高二数学作业2
- 格式:doc
- 大小:34.50 KB
- 文档页数:8
2025届高三数学一轮复习对点练7 函数的概念及其表示【基础巩固】1.函数f (x )=lg(x -2)+1x -3的定义域是( ) A.(2,+∞)B.(2,3)C.(3,+∞)D.(2,3)∪(3,+∞)2.(多选)下列各图中,能表示函数y =f (x )的图象的是( )3.(2024·重庆调研)已知函数f (x +2)=x 2-3x +4,则f (1)=( )A.4B.6C.7D.84.(多选)(2024·宁德调考)下列函数中,与函数y =x +2是同一个函数的是( )A.y =(x +2)2B.y =3x 3+2C.y =x 2x +2 D.y =t +25.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤0,x +1x,x >0,若f (f (a ))=2,则a 等于( ) A.0或1B.-1或1C.0或-2D.-2或-16.如图,点P 在边长为1的正方形的边上运动,M 是CD 的中点,当P 沿A -B -C -M 运动时,设点P 经过的路程为x ,△APM 的面积为y ,则函数y =f (x )的图象大致是( )7.(2024·潍坊模拟)存在函数f (x )满足:对任意x ∈R 都有( )A.f (|x |)=x 3B.f (sin x )=x 2C.f (x 2+2x )=|x |D.f (|x |)=x 2+18.函数f (x )=1x +1-x 的定义域是________. 9.已知函数f (x )对任意的x 都有f (x )-2f (-x )=2x ,则f (x )=________.10.(2024·武汉调研)已知函数f (x )=⎩⎨⎧2x -1-2,x ≤1,log 2(x +1),x >1,试举出一个a 的值,使得f (a )+f (6-a )=54成立,则a 可以为______(写出一个即可).11.已知函数f (x )=⎩⎨⎧3x +5,x ≤0,x +5,0<x ≤1,-2x +8,x >1.(1)求f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫1π,f (-1)的值; (2)画出这个函数的图象;(3)求f (x )的最大值.12.(1)已知f (x +1)=2x 2-x +3,求f (x ).(2)已知f (f (x ))=4x +9,且f (x )为一次函数,求f (x ).(3)已知函数f (x )满足2f (x )+f ⎝ ⎛⎭⎪⎫1x =x ,求f (x ).【能力提升】13.(2024·南阳质检)已知函数f (x )=lg1-x 1+x,则函数g (x )=f (x -1)+2x -1的定义域是( )A.{x |x >2,或x <0}B.⎩⎨⎧⎭⎬⎫x |12≤x <2C.{x |x >2}D.⎩⎨⎧⎭⎬⎫x |x ≥1214.已知函数f (x )=⎩⎨⎧log 2x ,x >1,x 2-1,x ≤1,则f (x )<f (x +1)的解集为________. 15.(2024·苏州模拟)用max{a ,b }表示a ,b 两个数中的最大值,设函数f (x )=max ⎩⎨⎧⎭⎬⎫|x |,1x (x >0),若f (x )≥m -1恒成立,则m 的最大值是________.16.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫做刹车距离.在某种路面上,某种型号汽车的刹车距离y (m)与汽车的车速x (km/h)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (m)与汽车的车速x (km/h)的关系图.(1)求出y 关于x 的函数解析式;(2)如果要求刹车距离不超过25.2 m ,求行驶的最大速度.。
第2章 2.1 第2课时(本栏目内容,在学生用书中以活页形式分册装订!)一、选择题(每小题5分,共20分)1.已知{a n }中,a 1=1,a n +1a n =12,则数列{a n }的通项公式是( )A .a n =2nB .a n =12nC .a n =12n -1D .a n =1n2解析: a 1=1,a 2=12,a 3=14,a 4=18,观察得a n =12n -1.答案: C2.已知数列{a n }满足a 1>0,且a n +1=nn +1a n ,则数列{a n }是( )A .递增数列B .递减数列C .常数列D .摆动数列 解析: 由a 1>0,且a n +1=nn +1a n , 则a n >0,又a n +1a n =nn +1<1,∴a n +1<a n .因此数列{a n }为递减数列. 答案: B3.由a 1=1,a n +1=a n3a n +1,可知数列{a n }的第34项是( )A.34103 B .100 C.1100D.1104解析: 由a 1=1,及a 2=a 13a 1+1=14,可得a 3=17,a 4=110,…,a n =13n -2,因此a 34=13×34-2=1100.答案: C4.数列{a n }中,a 1=1,对所有的n >2都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5等于( ) A.6116 B.259 C.2519D.3115解析: ∵a 1·a 2·…·a n =n 2, ∴a 1·a 2·…·a n -1=(n -1)2,∴a n =⎝ ⎛⎭⎪⎫n n -12(n ≥2),∴a 3=94,a 5=2516.