制冷低温系统技术基础知识
- 格式:ppt
- 大小:1.02 MB
- 文档页数:17
低温冰箱是如何进行制冷的?
一、制冷系统的工作原理
低温冰箱内部的制冷系统主要由压缩机、冷凝器、蒸发器和膨胀阀
等组件构成。
首先,压缩机将低温工质气体压缩成高温高压气体,然
后通过冷凝器冷却并变成高温液体。
高温液体通过膨胀阀减压后变成
低温低压液体,进入蒸发器蒸发并吸收低温箱内的热量,使其温度下降。
二、工质的选择与使用
制冷系统中的工质种类繁多,常见的有氨、氟利昂等。
其中,氟利
昂具有低毒性、不燃性和高效性的特点,因此被广泛应用于制冷系统中。
但是,由于其对大气臭氧层的破坏作用,近年来逐渐被禁止使用,推动了低温冰箱工艺制冷工质的研究和应用。
三、制冷效率的提升与能源节约
随着科技的不断进步,制冷技术也在不断改进,以提高能源利用率
和减少对环境的影响。
通过优化系统结构、改进传热方式和提高蒸发
器表面积等措施,可以有效提升低温冰箱的制冷效率,减少能源消耗,实现能源节约和环保的目标。
四、温度控制的精确性
低温冰箱在制冷过程中需要保持箱内温度稳定,以确保食物和药品
的新鲜度和安全性。
为了实现温度的精确控制,制冷系统通常配备有
温度传感器和微处理器控制系统,根据箱内温度实时变化来调节制冷系统的工作状态,以保持所需的低温环境。
五、应用领域和未来发展趋势
低温冰箱广泛应用于食品、医药、科研等领域,为人们的生活和工作提供了便利。
未来随着科技的不断发展,制冷技术将进一步提高效率、减少能源消耗,推动低温冰箱的智能化和自动化发展,为人们创造更加舒适、健康的生活环境。
第一章制冷与空调作业安全技术第一节基础知识一、基本概念1.物态(物质状态)与物态变化具有一定质量及占有空间的任何物体称为物质。
自然界一切物质都是由分子组成的,分子间存在着相互作用力,同时分子又处在永不停息的无规则运动中,这种运动称之为热运动。
由于分子间的作用力及其热运动等原因,使物质在常态(物态)下呈现固态、液态和气(汽)态,称物质“三态”。
固态时,分子间的相互引力最大,固体中的分子紧密地排列在一起,热运动仅在平衡位置的附近作微小的振动,不能作相对移动。
因此固态时的物质有一定的体积和形状,并具有一定的机械强度。
液态时,分子间的引力仍较大,使分子之间仍能保持一定的距离。
因此液态物质有固定体积,并有自由液面。
此外,液态物质的分子不仅在平衡位置附近振动,还可以相对移动,所以它具有流动性而无固定的形状。
气态时,分子间距大,引力很小,分子间不能相互约束。
因此,它没有一定的形状和一定的体积,可以充满任何的空间。
在热运动中可相互碰撞发生旋转运动。
同种物质在不同条件下,由于分子间作用力和分子热运动的结果也会以不同的状态存在。
当物质在吸热或放热时,除了温度变化以外,还有状态的变化(称相变),即固态、液态、气态之间的相互转化,气体变成液体的过程称为液化(或冷凝);液体变成固体的过程称为凝固;固体变成液体的过程称为融化(熔化);液体变成气体的过程称为气化;固体直接变化成气体的过程称为升华;反之称为固化(或凝华)。
人们利用物质相变过程向周围介质吸热,转移潜热,使周围介质降温进行制冷,如从液体变成气(汽)体、固体变成液体、固体直接变成气(汽)体所转移的相变潜热获取低温。
相变转移的热量是潜热,非相变转移的热量是显热(如水在1大气压下,从±o℃加热到100℃,它也是吸热过程,但没有相变,水还是水,这种吸收周围介质的热量叫显热,计算出的显热量是很少的)。
潜热转移量(如蒸发量)才有制冷量,显热转移量几乎没有制冷量,即人们是采用相变制冷。
制冷工基础知识问答题1、热力学第一定律、第二定律在热力学研究中有什么意义答:热力学第一定律是能量转换及守恒定律在热力过程中的具体表述,应用于确定各种热力系统与外界交换能量的能量方程;热力学第二表明自然界的自发过程具有一定的方向性和不可逆性,非自发过程的实现必须具备补充条件,应用于解决热功转换的条件、方向及限度问题。
