随机过程期末考试试题
- 格式:doc
- 大小:3.13 MB
- 文档页数:9
一、填空题(每小题3分,共15分)1、设随机变量X 的特征函数为 ()(1)itnX t p pe ϕ=-+,则EX = 。
2、设{((),()),}X t Y t t T ∈为二维实值随机过程,则它们的互协方差函数为12(,)XY C t t = 。
3、设{()X n ,1,2,n = }是独立同分布的随机变量序列,{}()1P X n p ==,{}()01P X n p ==-,则对m n ≠,X 的自相关函数(),X R m n = 。
4、全期望公式为 ()E E Y X ⎡⎤⎣⎦= 。
5、非齐次泊松过程{(),0}N t t ≥,其中强度函数为()sin (0)t t at a λ=+≠,则[()]E N t =。
二、选择题(每小题3分,共15分)1、下面的随机过程中不一定是二阶矩过程的是( )(A )严平稳过程 (B )宽平稳过程 (C )正态过程 (D )泊松过程2、关于齐次马氏链的遍历性与平稳分布,下面说法正确的是( ) (A )平稳分布即为稳态概率(B )平稳分布存在,则齐次马氏链具有遍历性 (C )马氏链不具有遍历性时,其平稳分布也可能存在 (D )平稳分布是唯一的3、已知标准正态分布随机变量的特征函数为22()e υϕυ-=,则2(2,)X N μσ 的特征函数为 ()X ϕυ=( ) (A ){}222exp i συμυ-+(B ){}222exp i συμυ-(C ){}222exp i συμυ-2+(D ){}222exp i συμυ-24、下面的随机过程中不一定是马尔可夫过程的是( ) (A )宽平稳过程 (B )非齐次泊松过程 (C )维纳过程 (D )泊松过程5、设()1()()N t n Y t X n ==∑是复合泊松过程,2(|()|),1,2,E X n n <+∞= ,则下面说法错误的是( )(A )()((1))Y m t tE X λ= (B )()((1))Y D t tD X λ= (C )()(())Y m t tE X n λ= (D )2()(())Y D t tE X n λ= 三、计算题1、(20分)设齐次马氏链{(),1,2,3}X n n = 的状态空间{1,2,3}E =,状态转移概率矩阵110221203323055P ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭(1) 画出概率转移图; (2)讨论其遍历性,并求平稳分布; (3)求概率{(4)3|(1)1,(2)2}P X X X ===; (4)若已知(1)X 的分布律如下表所示:分别计算{(1)1,(2)2,(3)3}P X X X ===以及(3)X 的分布律。
1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
西安邮电大学研究生随机过程期末试题1单选(2分)随机过程的数学期望,是随机过程的( )平均,而非( )平均。
[单选题] *A.时间平均,统计平均B.集合平均,统计平均C.统计平均,集合平均D.统计平均,时间平均(正确答案)2单选(2分)随机过程X(t)的互相关函数,描述了( )个随机过程任意( )个不同时刻状态之间的相互关系(相关程度) [单选题] *A.1,2B.2,1C.2,2(正确答案)D.1,13单选(2分)如果两个随机过程相互独立,则这两个随机过程之间没有( )关系。
如果两个随机过程互不相关,则这两个随机过程之间没有( )关系 [单选题] *A.任何,任何B.任何,线性(正确答案)C.线性,线性D.线性,任何4单选(2分)实现遍历过程时间自相关的三部曲正确的顺序是( ),( )和( ) [单选题] *A.平移、点对点相乘、相加2.00/2.00(正确答案)B.相加、点对点相乘,平移C.相加、平移、点对点相乘D.点对点相乘、平移、相加5单选(2分)实现卷积运算的的四部曲( ),( ),( )和( ) [单选题] *A.点对点相乘、平移、反转、相加B.点对点相乘、平移、相加、反转C.反转、相加、点对点相乘,平移D.反转、平移、点对点相乘、相加(正确答案)6单选(2分)若平稳随机过程含有一个周期分量,则其自相关函数则含有一个( )的周期分量。
[单选题] *A.0.5倍周期B.1倍周期(正确答案)C.3倍周期D.2倍周期7单选(2分)。
[单选题] *A.20.00/2.00B.5C.0(正确答案)D.18单选(2分)。
[单选题] *A.(正确答案)B.C.D.9单选(2分)。
[单选题] *A.5(正确答案)B.0C.1D.20.00/2.0010单选[单选题] *A.B.(正确答案)C.D.11单选[单选题] *A.1B.00.00/2.00C.3D.2(正确答案)12单选[单选题] *A.无法判断B.不遍历(正确答案)C.可能遍历也可能不遍历D.遍历13单选[单选题] *A.是的B.无法判断0.00/2.00C.不是(正确答案)D.可能是也可能不是14多选(3分)确定随机试验的3个基本要素是什么? *A.试验之前却不能断言它出现哪个结果1.00/3.00(正确答案)B.不同条件下可以重复C.相同条件下可以重复;(正确答案)D.结果不止一个;1.00/3.00(正确答案)15多选(3分)随机过程宽平稳的判据有? *A.数学期望是一常数(正确答案)B.自相关函数只与时间间隔有关,(正确答案)C.均方值是常数D.均方值有限(正确答案)16判断(2分)某次试验的随机变量,可以描述该次随机试验的所有结果,对吗?[单选题] *A.对(正确答案)B.错17判断随机过程是把以时间t作为参数的随机函数的统称,对吗? [单选题] *A.错B.对(正确答案)18判断(2分)随机过程的一维概率密度,描述的是随机过程在任一特定时刻对应的随机变量的一维概率密度。