∴a 3+a 5=6116.答案: A二、填空题(每小题5分,共10分)5.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________;a 2 014=________.解析: 依题意得a 2 009=a 4×503-3=1,a 2 014=a 2×1 007=a 1 007=a 4×252-1=0.故分别填1,0. 答案: 1 06.已知数列{a n }满足:a 1=m (m 为正整数),a n +1=⎩⎪⎨⎪⎧a n 2,当a n 为偶数时3a n +1,当a n 为奇数时.若a 6=1,则m 所有可能的取值为________.解析: 若a 5为奇数,则3a 5+1=1,a 5=0(舍去). 若a 5为偶数,则a 52=1,a 5=2.若a 4为奇数,则3a 4+1=2,a 4=13(舍去).若a 4为偶数,则a 42=2,a 4=4.若a 3为奇数,则3a 3+1=4,a 3=1,则a 2=2,a 1=4. 若a 3为偶数,则a 32=4,a 3=8.若a 2为奇数,则3a 2+1=8,a 2=73(舍去).若a 2为偶数,则a 22=8,a 2=16.若a 1为奇数,则3a 1+1=16,a 1=5. 若a 1为偶数,则a 12=16,a 1=32.故填4,5,32. 【答案】 4,5,32三、解答题(每小题10分,共20分)7.数列{a n }满足a 1=1,a n +1+2a n a n +1-a n =0. (1)写出数列的前5项;(2)由(1)写出数列{a n }的一个通项公式;(3)实数199是否为这个数列中的一项?若是,应为第几项?解析: (1)由已知可得a 1=1,a 2=13,a 3=15,a 4=17,a 5=19.(2)由(1)可得数列的每一项的分子均为1,分母分别为1,3,5,7,9,…,所以它的一个通项公式为a n =12n -1.(3)令199=12n -1,可解得n =50.故199是这个数列的第50项. 8.已知数列{a n }中,a 1=1,a n =a 1+2a 2+3a 3+…+(n -1)·a n -1(n ≥2),记n !=1×2×3×…×n ,求数列{a n }的通项公式.解析: 由已知得:a n =a 1+2a 2+…+(n -2)a n -2+(n -1)·a n -1(n ≥2), a n -1=a 1+2a 2+…+(n -2)a n -2(n ≥3). 以上两式相减得:a n -a n -1=(n -1)a n -1(n ≥3), ∴a n =n ·a n -1,即a na n -1=n (n ≥3),∴a 3a 2·a 4a 3·a 5a 4·…·a n -1a n -2·a n a n -1=3×4×5×…×(n -1)·n , ∴a n a 2=n !2(n ≥3). 又∵a 1=1,a 2=a 1=1,∴a n =n !2(n ≥2). ∴a n=⎩⎨⎧1 (n =1)n !2 (n ≥2).尖子生题库☆☆☆9.(10分)已知数列{a n }中,a 1=1,a 2=2,a n =a n -1+a n -2(n >2).通过公式b n =a n +1a n构造一个新数列{b n },试写出数列{b n }的前5项,你能说出这个数列的特点吗?解析: 数列{b n }是由数列{a n }构造生成的,由a 1,a 2的值和递推公式先算出数列{a n }的前6项,再根据公式b n =a n +1a n算出数列{b n }的前5项.∵a 1=1,a 2=2,a n =a n -1+a n -2(n >2),∴a 3=a 2+a 1=3,a 4=a 3+a 2=5,a 5=a 4+a 3=8, a 6=a 5+a 4=13,即数列{a n }的前6项是1,2,3,5,8,13, 又b n =a n +1a n,∴数列{b n }的前5项是2,32,53,85,138.数列{b n }的特点是:数列{b n }的前n 项的乘积是a n +1. 这是因为b 1·b 2·b 3·…·b n =a 2a 1·a 3a 2·a 4a 3·…·a n a n -1·a n +1a n=a n +1.也可以是:前项的分子是后项的分母,前项分子与分母之和是后项的分子.。
2.3.2 抛物线的简单几何性质基础过关1.设AB 为过抛物线y 2=2px (p >0)的焦点的弦,则|AB |的最小值为( ) A.p 2 B.p C.2p D.无法确定解析 当AB 垂直于对称轴时,|AB |取最小值,此时AB 为抛物线的通径,长度等于2p .答案 C2.过抛物线y 2=4x 的焦点作直线交抛物线于A (x 1,y 1),B (x 2,y 2)两点,如果x 1+x 2=6,那么|AB |等于( )A.6B.8C.9D.10解析 因为直线AB 过焦点F (1,0),所以|AB |=x 1+x 2+p =6+2=8.答案 B3.抛物线y 2=8x 的焦点为F ,点P 在抛物线上,若|PF |=5,则点P 的坐标为( )A.(3,26)B.(3,-26)C.(3,26)或(3,-26)D.(-3,26)或(-3,-26)解析 设点P 的坐标为(x ,y ),∵|PF |=5,∴x -(-2)=5,∴x =3.把x =3代入方程y 2=8x ,得y 2=24,∴y =±2 6.∴点P 的坐标为(3,±26).故选C.答案 C4.已知圆C:x2+y2+6x+8y+21=0,抛物线y2=8x的准线为l,设抛物线上任一点P到直线l的距离为m,则m+|PC|的最小值为________.