(完整版)应用随机过程试卷
- 格式:doc
- 大小:187.01 KB
- 文档页数:4
《应用随机过程》A卷及其参考答案《应用随机过程》A卷一、课程简介《应用随机过程》是一门应用数学学科,旨在研究随机现象的变化规律。
通过对这门课程的学习,我们可以掌握随机过程的基本理论和方法,并能够运用这些理论解决实际问题。
本课程共分为两个部分:A 卷和B卷。
二、考试内容1、随机过程的定义、性质和分类2、随机过程的概率分布和数字特征3、常见的随机过程,如泊松过程、马尔可夫过程、随机漫步等4、随机过程的极限理论,如强大数定律、中心极限定理等5、随机过程在各个领域的应用,如金融、生物、物理等三、考试形式1、试题类型:选择题、填空题、简答题、应用题2、分值分配:选择题30分,填空题20分,简答题30分,应用题20分四、考试策略1、理解基本概念:随机过程的概念、性质和分类是考试的重点,需要充分理解并熟练掌握。
2、掌握基本理论:考试中涉及的基本理论较多,需要平时多加学习和巩固。
3、应用实践:掌握基本理论后,需要能够将其应用于实际问题中,因此要多做练习和实际操作。
五、参考答案选择题部分:1、(1)B (2)C (3)A (4)D (5)C2、(1)C (2)B (3)D (4)A (5)C3、(1)D (2)A (3)B (4)C (5)D填空题部分:1、(1)正态分布(2)独立性(3)离散型随机变量2、(1)均匀分布(2)连续型随机变量(3)二项分布3、(1)泊松分布(2)几何分布(3)超几何分布4、(1)马尔可夫过程(2)齐次性(3)有限性5、(1)中心极限定理(2)强大数定律(3)大数定律简答题部分:1、简述随机过程的基本概念及分类。
答:随机过程是指在一定条件下,随时间变化的随机现象的变化规律。
它可以根据不同的分类标准分为连续型和离散型、定值型和随机场、马尔可夫性和非马尔可夫性等。
2、请列举几个常见的随机过程,并简述其应用场景。
答:常见的随机过程有泊松过程、马尔可夫过程、随机漫步等。
泊松过程在物理学、生物学、计算机科学等领域有广泛应用;马尔可夫过程在语音识别、天气预报等领域有应用;随机漫步在金融领域有应用。
2. (1) 求参数为的()b p ,分布的特征函数,其概率密度为Γ()()是正整数p b x x e x p b x p bx p p ,0 000,1>⎪⎩⎪⎨⎧≤>Γ=−−(2)求其期望和方差。
(3)证明对具有相同参数的b Γ分布,关于参数具有可加性。
p 函数有下面的性质:解 (1) 首先,我们知道Γ()()! 1−=Γp p根据特征函数的定义,有()[]()()()()()()()()()()()()()()()()()()()()pp p x jt b p p xjt b p p x jt b p p xjt b p p xjt b p p bxp p jtxjtxjtXX jt b b jt b p p b dxe x jt b p p b dx e x jt b p p b dx e x jt b p p b e x jt b p b dx e x p b dx e x p b edx x p e e E t f ⎟⎟⎠⎞⎜⎜⎝⎛−=−−Γ=−−Γ==−−Γ=−−Γ+−−Γ=Γ=Γ===∫∫∫∫∫∫∞−−−∞−−−∞−−−∞−−−∞−−−−−∞∞∞−!1!11110010202010110L所以()pX jt b b t f ⎟⎟⎠⎞⎜⎜⎝⎛−=(2)根据期望的定义,有[]()()()()()()()bpdx x p b p dx e x p b b p dx e x bp p b e x bp b dx e x p b dx e x p b x dx x xp X E m bx p p bx p p bxp p bx p p bx p p X ==Γ=Γ+−Γ=Γ=Γ===∫∫∫∫∫∫∞∞−∞−−∞−−∞−∞−∞−−∞∞−010100011类似的,有[]()()()()()()()()()()()()()2201200010101222111111b p p dx x p b p p dx e x p b b p p dx e x b p p b dx e x bp p b e x bp b dx e x p b dx e x p b x dx x p x XE bxp p bxp p bxp p bxp p bx p p bx p p +=+=Γ+==+Γ=+Γ+−Γ=Γ=Γ==∫∫∫∫∫∫∫∞∞−∞−−∞−∞−∞−+∞−+∞−−∞∞−L的方差为X 所以,[]()222221b pb p b p p mXE D XX =⎟⎠⎞⎜⎝⎛−+=−=(3)()()()jt jnt jt e n e e t f −−=115. 试证函数为一特征函数,并求它所对应的随机变量的分布。
