 三极管的放大原理:通过基极电流的控制,实现发射极和集电极之间电流的放大。
教学活动:1. 讲解三极管的放大特性和放大原理。
2. 分析三极管放大电路的输入和输出特性曲线。
3. 引导学生通过实验观察三极管的放大特性。
章节四:三极管放大电路的设计与应用教学目标:1. 了解三极管放大电路的设计方法。
2. 掌握三极管放大电路的应用。
教学内容:1. 三极管放大电路的设计方法:根据输入和输出信号的要求,选择合适的三极管、电阻等元件,设计合适的电路。
三极管放大电路教案三极管放大电路是一种常见的电子电路,用于放大电信号的幅度。
这种电路由三极管和一些其他元件组成,其中三极管是核心元件。
在教授三极管放大电路时,需要先介绍三极管的基本工作原理,然后再详细讲解三极管放大电路的组成和工作原理。
一、三极管的基本工作原理三极管是一种半导体器件,由三个PN结组成。
根据PN结的极性,可将三极管分为PNP型和NPN型。
在三极管中,基区是控制区,发射区和集电区是受控区。
当三极管的基极电流为正时,就会导通基发结,使得发射区和集电区之间形成一个导通通道。
根据整个电路的工作状态,这个导通通道的导通程度可以调整,从而控制三极管放大电路的放大倍数。
二、三极管放大电路的组成三极管放大电路通常包含一个输入电路和一个输出电路。
输入电路接收输入信号,输出电路输出放大后的信号。
其中,输入电路通常由电阻和电容组成,用于匹配输入信号和三极管的输入电阻。
输出电路通常由负载电阻和输出电容组成,用于收集和输出放大后的信号。
三、三极管放大电路的工作原理1.共射极放大电路共射极放大电路是最常见的一种三极管放大电路,其输入信号与输出信号是反相的。
在这种模式下,输入信号加在基极上,通过输入电容进入基极电路。
当输入信号为正半周期时,三极管导通,形成一个导通通道,电流从集电极进入负载电阻,形成输出信号。
当输入信号为负半周期时,三极管截止,导通通道断开,无输出信号。
由于导通通道的导通程度可以调整,因此可以控制输出信号的幅度。
2.共集极放大电路共集极放大电路是一种非常适合驱动负载的电路,其输入信号与输出信号同相。
在这种模式下,输入信号加在基极上,通过输入电容进入基极电路。
当输入信号为正半周期时,三极管导通,形成一个导通通道,电流从发射极进入地。
由于三极管输出电流的放大作用,输出端的电压上升,形成输出信号。
当输入信号为负半周期时,三极管截止,导通通道断开,输出电压为零。
共集极放大电路的放大倍数小于1,通常用于驱动负载。
2.分类:(1)按内部基本结构不同:NPN 型和PNP 型。
PNP 型和NPN 型三极管表示符号的区别是发射极的箭头方向不同, 这个箭头方向表示发射结加正向偏置时的电流方向。
(2)按功率分:小功率管、中功率和大功率管。
(3)按工作频率分:低频管和高频管。
(4)按管芯所用半导体材料分:锗管和硅管。
目前国内生产硅管多为NPN型(3D 系列);目前国内生产锗管多为PNP 型(3A 系列)。
(5)按结构工艺分:合金管和平面管。
(6)按用途分:放大管和开关管。
二、三极管的电流放大作用——发射结正向偏置,集电结反向偏置1.三极管各电极上的电流分配实验电路【原理】载流子的特殊运动(NPN):发射区向基区扩散电子;电子在基区的扩散和复合;集电区收集电子【电流放大作用】(1)B C I I β=且B C I I >>;(2)B C E I I I +=注意:(1)三极管的电流放大作用,实质上是用较小的基极电流信号控制集电极的大电流信号,是“以小控大”的作用。
(2)要使三极管起放大作用,必须保证发射结加正向偏置电压,集电结加反向偏置电压。
2、三极管的基本连接方式1).共发射极电路(CE ):把三极管的发射极作为公共端子。
2).共基极电路(CB ):把三极管的基极作为公共端子。
3).共集电极电路(CC ):把三极管的集电极作为公共端子。
三、三极管的特性曲线——硅NPN 型三极管1.输入特性曲线输入特性:在V U CE 1 且为某定值时,加在三极管基极与发射极之间的电压BE V 和它产生的基极电流B I 之间的关系。
与二极管的正向伏安特性曲线相似。
当BE V 大于导通电压时,三极管才出现明显的基极电流。
导通电压:硅管0.7V ,锗管0.3 V 。
2. 输出特性曲线:B I 为某定值,C I 与CE U 之间的关系,一簇几乎与横轴平行的直线。