解析圆心C(-3,-4),由抛物线的定义知,m+|PC|最小时为圆心与抛物线焦点(2,0)间的距离,即(-3-2)2+(-4)2=41.答案415.已知点A(-2,3)在抛物线C:y2=2px的准线上,记抛物线C的焦点为F,则直线AF的斜率为________.解析∵点A(-2,3)在抛物线C的准线上,∴p2=2,∴p=4.∴抛物线的方程为y2=8x,则焦点F的坐标为(2,0).又A(-2,3),根据斜率公式得k AF=0-32+2=-34.答案-3 46.已知抛物线C的顶点在原点,焦点F在x轴的正半轴上,设A,B是抛物线C 上的两个动点(AB不垂直于x轴),且|AF|+|BF|=8,线段AB的垂直平分线恒经过点Q(6,0),求抛物线的方程.解设抛物线的方程为y2=2px(p>0),则其准线为x=-p2.设A(x1,y1),B(x2,y2),∵|AF|+|BF|=8,∴x1+p2+x2+p2=8,即x1+x2=8-p.∵Q(6,0)在线段AB的中垂线上,∴|QA|=|QB|,即(6-x1)2+(-y1)2=(6-x2)2+(-y2)2,又y 21=2px 1,y 22=2px 2,∴(x 1-x 2)(x 1+x 2-12+2p )=0.∵AB 与x 轴不垂直,∴x 1≠x 2.故x 1+x 2-12+2p =8-p -12+2p =0,即p =4.从而抛物线方程为y 2=8x .7.已知顶点在原点,焦点在x 轴上的抛物线被直线y =2x +1截得的弦长为15,求抛物线的方程.解 设抛物线的方程为y 2=2ax (a ≠0),由⎩⎪⎨⎪⎧y 2=2ax ,y =2x +1消去y ,得4x 2-(2a -4)x +1=0. 设直线y =2x +1与抛物线交于A ,B 两点,其坐标为A (x 1,y 1),B (x 2,y 2),则x 1+x 2 =a -22,x 1x 2=14.|AB |=1+k 2|x 1-x 2|=5(x 1+x 2)2-4x 1x 2 = 5 ⎝ ⎛⎭⎪⎫a -222-4×14=15. 则 a 24-a =3,a 2-4a -12=0, 解得a =-2或a =6.∴y 2=-4x 或y 2=12x .能力提升8.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为抛物线C 的焦点.若|FA |=2|FB |,则k 等于( ) A.13 B.23 C.23 D.223解析 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2).由⎩⎪⎨⎪⎧y =k (x +2),y 2=8x消去y 得,k 2x 2+4(k 2-2)x +4k 2=0, ∴x 1+x 2=4(2-k 2)k 2,x 1x 2=4. 由抛物线定义得|AF |=x 1+2,|BF |=x 2+2,又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2,代入x 1x 2=4,得x 22+x 2-2=0,∴x 2=1或-2(舍去),∴x 1=4,∴4(2-k 2)k 2=5, ∴k 2=89.∵k >0,∴k =223. 答案 D9.已知抛物线y 2=2px (p >0),过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的纵坐标为2,则该抛物线的准线方程为( )A.x =1B.x =-1C.x =2D.x =-2解析 抛物线的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,所以过焦点且斜率为1的直线方程为y =x -p 2,即x =y +p 2,代入y 2=2px 得y 2=2py +p 2,即y 2-2py -p 2=0,由根与系数的关系得y 1+y 22=p =2(y 1,y 2分别为点A ,B 的纵坐标),所以抛物线方程为y 2=4x ,准线方程为x =-1.答案 B10.O 为坐标原点,F 为抛物线C :y 2=42x 的焦点,P 为抛物线C 上一点,若|PF |=42,则△POF 的面积为________.解析 由y 2=42x 知:焦点F (2,0),准线x =- 2.设P 点坐标为(x 0,y 0),则x 0+2=42,∴x 0=32,∴y 20=42×32=24,∴|y 0|=26,∴S △POF =12×2×26=2 3.答案 2 311.已知O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF→=-4,则点A 的坐标是________________.解析 设A ⎝ ⎛⎭⎪⎫y 204,y 0,∵抛物线的焦点为F (1,0), 则OA →=⎝ ⎛⎭⎪⎫y 204,y 0,AF →=⎝ ⎛⎭⎪⎫1-y 204,-y 0, 由OA →·AF →=-4,得y 0=±2, ∴点A 的坐标是(1,2)或(1,-2).答案 (1,2)或(1,-2)12.设抛物线y 2=2x 与过焦点的直线交于A ,B 两点,求OA →·OB→的值. 解 由y 2=2x 得焦点坐标为(12,0),当直线AB 的斜率存在时,设直线AB 的方程为y =k ⎝ ⎛⎭⎪⎫x -12, 由⎩⎨⎧y =k ⎝ ⎛⎭⎪⎫x -12,y 2=2x ,联立得 k 2x 2-(k 2+2)x +k 24=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=k 2+2k 2,x 1x 2=14.OA →·OB →=x 1x 2+y 1y 2=x 1x 2+k 2⎝ ⎛⎭⎪⎫x 1-12⎝ ⎛⎭⎪⎫x 2-12=x 1x 2+k 2⎣⎢⎡⎦⎥⎤x 1x 2-12(x 1+x 2)+14 =14+k 2⎝ ⎛⎭⎪⎫14-12×k 2+2k 2+14 =14+(-1)=-34.