安徽大学2013—2014学年第二学期 《 应用随机过程 》考试试卷(A 卷)(闭卷 时间120分钟)院/系 年级 __专业 姓名 学号一、填空题(每小题4分,共16分)1、设X 是概率空间(),,F P Ω上的一个随机变量,且EX 存在,C 是F 的子σ-域,定义()E X C 如下:(1)____________________________; (2) ___________________________________________________; 2、设(){},0N t t ≥是强度为λ的Poisson 过程,则()N t 具有________、 ________增量,且0t ∀>,0h >充分小,有:()(){}()0P N t h N t +-== ________,()(){}()1P N t h N t +-==_____________;3、设(){},0W t t ≥为一维标准Brown 运动,则0t ∀>,()W t ~_______,且与Brown 运动有关的三个随机过程_______________、_________ ___________、___________________________都是鞅(过程);4、倒向随机微分方程(BSDE )典型的数学结构为_______________ ______________________________,其处理问题的实质在于________ __________________________________________________________。
二、证明分析题(共10分,选做一题)(1)设X 是定义于概率空间(),,F P Ω上的非负随机变量,并且具有指数分布,即:{}()1x P X x e λ-≤=-,0x >,其中λ是正常数。
设λ是另一个正常数,定义:()XZ e λλλ--=,由下式定义:()A P A ZdP =⎰,A F ∀∈;(i )证明:()1P Ω=;(ii )在概率测度P 下计算的分布函数:{}()P X x ≤,0x >;(2)设(){},0W t t ≥是P 下的标准Brown 运动,试分别由鞅的定义及Ito-Doeblin (伊藤—德布林)公式证明:(){},0X t t ≥是鞅(过程),这里,()()()33X t W t tW t =-。
华南理工大学2011—2012 学年第一学期 《应用随机过程》考试试卷(A 卷)(闭卷时间 120 分钟)院/系年级 __专业姓名学号1、设X 是概率空间(Ω,F ,P )且EX 存在,C 是F 的子σ-域,定义E (XC )如下:(1)_______________ ;(2)_____________________________________________ ; 2、设{N (t ),t ≥ 0}是强度为λ的 Poisson 过程,则 N (t )具有_____、_____增量,且∀t >0,h >0充分小,有:P ({N (t + h )− N (t ) = 0})= ________,P ({N (t + h )− N (t ) =1})=_____________;3、设{W (t ),t ≥ 0}为一维标准 Brown 运动,则∀t >0,W (t ) ~____,且与 Brown 运动有关的三个随机过程____________、________ ______________、______________都是鞅(过程);4、倒向随机微分方程(BSDE )典型的数学结构为__________ ______________________________,其处理问题的实质在于 ______________________________________________________。
二、证明分析题(共 12 分,选做一题)1、设X 是定义于概率空间(Ω,F ,P )上的非负随机变量,并且具有指数分布,即:P({X ≤ a}) =1−e−λa ,a >0,其中λ是正常数。