3、三极管的三个区① 截止区:B I = 0以下的区域。
a .发射结和集电结均反向偏置,三极管截止。
三极管及放大电路基础教案Chapter 2: Transistors and Amplifier Circuits Basics Topic: Transistors___:1.Understand the structure。
types。
and circuit ___.2.Learn about the current n ___.3.___ the operating state of a transistor.4.___.Key Points:1.Structure。
types。
and circuit ___.2.Current ___.3.Characteristics of the three operating ___.Difficulties:1.___ and the n of current n of transistors.2.___.3.___.Reference Time: 2 hours___: Lecture。
Group n___:1.___Build a simple ___ testing the input and output signals of the amplifier circuit。
laying the ___.2.Teaching the new lesson2.1.1 Basic structure of transistorsTransistors are made up of two ___.The two ___ three parts。
the middle part is the base n。
and the two sides are the emitter n and the collector n。
respectively。
There are two arrangements: NPN and PNP.2.1.2 ___ transistorsTransistors can control the large change in collector current with a small change in base current。
第2章三极管及放大电路基础【课题】2.1 三极管【教学目的】1.掌握三极管结构特点、类型和电路符号。
2.了解三极管的电流分配关系及电流放大作用。
3.理解三极管的三种工作状态的特点,并会判断三极管所处的工作状态。
4.理解三极管的主要参数的含义。
【教学重点】1.三极管结构特点、类型和电路符号。
2.三极管的电流分配关系及电流放大作用。
3.三极管的三种工作状态及特点。
【教学难点】1.三极管的电流分配关系和对电流放大作用的理解。
2.三极管工作在放大状态时的条件。
3.三极管的主要参数的含义。
【教学参考学时】2学时【教学方法】讲授法、分组讨论法【教学过程】一、引入新课搭建一个简单的三极管基本放大电路,通过对放大电路输入信号及输出信号的测试,引导学生认识三极管,并知道三极管能放大信号,为后续的学习打下基础。
二、讲授新课2.1.1 三极管的基本结构三极管是在一块半导体基片上制作出两个相距很近的PN结构成的。
两个PN结把整块半导体基片分成三部分,中间部分是基区,两侧部分分别是发射区和集电区,排列方式有NPN和PNP两种,2.1.2 三极管的电流放大特性三极管能以基极电流微小的变化量来控制集电极电流较大的变化量,这就是三极管的电流放大特性。
要使三极管具有放大作用,必须给管子的发射结加正偏电压,集电结加反偏电压。
三极管三个电极的电流(基极电流B I 、集电极电流C I 、发射极电流E I )之间的关系为:C B E I I I +=、B C I I =--β、BC I I ∆∆=β 2.1.3 三极管的特性曲线 三极管外部各极电流与极间电压之间的关系曲线,称为三极管的特性曲线,又称伏安特性曲线。
1. 输入特性曲线输入特性曲线是指当集-射极之间的电压CE V 为定值时,输入回路中的基极电流B I 与加在基-射极间的电压BE V 之间的关系曲线。
三极管的输入特性曲线与二极管的正向伏安特性曲线相似,也存在一段死区。