当直线AB 的斜率不存在时,易求得A ⎝ ⎛⎭⎪⎫12,1,B ⎝ ⎛⎭⎪⎫12,-1. 所以OA →·OB →=⎝ ⎛⎭⎪⎫12,1·⎝ ⎛⎭⎪⎫12,-1=14-1=-34. 综上,OA →·OB →的值是-34. 13.(选做题)已知过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),则称AB 为抛物线的焦点弦.求证:(1)y 1y 2=-p 2;x 1x 2=p 24;(2)1|FA |+1|FB |=2p ; (3)以AB 为直径的圆与抛物线的准线相切.证明 如图所示.(1)抛物线y 2=2px (p >0)的焦点F ⎝ ⎛⎭⎪⎫p 2,0,准线方程:x =-p 2. 设直线AB 的方程为x =ky +p 2,把它代入y 2=2px ,化简,得y 2-2pky -p 2=0.∴y 1y 2=-p 2,∴x 1x 2=y 212p ·y 222p =(y 1y 2)24p 2=(-p 2)24p 2=p 24.(2)根据抛物线定义知|FA |=x 1+p 2,|FB |=x 2+p 2,∴1|FA |+1|FB |=1x 1+p 2+1x 2+p 2=22x 1+p +22x 2+p =2(2x 2+p )+2(2x 1+p )(2x 1+p )(2x 2+p )=4(x 1+x 2)+4p 4x 1x 2+2p (x 1+x 2)+p 2=4(x 1+x 2+p )2p (x 1+x 2+p )=2p . (3)设AB 中点为C (x 0,y 0),过A ,B ,C 分别作准线的垂线,垂足分别为A 1,B 1,C 1.则|CC 1|=12(|AA 1|+|BB 1|)=12(|AF |+|BF |)=12|AB |.∴以线段AB 为直径的圆与抛物线的准线相切.。
高二数学必修2练习题一、集合与函数概念1. 判断下列各题中,集合A与集合B是否相等:(1) A={x|x²3x+2=0},B={1, 2}(2) A={x|x为小于5的自然数},B={0, 1, 2, 3, 4}(1) x∈M且x²2x3>0(2) x∉M且x²+x+1<03. 已知函数f(x)=2x+1,求f(3)和f(1)的值。
二、幂函数、指数函数与对数函数(1) y=x²(2) y=3^x(3) y=log₂(x1)(1) y=2x(2) y=(1/2)^x(3) y=log₃x3. 已知函数f(x)=2^x,求f(x+1)f(x)的值。
三、三角函数(1) sin 30°(2) cos 45°(3) tan 60°2. 已知sin α=1/2,求cos α的值。
(1) sin x + cos x = 1(2) 2sin²x sin x 1 = 0四、平面向量1. 已知向量a=(2, 3),求向量a的模。
2. 已知向量a=(4, 5),向量b=(3, 2),求向量a与向量b的和、差及数量积。
(1) 向量a与向量b的模相等,则向量a=向量b。
(2) 向量a与向量b的数量积为零,则向量a与向量b垂直。
五、数列(1) 3, 6, 9, 12, …(2) 1, 1/2, 1/4, 1/8, …2. 已知数列{an}的通项公式为an=n²,求a1, a2, a3的值。
(1) 2, 4, 8, 16, …(2) 1, 3, 6, 10, …六、不等式与不等关系(1) 3x 5 > 2x + 1(2) (x 1)(x + 2) ≤ 02. 已知不等式组:2x 3y > 6x + 4y ≤ 8求解该不等式组。
(1) 若a > b,则a² > b²。
(2) 若a < b,则1/a > 1/b。
课时作业2 导数的计算一、选择题1.若对任意x 属于R ,f ′(x )=4x 3,f (1)=-1,则f (x )是( )A .f (x )=x 4B .f (x )=x 4-2C .f (x )=4x 3-5D .f (x )=x 4+2设f (x )=x 4+b ,∵f (1)=-1,∴b =-2,∴f (x )=x 4-2.故应选B.B2.函数y =12(e x +e -x )的导数是( ) A.12(e x -e -x ) B.12(e x +e -x ) C .e x -e -x D .e x +e -xy ′=⎣⎢⎡⎦⎥⎤12(e x +e -x )′=12(e x -e -x ). 故应选A.A3.若函数y =x 2+a 2x (a >0)的导数为0,则实数x 是( )A .aB .±aC .-aD .a 2y ′=⎝ ⎛⎭⎪⎪⎫x 2+a 2x ′=2x ·x -(x 2+a 2)x 2=x 2-a 2x 2,由x 2-a 2=0得x =±a .故应选B.B4.函数f (x )=2a 3+5a 2x 2-x 6的导数为( )A .6a 2+10ax 2-x 6B .2a 3+10a 2x -6x 5C .10a 2x -6x 5D .5a 2x -6x 5f ′(x )=(2a 3+5a 2x 2-x 6)′=10a 2x -6x 5.故应选C.C5.