西安邮电大学研究生随机过程期末试题考试时间:120分钟,总分100分。
一、选择题(每题4分,共24题,选择一个正确答案)1.下列哪项是随机过程的基本要素?()A.偏微分方程组 B.随机事件C.协方差函数 D.重复试验2.已知随机过程X(t)的均值函数为μ(t) =2t,方差函数为σ2(t) =t,它是__常数均值过程,__广义平稳过程。
()A.非 B.非C.是 D.是3.设离散时间随机过程X(n),其自相关函数为R(k) =α|k|,其中α为一实常数,则该过程是__平稳过程,__宽平稳过程。
()A.弱 B.弱C.强 D.强4.设离散时间随机过程X(n),其自相关函数为R(k) =αne|k|,其中αn为与n有关的正实常数,则该过程是__平稳过程,__宽平稳过程。
()A.弱 B.弱C.强 D.强5.连续时间白噪声B(t)的自相关函数为()A.0 B.tC.δ(t) D.cos(t)6.设离散时间随机过程X(n),其平均能量为2,则它的能量谱密度为()A.1 B.exp(-2πf)C.2 D.-2lnf二、计算题(每题16分,共6题)1.已知随机过程X(t)的均值函数为μ(t) = t,方差函数为σ2(t) = t2,试求出其自协方差函数R(τ)。
()2.已知连续时间随机过程X(t)的自相关函数R(τ) = 4e-2τ,试判断它是否是广义平稳过程,并求出其平均功率。
()3.连续时间平稳随机过程X(t)的光谱密度为S(f) = 2exp(-2|f|),试求出其自协方差函数R(τ)。
()4.离散时间随机过程X(n)的均值函数为μ(n) = n,方差函数为σ2(n) = n(n+1),试求出其自协方差函数R(k)。
()5.已知离散时间随机过程X(n)的自相关函数为R(k) =α|k|,其中α是一正实常数,试求出其能量谱密度。
()6.已知随机过程X(t)的自相关函数R(τ) = Ae-2|τ|,其中A是一个实常数,试求出其所有阶的矩和功率谱密度。
《随机过程期末考试卷》1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ij P (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)1.设A,B,C 为三个随机事件,证明条件概率的乘法公式:P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
湖南科技学院二○一 年 学期期末考试数学与应用数学 专业 年级 应用随机过程试题考试类型:闭卷 试卷类型:C 卷 考试时量: 120分钟F一 、填空题(每空4分共24分)1、过程12{()cos sin ;0}X t Z at Z at t =+≥,其中1Z ,2Z 独立同分布,其共同分布为2(0,)N σ,a 为常数,则均值函数(())E X t = ,方差函数(())Var X t = ,协方差函数(,)s t γ= .2、计数过程{}(),0N t t ≥为参数为2的泊松过程,则{}(20)(18)2P N N -== ,((3))=E N .3、()1()N t i i S t Y ==∑是复合Poisson 过程,其中{}(),0N t t ≥为参数为3的泊松过程,1Y 服从正态分布(1,4)N ,则[(5)]E S = .二 、判断题(小题2分,共16分)1、 设{}(),0N t t ≥是强度为λ的Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则{}{}()n N t n T t <⇔>. ( ) 2、{}(),0N t t ≥是更新过程,则对0t≤<+∞,有()EN t <+∞. ( )3、Poisson 过程具有独立增量性. ( )4、{}n Z 是马尔可夫链,则202(,)()n n n n P X j X i X k P X j X i ++======.题 号 一二三四五总分 统分人得 分 阅卷人复查人( )5、Brown 运动的样本路径()B t ,0t T ≤≤具有连续性. ( )6、{}n Z 是有限状态的马尔可夫链,其一步转移矩阵为P ,则其n 步转移矩阵()n n PP =.( )7、Brown 运动不是平稳增量过程. ( ) 8、{}(),0N t t ≥是Poisson 过程,n T 为第n 次泊松事件发生的等待时间,则当t →+∞时,()1()N t r t T t +=-与()()N t s t t T =-有相同的极限分布. ( )三 、计算题(共46分)1、(12分)设{}(),0N t t ≥是强度为3的Poisson 过程, 求(1){}(1)2,(3)4,(5)6P N N N ===; (2){}(5)6(3)4P N N ==;(3)求协方差函数(),s t γ,写出推导过程.2、(10分)设{}(),0N t t ≥是更新过程,第k 次更新与第1k -次更新的时间间隔k X 服从分布2(2)3k P X ==,1(3)3k P X ==.