2. 输出特性曲线输出特性曲线是指当基极电流B I 为定值时,输出电路中集电极电流C I 与集-射极间的电压CE V 之间的关系曲线。
B I 不同,对应的输出特性曲线也不同。
截止区:0=B I 曲线以下的区域。
此时,发射结处于反偏或零偏状态,集电结处于反偏状态,三极管没有电流放大作用,相当于一个开关处于断开状态。
饱和区:曲线上升和弯曲部分的区域。
此时,发射结和集电结均处于正偏状态,三极管没有电流放大作用,相当于一个开关处于闭合状态。
放大区:曲线中接近水平部分的区域。
此时,发射结正偏,集电结反偏。
三极管具有电流放大作用。
2.1.4 三极管的主要参数1. 性能参数:电流放大系数--β、β,集电极-基极反向饱和电流CBO I ,集电极-发射极反向饱和电流CEO I 。
2. 极限参数:集电极最大允许电流CM I 、集电极-发射极反向击穿电压CEO BR V )(、集电极最大允许耗散功率CM P 。
3.频率参数:共发射极截止频率 f 、特征频率T f 。
2.1.5 三极管的分类三极管的种类很多,分类方法也有多种。
分别从材料、用途、功率、频率、制作工艺等方面对三极管的类型予以介绍。
三、课堂小结1.三极管的结构、类型和电路符号。
2.三极管的电流放大作用。
3.三极管三种工作状态的特点。
4.三极管的主要参数。
四、课堂思考P37 思考与练习题1、2、3。
五、课后练习P68 一、填空题:1、2;二、判断题:1;三、选择题:1、5。
【课题】2.2 三极管基本放大电路【教学目的】1.掌握基本共射极放大电路的组成并理解电路各元件的作用。
2.理解基本共射极放大电路放大信号的工作原理。
3.了解小信号放大器的主要性能指标。
4.了解共集电极放大电路和共基极放大电路的电路结构、特点及应用。
【教学重点】1.基本共射极放大电路的组成及各元件的作用。
2.基本共射极放大电路放大信号的工作原理。
3.小信号放大器的主要性能指标。
【教学难点】1.基本共射极放大电路放大信号的工作原理。
2.三种放大电路的电路结构及性能比较。
【教学参考学时】2学时【教学方法】讲授法、分组讨论法【教学过程】一、复习1.三极管的结构、类型和电路符号。
2.三极管三种工作状态的特点。
二、引入新课通过演示功放经扬声器放出音乐的过程,向学生讲解放大电路的基本结构和信号流程,使学生对放大电路有初步的认识。
三、讲授新课2.2.1 基本共射放大电路1.放大电路中各元件的作用(对照书本P41页 图2.10)V :三极管,起电流放大作用;CC V :直流电源,提供偏压和能源;b R :基极偏置电阻,向三极管的基极提供合适的偏置电流;c R :集电极负载电阻,把三极管的电流放大转换为电压放大;1C 和2C :耦合电容,传递交流信号、隔断直流电。
2.放大电路中电压、电流符号的规定大写物理量符号大写下标,表示直流信号;小写物理量符号小写下标,表示交流信号;小写物理量符号大写下标,表示交流和直流叠加信号;大写物理量符号小写下标,表示交流信号的有效值。
3.放大电路的工作原理对照书本P42页图2.11介绍基本共射放大电路中各处电压、电流的变化过程,使学生了解共射放大电路具有电压放大作用,同时,输出电压o v 与输入电压i v 的相位正好相反,说明共射放大电路还具有反相作用。
2.2.2 小信号放大器的主要性能指标1.放大倍数:电压放大倍数i o v V V A =;电流放大倍数i o i I I A =;电压增益v v A G lg 20=(dB )。
2.输入电阻:输入电阻ii i I V R =,为输入电压与输入电流的比值,i R 越大,放大器输入端得到的输入电压就越高。
3.输出电阻:∞==L R o oo I V R ,为从放大器输出端看进去的交流等效电阻(它不包括外接负载电阻L R ),o R 越小,放大器输出端带负载的能力越强。
*2.2.3 三种基本放大电路的性能比较 1.共射放大电路既能放大电流又能放大电压,输入电阻居其它两种电路之中,输出电阻较大,频带较窄;常作为低频电压放大的单元电路。
2.共集放大电路只能放大电流而不能放大电压,是三种基本放大电路中输入电阻最大、输出电阻最小的电路,并有电压跟随的特点;常用于电压放大的输入级或输出级,在功率放大电路中也常采用这种电路形式。