下列函数在x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x +2xD .y =1cos x∵y ′=⎝ ⎛⎭⎪⎫1x +2x ′=⎝ ⎛⎭⎪⎫1x ′+(2x )′=-1x 2+2, ∴当x =0时,函数无定义,且y ′不存在,故该函数在x =0处没有切线.故应选C.C6.若曲线y =x n 在x =2处的导数为12,则n =( )A .1B .2C .3D .4y ′=(x n )′=n ·x n -1.由n ·2n -1=12得n =3.故应选C.C7.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)3+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1f (x )=(x -1)3+3(x -1),∵f ′(x )=3(x -1)2+3,∴f ′(1)=3.故应选A.A8.设函数y =f (x )是线性函数,已知f (0)=1,f (1)=-3,则f ′(x )=( )A .4xB .-4C .-2D .6由f (x )是线性函数,可设f (x )=ax +b (a ,b 为常数,且a ≠0),由f (0)=1,f (1)=-3,解得a =-4,b =1,∴f (x )=-4x +1,∴f ′(x )=-4.故应选B.B二、填空题9.曲线y =4x 3在点Q (16,8)处的切线的斜率是________.∵y =x 34 ,∴y ′=34x 34 -1 =34x -14 , ∴y ′| x =16=38.3810.曲线y =x 3+x +1在点(1,3)处的切线方程是________.令f (x )=x 3+x +1,由导数的几何意义知在点(1,3)处的切线斜率k =f ′(1)=3×12+1=4.所以由点斜式得切线方程为y -3=4(x -1),即4x -y -1=0.4x -y -1=1011.曲线y =x 3在点(1,1)处的切线与x 轴、直线x =2所围成的三角形的面积为________.y ′=3x 2,所以k =y ′⎪⎪x =1=3,所以切线方程为y -1=3(x -1),即y =3x -2.由⎩⎨⎧ y =3x -2x =2,解得⎩⎨⎧ x =2y =4,所以S =12×43×4=83. 83 12.曲线y =x 3在点(a ,a 3)(a ≠0)处的切线与x 轴、直线x =a 所围成的三角形的面积为16,则a =________. y ′=3x 2,所以切线方程为y -a 3=3a 2(x -a ),即y =3a 2x -2a 3.可求得切线与x 轴的交点为⎝ ⎛⎭⎪⎫23a ,0,与直线x =a 的交点为(a ,a 3),所以三角形面积为S =12×a 3×a 3=16,解得a =±1. ±1三、解答题13.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a ,b ,c 的值.∵曲线y =ax 2+bx +c 过点P (1,1),∴a +b +c =1. ① ∵y ′=2ax +b ,∴y ′|x =2=4a +b ,∴4a +b =1. ②又曲线过点Q (2,-1),∴4a +2b +c =-1. ③ 联立①②③解得a =3,b =-11,c =9.14.(1)求曲线y =2x x 2+1在点(1,1)处的切线方程; (2)运动曲线方程为S =t -1t 2+2t 2,求t =3时的速度. (1)∵y ′=2(x 2+1)-2x ·2x (x 2+1)2 =2-2x 2(x 2+1)2,y ′| x =1=2-24=0, 即曲线在点(1,1)处的切线斜率k =0,因此曲线y =2x x 2+1在(1,1)处的切线方程为y =1.(2)S ′=⎝ ⎛⎭⎪⎪⎫t -1t 2′+(2t 2)′ =t 2-2t (t -1)t 4+4t=-1t 2+2t 3+4t . S ′| t =3=-19+227+12=112627. 15.已知函数f (x )=ax 4+bx 3+cx 2+dx +e 为偶函数,它的图象过点A (0,-1),且在x =1处的切线方程为2x +y -2=0,求函数y =f (x )的表达式.∵f (x )是偶函数,f (-x )=f (x ),∴b =d =0,f (x )=ax 4+cx 2+e ,又∵图象过点A (0,-1),∴e =-1,∴f (x )=ax 4+cx 2-1,f ′(x )=4ax 3+2cx ,当x =1时,f ′(1)=4a +2c =-2, ①对于2x +y -2=0,当x =1时,y =0.∴点(1,0)在f (x )图象上,∴a +c -1=0. ②由①②解得a =-2,c =3,因此f (x )=-2x 4+3x 2-1.16.已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1,C 2都相切,求直线l 的方程.设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对C 1:y ′=2x ,则与C 1相切于点P 的切线方程为y -x 21=2x 1(x-x 1),即y =2x 1x -x 21. ①对C 2:y ′=-2(x -2),则与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4.② ∵两切线重合,∴⎩⎨⎧ 2x 1=-2(x 2-2)-x 21=x 22-4,解得⎩⎨⎧ x 1=0x 2=2或⎩⎨⎧ x 1=2x 2=0,∴直线方程为y =0或y =4x -4.。