设λ是另一个正常数,定义:Z = λλe−(λ−λ)X ,由下式定义:P(A)=∫A ZdP,∀A∈F ;(1)证明:P(Ω) =1;(2)在概率测度P 下计算的分布函数:P({X ≤ a}),a>0;2、设X0~U (0,1),X n+1~U (1−X n,1),n≥1,域流{F n,n≥ 0}满足:F n =σ(X k,0 ≤k≤n),n≥ 0 ;又设Y0 = X0 ,Y n = 2n ⋅∏kn=1 1 X−k X −1 k ,n ≥1,试证:{Yn,n ≥ 0}关于域流{F n,n ≥ 0}是鞅!三、计算证明题(共60 分)1、(12 分)假设X~E(λ),给定c >0,试分别由指数分布的无记E(XI A )忆性和E(X A) = ,求E(XX >c);P(A)2、(10 分,选做一题)(1)设X~E(λ),Y~E(μ),λ> μ,且X,Y 相互独立;∀c >0,设fX X )为给定X +Y = c 时X 的条件概率密度,试求之并由此求+Y (x cE(X X +Y = c);⎧1)及(2)设(X,Y)~f (x, y) = ⎪⎨x ,0 ≤ y ≤ x ≤1;,试求fY X (y x⎪⎩0,其它;P(X 2 +Y 2 ≤1X = x),并由此(连续型全概率公式)求P({X 2 +Y 2 ≤1});3、(4 分,选做一题)(1)设X,Y独立同U [0,1]分布,试基(2)设于微元法由条件密度求E(XX <Y);(X,Y)~U (D),D:0 ≤ y≤x≤1,试由条件数学期望的直观方法求E(YX )、E ⎡⎣(Y −X )2X ⎤⎦;[0,1]分布,Y = min{X1, X2, , 4、(10 分)设X1, X2, , X n 独立同U求E(X1Y) = E(X1 σ(Y));X n},试由条件数学期望的一般定义5、(14 分)设{N (t),t ≥ 0}是强度为λ的Poisson 过程,S0 = 0,S n 表示第n个事件发生(到达)的时刻,试求:(1)P(N (s) =kN (t) = n)(s <t,k = 0,1, ,n);(2)E(S k N (t) = n),k ≤ n;6、(10 分)设{W (t),t ≥ 0}为标准Brown 运动,试由Ito-Doeblin 公式求解随机微分方程 d ⎡⎣S(t)⎤⎦= μS(t)dt +σS(t)dW (t),并求E ⎡⎣W4 (t)⎤⎦,E ⎡⎣W6 (t)⎤⎦。
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。
山东财政学院2009—2010学年第 1 学期期末考试《应用随机过程》试卷(A )(考试时间为120分钟)参考答案及评分标准考试方式: 闭卷 开课学院 统计与数理学院 使用年级 07级 出题教师 张辉一. 判断题(每小题2分,共10分,正确划√,错误划ⅹ)1. 严平稳过程一定是宽平稳过程。
(ⅹ )2. 非周期的正常返态是遍历态。
(√ )3. 若马氏链的一步转移概率阵有零元,则可断定该马氏链不是遍历的。
(ⅹ )4. 有限马尔科夫链没有零常返态。
(√ )5.若状态i 有周期d, 则对任意1≥n , 一定有:0)(〉nd iip 。
(ⅹ )二. 填空题(每小题5分,共10分) 1. 在保险公司的索赔模型中,设索赔要求以平均每月两次的速率的泊松过程到达保险公司,若每次赔付金额是均值为10000元的正态分布,一年中保险公司的平均赔付金额是__240000元___。
2.若一个矩阵是随机阵,则其元素满足的条件是:(1)任意元素非负(2)每行元素之和为1。
三. 简答题(每小题5分,共10分)1. 简述马氏链的遍历性。
答:设)(n ij p 是齐次马氏链{}1,≥n X n 的n 步转移概率,,如果对任意 I j i ∈,存在不依赖于i 的极限0)(〉=j n ij p p ,则称齐次马氏链{}1,≥n X n 具有遍历性。
2. 非齐次泊松过程与齐次泊松过程有何不同?答:非齐次泊松过程与齐次泊松过程的不同在于:强度λ不再是常数,而是与t 有关,也就是说,不再具有平稳增量性。
它反映了其变化与时间相关的过程。
如设备的故障率与使用年限有关,放射物质的衰变速度与衰败时间有关,等等。
四. 计算、证明题(共70分)1. 请写出C —K 方程,并证明之. (10分)解:2. 写出复合泊松过程的定义并推算其均值公式. (15分)解:若{}0),(≥t t N 是一个泊松过程,是Λ,2,1,=i Y i 一族独立同分布的随机变量,并且与{}0),(≥t t X 也是独立的, )(t X =∑=t N i i Y1,那么{}0),(≥t t X 复合泊松过程3. 顾客以泊松过程到达某商店,速率为小时人4=λ,已知商店上午9:00开门,求到9:30时仅到一位顾客,而到11:30时总计已达5位顾客的概率。
湖南科技学院二○一 年 学期期末考试
数学与应用数学 专业 年级 应用随机过程试题
考试类型:闭卷 试卷类型:C 卷 考试时量: 120分钟
F
一 、填空题(每空4分共24分)
1、过程12{()cos sin ;0}X t Z at Z at t =+≥,其中1Z ,2Z 独立同分布,其共同分布为2(0,)N σ,
a 为常数,则均值函数(())E X t = ,方差函数
(())Var X t = ,协方差函数
(,)s t γ= .