3.共基放大电路只能放大电压而不能放大电流,输入电阻小,电压放大倍数和输出电阻与共射电路相当,频率特性是三种基本电路中最好的;常用作宽频带放大电路。
四、课堂小结1.基本共射放大电路中各元件的作用。
2.基本共射放大电路信号放大的特点。
3.小信号放大器的主要性能指标。
五、课堂思考P41 思考与练习题1、2、3。
六、课后练习P68 一、填空题:3、5;三、选择题:3、4。
【课题】2.3 放大电路的分析【教学目的】1.理解放大电路的直流通路、交流通路的概念,会画放大电路对应的直流通路和交流通路。
2.了解放大电路的分析方法。
3.掌握基本共射极放大电路静态参数和动态参数的计算方法。
【教学重点】1.分析放大电路的直流通路和交流通路。
2.基本共射极放大电路静态参数和动态参数的计算。
【教学难点】1.画放大电路的交流通路。
2.用估算的方法分析放大电路的静态和动态参数。
【教学参考学时】1学时【教学方法】讲授法【教学过程】一、复习小信号放大器的主要性能指标。
二、讲授新课2.3.1放大器的直流通路与交流通路1.直流通路直流通路用于研究电路的静态工作点,画直流通路的原则为:电容视为开路、电感线圈视为短路。
2.交流通路交流通路用于研究放大电路的动态参数及性能指标,画交流通路的原则为:电容视为短路、直流电源视为短路。
*2.3.2放大器的静态与动态分析1.放大电路的静态分析借助于放大电路的直流通路,估算其静态工作点Q ,即静态时电路中各处的直流电流和直流电压:BCC BQ R V I ≈、BQ CQ I I β=、C CQ CC CEQ R I V V -=。
2.放大电路的动态分析 借助于放大电路的交流通路,估算其主要性能指标:电压放大倍数be Lv r R A 'β-=、输入电阻be i r R ≈、输出电阻C o R R =,其中)()(26)1(300mA I mV r EQ be β++Ω=。
三、课堂小结1.直流通路与交流通路的概念、绘制原则。
2.基本共射放大电路静态工作点的估算。
3.基本共射放大电路主要性能指标的估算。
四、课堂思考P44 思考与练习题1、2。
五、课后练习P68 一、填空题:6;三、选择题:2;四、技能实践题:2;五、综合题:1。
【课题】2.4 放大器静态工作点的稳定【教学目的】1.理解设置静态工作点的重要性。
2.掌握分压式偏置电路、集电极-基极偏置电路组成特点及稳定静态工作点的原理。
3.了解分压式偏置电路静态工作点的估算方法。
【教学重点】1.放大器静态工作点稳定的意义。
2.分压式偏置电路、集电极-基极偏置电路的组成特点及稳定静态工作点的原理。
【教学难点】1.分压式偏置电路、集电极-基极偏置电路稳定静态工作点的原理。
2.分压式偏置电路静态工作点的估算。
【教学参考学时】1学时【教学方法】讲授法、分组讨论法【教学过程】一、复习基本共射放大电路静态工作点的估算。
二、引入新课通过静态工作点对输出波形影响的演示实验,使学生认识到静态工作点变化,会对输出波形造成影响。
三、讲授新课2.4.1 放大器静态工作点稳定的意义由演示实验可知,当静态工作点发生变化,放大电路的工作状态也会发生变化,甚至会出现波形失真。
如静态工作电流BQ I 变大,会出现饱和失真;静态工作电流BQ I 变小,会出现截止失真。
实际应用中电源电压的波动、元件的老化或因温度变化引起三极管参数的变化,都会造成静态工作点变化,从而使动态参数发生变化,最终导致电路出现异常。
为了保证电路在各种复杂情况下能正常工作,采用能稳定静态工作点的偏置电路,是非常必要的。
2.4.2 放大器静态工作点的稳定措施1.分压式偏置电路电路结构见书本P49页图2.19。
静态工作点稳定的条件为:BQ I I I >>≈21。
稳定静态工作点的过程为:(某原因)→CQ I ↑→ CQ I ↓分压式偏置电路静态工作点的估算:CC b b b BQ V R R R V 212+=、eBEQ BQ CQ R V V I -≈、 βCQBQ I I =、)(e c CQ CC CEQ R R I V V +-≈。
2.集电极-基极偏置电路电路结构见书本P50页图2.21。
该电路的特点是:偏置电阻b R 跨接在三极管的c 极与b 极之间。
自动稳定静态工作点的过程为:温度升高→CQ I CQ I 四、课堂小结1.放大器静态工作点稳定的意义。
2.分压式偏置电路稳定静态工作点的过程。