立体几何22作业(文科)知识回顾一、旋转体和多面体 1.旋转体的形成几何体 旋转图形 旋转轴 圆柱 矩形 任一边所在的直线 圆锥 直角三角形 任一直角边所在的直线 圆台 直角梯形 垂直于底边的腰所在的直线球半圆直径所在的直线2.多面体的结构特征3.直观图(1)画法:常用斜二测画法. (2)规则:①在已知图形中建立直角坐标系xOy ,画直观图时,它们分别对应x ′轴和y ′轴,两轴交于点O ′,使∠x ′O ′y ′=45°,它们确定的平面表示水平平面;②已知图形中平行于x 轴或y 轴的线段,在直观图中分别画成平行于x ′轴和y ′轴的线段; ③已知图形中平行于x 轴的线段,在直观图中保持原长度不变;平行于y 轴的线段,长度为原来的12.4.三视图(1)三视图的画法规则:主、俯视图长对正,主、左视图高平齐;俯、左视图宽相等,前后对应. (2)画简单组合体的三视图应注意的两个问题:①首先,确定主视、俯视、左视的方向,同一物体放置的位置不同,所画的三视图可能不同.②其次,简单组合体是由哪几个基本几何体组成的,并注意它们的组成方式,特别是它们的交线位置.典例1、如图,某几何体的主视图与左视图都是边长为1的正方形,且体积为12,则该几何体的俯视图可以是 ( )二、空间图形的基本关系与公理 1.空间图形的公理(1)公理1:过不在一条直线上的三点,有且只有一个平面(即可以确定一个平面). (2)公理2:如果一条直线上的两点在一个平面内,那么这条直线在此平面内(即直线在平面内).(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.(4)公理4:平行于同一条直线的两条直线平行. 2.空间中两直线的位置关系(1)空间中两直线的位置关系⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线平行直线异面直线:不同在任何一个平面内(2)异面直线所成的角①定义:过空间任意一点P 分别引两条异面直线a ,b 的平行线l 1,l 2(a ∥l 1,b ∥l 2),这两条相交直线所成的锐角(或直角)就是异面直线a ,b 所成的角.②范围:⎝⎛⎦⎤0,π2. (3)定理(等角定理)空间中,如果两个角的两条边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)空间中直线与平面的位置关系位置关系图形表示符号表示公共点直线a在平面α内aα有无数个公共点直线在平面外直线a与平面α平行a∥α没有公共点直线a与平面α斜交a∩α=A有且只有一个公共点直线a与平面α垂直a⊥α(2)空间中两个平面的位置关系位置关系图形表示符号表示公共点两平面平行α∥β没有公共点两平面相交斜交α∩β=l有一条公共直线垂直α⊥β且α∩β=a典例2、如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是()A B C D三、线面平行1.线面平行的判定定理和性质定理文字语言图形语言符号语言判定定理平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行(简记为“线线平行⇒线面平行”)∵l∥a,aα,lα,∴l∥α性质定理一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行(简记为“线面平行⇒线线平行”)∵l∥α,lβ,α∩β=b,∴l∥b2.面面平行的判定定理和性质定理文字语言图形语言符号语言判定定理一个平面内的两条相交直线与另一个平面平行,则这两个平面平行(简记为“线面平行⇒面面平行”)∵a∥β,b∥β,a∩b=P,aα,bα,∴α∥β性质定理如果两个平行平面同时和第三个平面相交,那么它们的交线平行∵α∥β,α∩γ=a,β∩γ=b,∴a∥b 1111①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.四、线面垂直1.直线与平面垂直(1)定义:如果一条直线和一个平面内的任意一条直线都垂直,那么称这条直线和这个平面垂直.(2)定理文字语言图形语言符号语言判定定理如果一条直线和一个平面内的两条相交直线都垂直,那么该直线与此平面垂直⎭⎪⎬⎪⎫aαbαl⊥al⊥ba∩b=A⇒l⊥α性质定理如果两条直线同垂直于一个平面,那么这两条直线平行⎭⎬⎫a⊥αb⊥α⇒ a∥b2.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫作二面角.这条直线叫作二面角的棱,这两个半平面叫作二面角的面.(2)二面角的度量——二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作垂直于棱的两条射线,这两条射线所成的角叫作二面角的平面角.平面角是直角的二面角叫作直二面角.3.平面与平面垂直(1)定义:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.(2)定理文字语言图形语言符号语言判定定理如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直⎭⎬⎫l⊥αlβ⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⎭⎬⎫α⊥βlβα∩β=al⊥a⇒l⊥αA.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面βB.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βC .