1-9.极限的计算---两个重要极限
- 格式:docx
- 大小:121.90 KB
- 文档页数:5
两个极限存在准则和两个重要的极限1.两个极限存在准则(1) 夹逼准则:设a, b, c为实数,如果函数f(x)在a的一些左邻域内对于一切x都有h(x)≤f(x)≤g(x),且lim[x→a]h(x)=lim[x→a]g(x)=L,则必有lim[x→a]f(x)=L。
夹逼准则的本质是通过构造两个函数作为边界来确定原函数的极限。
(2) 单调有界准则:设函数f(x)在(a, b)上单调递增(递减),且在(a, b)上有界,则必有lim[x→a]f(x)=sup{f(x)}(或lim[x→a]f(x)=inf{f(x)})。
单调有界准则的基本思想是通过函数的单调性和有界性来确定极限。
(1) 无穷小极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=0,如果对于任意正数ε,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有,f(x),<ε,那么称函数f(x)在x=a处的极限为0。
无穷小极限的重要性在于它在微积分中有广泛应用。
例如,微分定义中的导数可以看作是函数在其中一点的极限,这也符合函数在该点的变化趋势比较明显。
无穷小极限的概念使得我们能够更好地描述和理解函数在其中一点的变化情况。
(2) 无穷大极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=∞,如果对于任意正数M,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有f(x) > M,那么称函数f(x)在x=a处的极限为无穷大。
无穷大极限的重要性在于它可以帮助我们研究函数在其中一点的增长速度和趋势。
例如,在极限定义中,我们可以通过无穷大极限来刻画函数在其中一点的无限增长或无限逼近的情况。
此外,无穷大极限也在微积分中的积分定义中有重要的应用,帮助我们理解函数的积分和面积的概念。
综上所述,极限的存在准则和重要的极限是微积分中的重要概念。
了解它们的定义和应用可以帮助我们更好地理解和分析函数在其中一点的变化情况,为进一步研究微积分和数学分析打下坚实的基础。
极限存在准则 两个重要极限【教学目的】1、了解函数和数列的极限存在准则;2、掌握两个常用的不等式;3、会用两个重要极限求极限。
【教学内容】1、夹逼准则;2、单调有界准则;3、两个重要极限。
【重点难点】重点是应用两个重要极限求极限。
难点是应用函数和数列的极限存在准则证明极限存在,并求极限。
【教学设计】从有限到无穷,从已知到未知,引入新知识(5分钟)。
首先给出极限存在准则(20分钟),并举例说明如何应用准则求极限(20分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(40分钟);课堂练习(15分钟)。
【授课内容】引入:考虑下面几个数列的极限1、∑=∞→+1000121limi n i n 1000个0相加,极限等于0。
2、∑=∞→+ni n in 121lim无穷多个“0”相加,极限不能确定。
3、n n x ∞→lim ,其中13nn x x ,13x ,极限不能确定。
对于2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则:一、极限存在准则1. 夹逼准则准则Ⅰ 如果数列n n y x ,及n z 满足下列条件:,lim ,lim )2()3,2,1()1(a z a y n z x y n n n n nn n ===≤≤∞→∞→那么数列n x 的极限存在, 且a x n n =∞→lim .证:,,a z a y n n →→ 使得,0,0,021>>∃>∀N N ε,1ε<->a y N n n 时恒有当 ,2ε<->a z N n n 时恒有当取12max{,},N N N 上两式同时成立,,εε+<<-a y a n 即 ,εε+<<-a z a n当nN 时,恒有 ,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n .lim a x n n =∴∞→上述数列极限存在的准则可以推广到函数的极限 准则Ⅰ′ 如果当),(0δx U x o∈ (或M x >)时,有,)(lim ,)(lim )2(),()()()1()()(00A x h A x g x h x f x g x x x x x x ==≤≤∞→→∞→→那么)(lim )(0x f x x x ∞→→存在, 且等于A .准则 I 和准则 I '称为夹逼准则。
两个重要极限教案(修改稿)章节一:引言与极限概念的复习教学目标:1. 理解极限的概念及其在数学分析中的重要性。
2. 复习函数在一点附近的性质以及极限的定义。
教学内容:1. 引入极限的概念,解释极限在数学分析中的作用。
2. 复习函数在一点附近的性质,包括连续性、可导性等。
3. 回顾极限的定义,包括左极限、右极限以及极限的存在性。
教学方法:1. 通过举例和问题引导students 理解极限的概念。
2. 通过图形和实际例子解释函数在一点附近的性质。
3. 通过练习题帮助students 复习和巩固极限的定义。
章节二:极限的计算方法教学目标:1. 掌握常见的极限计算方法,包括直接代入法、因式分解法、有理化法等。
2. 学会运用极限的性质和运算法则进行极限的计算。
教学内容:1. 介绍常见的极限计算方法,包括直接代入法、因式分解法、有理化法等。
2. 讲解极限的性质和运算法则,如无穷小和无穷大的性质、四则运算法则等。
3. 通过例子和练习题讲解和巩固极限的计算方法。
教学方法:1. 通过讲解和示例演示常见的极限计算方法。
2. 通过问题和解题方法的讨论,帮助students 理解和掌握极限的性质和运算法则。
3. 通过练习题和问题引导学生运用极限的计算方法解决实际问题。
章节三:无穷小和无穷大的概念教学目标:1. 理解无穷小和无穷大的概念及其在极限计算中的应用。
2. 学会运用无穷小和无穷大的性质进行极限的计算。
教学内容:1. 介绍无穷小和无穷大的概念,包括无穷小和无穷大的定义、性质等。
2. 讲解无穷小和无穷大的性质,如无穷小的比较、无穷大的比较等。
3. 通过例子和练习题讲解和巩固无穷小和无穷大的应用。
教学方法:1. 通过讲解和示例演示无穷小和无穷大的概念和性质。
2. 通过问题和解题方法的讨论,帮助students 理解和掌握无穷小和无穷大的应用。
3. 通过练习题和问题引导学生运用无穷小和无穷大的性质进行极限的计算。
章节四:极限的存在性教学目标:1. 理解极限的存在性及其在数学分析中的应用。