2、计数过程
{}
(),0N t t ≥为参数为2的泊松过程,则
{}(20)(18)2P N N -== ,((3))=E N .
3、()1
()N t i i S t Y ==
∑
是复合Poisson 过程,其中{}(),0N t t ≥为参数为3的泊松过程,
1Y 服从正态分布(1,4)N ,则[(5)]E S = .
二 、判断题(小题2分,共16分)
1、 设{}(),0N t t ≥是强度为λ的Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则
{}{}()n N t n T t <⇔>. ( ) 2、{}(),0N t t ≥是更新过程,则对0t
≤<+∞,有()EN t <+∞. ( )
3、Poisson 过程具有独立增量性. ( )
4、{}n Z 是马尔可夫链,则2
02(,)()n n n n P X j X i X k P X j X i ++======.
题 号 一
二
三
四
五
总分 统分人
得 分 阅卷人
复查人
( )
5、Brown 运动的样本路径()B t ,0t T ≤≤具有连续性. ( )
6、{}n Z 是有限状态的马尔可夫链,其一步转移矩阵为P ,则其n 步转移矩阵()
n n P
P =.
( )
7、Brown 运动不是平稳增量过程. ( ) 8、{}(),0N t t ≥是Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则当t →+∞时,
()1()N t r t T t +=-与()()N t s t t T =-有相同的极限分布. ( )
三 、计算题(共46分)
1、(12分)设{}(),0N t t ≥是强度为3的Poisson 过程, 求(1){}(1)2,(3)4,(5)6P N N N ===; (2){}(5)6(3)4P N N ==;
(3)求协方差函数(),s t γ,写出推导过程.
2、(10分)设{}(),0N t t ≥是更新过程,第k 次更新与第1k -次更新的时间间隔k X 服
从分布
2
(2)3
k P X ==
,1(3)3k P X ==.计算((1))P N n =,((2))P N n =,
((3))P N n =,0,1,2,
n =.
3、(12分)设1{(),0}N t t
≥,2{(),0}N t t ≥是强度分别为1λ,2λ 且相互独立
的Poisson 过程,记k T 为1{(),0}N t t
≥的第k 次事件发生的等待时间,1V 为
2{(),0}N t t ≥第1次事件发生的等待时间.求1()k P T V <.
4、(12分){,1,2,
}n X n =为独立同分布的随机变量序列,具有如下分布
1
(1)(1)2
n n P X P X ===-=
1,2,n =
令1n
n
i i S X ==∑.
(1)求随机过程{,1,2,}n S n =的均值函数和自相关函数;
(2)判断{,1,2,}n S n =是否为宽平稳过程.
四 、证明题(共14分)
1、设{}(),0i N t t ≥,1,2,
,i
n =是n 个相互独立的Poisson 过程,参数分别为i λ,
1,2,
,i n =,试证{}
1()=(),0n
i i N t N t t =≥∑是Poisson 过程.。