如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βD .如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l ,那么l ⊥γ 五、空间几何体的表面积与体积 1.多面体的表(侧)面积因为多面体的各个面都是平面,所以多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和.2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式 S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r 1+r 2)l三者关系S 圆柱侧=2πrl ――→r ′=r S 圆台侧=π(r +r ′)l ――→r ′=0S 圆锥侧=πrl名称几何体表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥) S 表面积=S 侧+S 底 V =13Sh台体(棱台和圆台)S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 31.正四面体的表面积与体积棱长为a 的正四面体,其表面积为3a 2,体积为212a 3. 2.几个与球有关的切、接常用结论 (1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1,棱长为a 的正四面体,其内切球半径R 内=612a ,外接球半径R 外=64a . 典例5、如图,将一个长方体用过相邻三条棱的中点的平面截出一个棱锥,则该棱锥的体积与剩下的几何体体积的比为________.强化训练一、单选题1.正四棱台的上、下底面边长分别为1cm,3cm 2cm ,则棱台的侧面积为( ) A .24cmB .28cmC .243cmD .23cm2.设a ,b 是两条不同的直线,,αβ是两个不同的平面,给出下列命题: ①若,,a b a b αβ⊥⊂⊂,则αβ⊥ ②若,,a b αβαβ⊂⊂∥,则a b ∥ ③若,,a b αβαβ⊂⊥∥,则a b ⊥ ④若,,a b a b αβ⊥⊥∥,则αβ∥ 其中为真命题的是( ) A .①②B .②③C .③④D .①④3.正方体1111ABCD A B C D -中,点M 在棱1DD 上,过点C 作平面1BMC 的平行平面α,记平面α与平面11BCC B 的交线为l ,则1A C 与l 所成角的大小为( )A .6πB .4π C .3π D .2π 4.如图,正方体1111ABCD A B C D -中,若E ,F ,G 分别是棱AD ,1C C ,11B C 的中点,则下列结论中正确的是( ) A .BE ⊥平面DFGB .1//A E 平面DFGC .//CE 平面DFGD .平面1//A EB 平面DFG5.以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直D .棱台的每条侧棱均与上下底面不垂直6.已知四棱锥的底面是边长为2的正方形,侧棱长均为5.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为( ) A .4π B .2π C .23π D .π7.如图是一个长方体的展开图,如果将它还原为长方体,那么线段AB 与线段CD 所在的直线( )A .平行B .相交C .是异面直线D .可能相交,也可能是异面直线8.如图为一个三棱锥的三视图,则该三棱锥的体积为( )A .13B .23C .12D .439.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .5B .4C .3D .210.“圆柱容球”是指圆柱形容器里放了一个球,且球与圆柱的侧面及上、下底面均相切,则该圆柱的体积与球的体积之比为( ) A .2 B .32C .3D .π3二、填空题11.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的外接球的表面积为________.12.已知圆锥的顶点为P ,母线PA ,PB 所成角的余弦值为34,PA 与圆锥底面所成角为60°,若PAB △的面积为7,则该圆锥的体积为______.13.某圆柱的侧面展开图是面积为8的正方形,则该圆柱一个底面的面积为___________. 14.如图,在棱长为2的正方体1111ABCD A B C D -中,E 是侧面11BB C C 内的一个动点,则三棱锥1D AED -的体积为_________.三、解答题15.如图,在三棱锥P ABC -中,底面ABC 是直角三角形,2AC BC ==,PB PC =,D 为AB 的中点.(1)证明:BC PD ⊥;(2)若3PA =,5PB =,求点A 到平面PDC 的距离.16.如图1,菱形ABCD 中,60A ∠=︒,4AB =,DE AB ⊥于E ,将AED 沿DE 翻折到A ED ',使A E BE '⊥,如图2.(1)求三棱锥C A BD -'的体积;(2)在线段A D '上是否存在一点F ,使EF ∥平面A BC '?若存在,求DFFA '的值;若不存在,说明理由.17.如图,在三棱锥P -ABC 中,底面ABC 是直角三角形,AC =BC =2,PB =PC ,D 为AB 的中点.(1)证明:BC⊥PD;(2)若AC⊥PB,PA=3,求直线PA与平面PBC所成的角的正弦值.。