因此,热力学第一、第二定律是热力学研究的理论基础。
2、流体有那两种流态判别流态的判据是什么答:流体的两种流态主要有层流和紊流两种。
判别流态的判据是流体的雷诺数Re,Re∠2000时为层流,Re>2000时为紊流。
3、减少流动阻力的措施有那些答:减少流阻力的主要途径是改善边壁对流动的影响,措施包括减少沿程阻力(减少管壁的粗糙度和采用柔性边壁),以及减少局部阻力(使流体进口尽量平顺,采用渐扩和渐缩代替流通截面的突然扩大和缩小,减少转弯,处理好三通管的结构布置,合理衔接和布置管件、泵或风机,尽量缩短管线等)。
4、传热有那些基本方式各在什么情况下发生答:传热有导热、对流换热和辐射换热三种基本方式。
导热发生在同一物体内部温度不同的各部分之间或是发生在直接接触而温度不同的物体之间的热量传递;对流换热是发生在流体与固体壁面之间的热量传递;辐射换热是由于热因(自身的温度或微观粒子的热运动)而物体激发向外界辐射电磁波,使物体之间产生互相辐射和吸收热量的总效果。
5、和为传热方程如何使传热增强和削弱答;传热方程为Q=KA(t1-t2)。
根据传热方程,提高传热系数K,扩展传热面积A,增大传热温差Δt都可以使传热量增大,反之则减少。
增强传热的措施有:合理扩大传热面积。
加大传热温差,增大流体流速,去除污垢降低热阻:削弱传热的措施有;敷设保温材料,降低流体流速,改变传热面表面状况(如加遮热板)等。
6、简述氟里昂制冷剂的性质和应用范围。
答:氟里昂是饱和碳氢化合物中全部或部分氢元素被卤族元素氟、氯、溴取代后衍生物的总称。
制冷低温工程课程设计方案一、课程概述《制冷低温工程》是一门面向制冷与低温技术领域学习的专业课程。
本课程旨在向学生介绍制冷低温工程的基本原理、设备与系统,并帮助学生建立对制冷与低温技术的基本认识和应用能力。
二、课程目标1. 能够理解制冷与低温工程的基本原理和技术;2. 能够分析和设计制冷系统与设备;3. 能够应用制冷与低温技术解决实际问题;4. 能够熟练掌握制冷与低温工程领域的基本实验技能;5. 能够了解制冷与低温工程在能源、环保和社会发展等方面的影响。
三、教学内容与方法1. 教学内容:(1)制冷与低温工程的基本概念与原理;(2)制冷设备与系统的设计与分析;(3)制冷与低温工程在不同领域的应用;(4)制冷与低温工程的实验工艺与技术;(5)制冷与低温工程的相关法规与环保意识。
2. 教学方法:(1)理论课程教学采用讲授与案例分析相结合的方式,引导学生深入理解制冷与低温工程的基本理论;(2)实验课程教学采用模拟实验与实物实验相结合的方式,培养学生对制冷与低温工程的操作技能与实验能力;(3)课程设计采用项目驱动的教学方法,引导学生理论与实践的结合,培养学生分析与解决问题的能力。
四、课程设置1. 基础课程(1)制冷与低温工程基础概念;(2)热力学与热传导原理;(3)制冷循环过程与原理;(4)低温制冷剂与工质选型;(5)制冷设备与系统设计。
2. 实践课程(1)制冷系统组装与调试实验;(2)低温设备运行与维护实验;(3)制冷系统故障分析与处理实验;(4)低温制冷剂性能测试与评价实验。
3. 应用课程(1)食品冷链与冷藏技术;(2)生物医药与生物制冷技术;(3)超导磁体与低温超导技术;(4)工业与能源领域的低温应用。
五、教学评估1. 平时成绩:包括课堂表现、作业考核、实验操作等;2. 期中考核:以笔试形式考核学生对基本理论和知识的掌握程度;3. 期末考核:以综合考核形式考核学生对制冷与低温工程的理论与实践能力。
六、教学资源支持1. 实验设备与教材:提供相应的实验设备和教材,让学生能够在实践中学习制冷与低温工程知识;2. 教师团队:建立由制冷与低温工程领域的专家和教授组成的教师团队,为学生提供专业的指导与支持;3. 实习基地与行业合作:与相关生产企业、科研院校和行业协会合作,为学生提供实习和实训机会,让学生能够了解行业发展趋势和相关技术需求。