计算((1))P N n =,((2))P N n =,((3))P N n =,0,1,2,n =.3、(12分)设1{(),0}N t t≥,2{(),0}N t t ≥是强度分别为1λ,2λ 且相互独立的Poisson 过程,记k T 为1{(),0}N t t≥的第k 次事件发生的等待时间,1V 为2{(),0}N t t ≥第1次事件发生的等待时间.求1()k P T V <.4、(12分){,1,2,}n X n =为独立同分布的随机变量序列,具有如下分布1(1)(1)2n n P X P X ===-=1,2,n =令1nni i S X ==∑.(1)求随机过程{,1,2,}n S n =的均值函数和自相关函数;(2)判断{,1,2,}n S n =是否为宽平稳过程.四 、证明题(共14分)1、设{}(),0i N t t ≥,1,2,,in =是n 个相互独立的Poisson 过程,参数分别为i λ,1,2,,i n =,试证{}1()=(),0ni i N t N t t =≥∑是Poisson 过程.。
一.填空题(每空2分,共20分)1.设随机变量X 服从两点分布,则X 的特征函数为__it pe q +______。
2.设X(t)=Vcos t,α ,t T=[0,+)∈∞,振幅V 是在区间(0,1)上均匀分布的随机变量,α为常数,则X(t)的相关函数=)4,2(X R _∂∂4cos 2cos 31 ____。
3.强度为λ的泊松过程{}X(t),t 0≥,{}n T ,n 1≥是对应的时间间隔序列,则随机变量n T (n=1,2,)独立同分布,密度函数为_t e λλ-_______________。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则1W 的分布函数为__teλ--1____________。
5.设随机过程 X(t)只有两条样本曲线,1X(t,)=acost,ω2X(t,)=-acost,ω其中常数a>0,且12P()=3ω,21P()=3ω,则随机过程的期望=)(t EX ___t a cos 31______。
6.马氏链{}n X ,n 0≥,状态空间I ,记初始概率i 0p P(X =i)=,绝对概率j n p (n)P(X =j)=,n 步转移概率(n)ij p ,三者之间的关系式为__)()(n p p n p ij i Ii j ∑∈=______。
7.设{}n X ,n 0≥为马氏链,状态空间I ,记初始概率i 0p P(X =i)=,一步转移概率{}ij n+1n p p X j X i ===,用其表示{}0011n n P X =i ,X =i ,,X i ==__n n i i i i i p p p 1100- __。
8.在马氏链{}n X ,n 0≥中,记 {}(n)ij v n 0f P X j,1v n-1,X j X i ,n 1,=≠≤≤==≥(n)ij ij n=1f f ∞=∑,若1<ii f ,称状态i 为__非常返________。
随机过程期末试题及答案一、选择题1. 随机过程的定义中,下列哪个是错误的?A. 属于随机现象。
B. 具有随机变量。
C. 具有时间集合。
D. 具有马尔可夫性质。
答案:D2. 下列哪个不是连续时间的随机过程?A. 泊松过程。
B. 布朗运动。
C. 维纳过程。
D. 马尔可夫链。
答案:D3. 关于时间齐次的描述,下列哪个是正确的?A. 随机过程的概率分布不随时间变化。
B. 随机过程的均值不随时间变化。
C. 随机过程的方差不随时间变化。
D. 随机过程的偏度不随时间变化。
答案:A4. 下列哪个是离散时间的随机过程?A. 随机游走。
B. 指数分布过程。
C. 广义强度过程。
D. 随机驱动过程。
答案:A二、填空题1. 马尔可夫链中,状态转移概率与当前状态无关,只与前一个状态有关,这个性质被称为(马尔可夫性质)。
2. 在某一区间内,随机过程的均值是时间的(函数)。
3. 两个随机过程的相互独立性是指它们的(联合概率)等于各自概率的乘积。
4. 利用(随机过程)可以模拟无记忆的随机现象。
三、解答题1. 试述随机过程的定义及其要素。
随机过程是描述随机现象随时间演化的数学模型。
它由两个基本要素组成:时间集合和取值集合。
时间集合是指随机过程所涉及的时间轴,可以是离散的或连续的。
取值集合是指随机过程在每个时间点上可能取到的值的集合,可以是实数集、整数集或其他集合。
2. 什么是时间齐次随机过程?请举例说明。
时间齐次随机过程是指随机过程的概率分布在时间上不变的特性。
即随机过程在任意两个时间点上的特性是相同的。
例如,离散时间的随机游走就是一个时间齐次随机过程。
在随机游走中,每次移动的概率分布不随时间变化,且每次移动的步长独立同分布。
3. 什么是马尔可夫链?它有哪些性质?马尔可夫链是一种离散时间的随机过程,具有马尔可夫性质,即在给定当前状态的情况下,未来的状态只与当前状态有关,与过去的状态无关。
马尔可夫链的性质包括:首先,状态转移概率与当前状态无关,只与前一个状态有关。