绝密★启用前高二数学(理)寒假作业2人教B 版数学注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明一、选择题本大题共18小题,每小题3分,共54分,在每小题给出的四个选项中,只有一项是符合题目要求的1.在等差数列中,若,则的值为( )A 、9B 、12C 、16D 、7 2.已知函数2()f x x bx =-的图像在点(1,(1))A f 处的切线l 与直线310x y +-=的前n 项和为n S ,则2012S 的值为( )A B .D 3.数列的首项为3,为等差数列且若b 6=-12,b 2=12,则a 8=A .0B .3C .8D .114.已知数列,11,3,7,5,3,1…21,12则-n 是这个数列的第( ) A.10项 B.11项 C.12项 D.21项5.不等式04)2(2)2(2<--+-x a x a 对于R x ∈恒成立,那么a 的取值范围是( )A .)2,2(-B .]2,2(-C .]2,(-∞D .)2,(--∞ 6.在等差数列中,,则=( )A.9B.11C.13D.15 7.设数列{}n a 是等差数列,则 ( ) A .5481a a a a +<+ B .5481a a a a +=+ C .5481a a a a +>+ D .5481a a a a =○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………8.如果等差数列{}n a 中,3a +4a +5a =12,那么=4a ( ) A. 1 B. 2 C. 3 D. 4 9.若数列中,,则( ).A .B .C .D .10.已知点(,)x y 满足x+y ≤6,y>0,x-2y ≥0,则4y x-的最大值为( ) A .12-B.23-C.0D.不存在11.已知等差数列的中,公差,前项和,则与分别为A .10,8 B. 13,29 C.13,8 D.10,29 12.已知等差数列}{n a 中,299,161197==+s a a , 则12a 的值是 A . 15 B .30 C .31 D .6413.设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =( )A .8B .7C .6D .5 14.等差数列n a 中,1351,14a a a ,其前n 项和100nS ,则n 等于()A .9B .10C .11D .1215.公差不为零的等差数列{}n a 中,12513a a a ++=,且1a 、2a 、5a 成等比数列,则数列{}n a 的公差等于(A )1(B )2 (C )3 (D )416.设b 3是a -1和a +1的等比中项,则b a 3+的最大值为( ) A 、1 B 、2C 、3D 、417.设.若的最小值为 A .8 B .4 C .1 D .18.在等差数列{}n a 中,有35710133()2()48a a a a a ++++=,则此数列的前13项和为:A . 24B .39C .52D .104第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题二、填空题本大题共4小题,每小题4分,共16分,把答案填在题中的横线上19.数列{}n a 中,)2,(122,511≥∈-+==*-n N n a a an n n ,若存在实数λ,使得数为等差数列,则λ= ; 20.已知等差数列{n a }的前n 项和为S n 为 .21.设实数x 、y 满足⎪⎩⎪⎨⎧≤--≥-≥02020y x y x x ,则y x +2的最小值为__________ -22. 等差数列{an}中,10a <,n S 为前n 项和,且316S S =,则nS 取最小值时,n 的值为___三、解答题三、解答题本大题共3小题,每小题10分,共730分。
高二数学国庆假期作业(二)班级 姓名 学号______一、填空题:(本大题共14小题,每题5分,共70分)1、若直线//l 平面α,直线a α⊂,则l 与a 的位置关系是 .2、函数y=)35(log 21-x 的定义域为_____________.3、已知直线3430x y +-=与直线6140x my ++=平行,则它们之间的距离是________.4、已知b a bx ax x f +++=3)(2是偶函数,定义域为]2,1[a a -,则b a += .5、方程3log 3=+x x 的解所在的区间为(,1)k k k Z +∈,则k 值为_________.6、已知圆22:(3)(4)4C x y -+-=,过点A(1,0)与圆C 相切的直线方程为 .7、点E ,F ,G ,H 分别为空间四边形ABCD 中AB ,BC ,CD ,AD 的中点, 若AC=BD ,且AC 与BD 成900,则四边形EFGH 是__________. (从“菱形”“ 梯形”“ 正方形”“ 空间四边形”选择一个的填空.)8、已知直线b a ,及平面α,下列命题中: ①αα//a b b a ⇒⎩⎨⎧⊥⊥;②αα⊥⇒⎩⎨⎧⊥a b b a //;③ //////a ba b αα⎧⇒⎨⎩ ;④//a ba b αα⎧⇒⊥⎨⊥⎩,正确命题的序号为__________. 9、在正方体1111ABCD A BC D -中,E F G H ,,,分别为1AA ,AB , 1BB ,11B C 的中点,则异面直线EF 与GH 所成的角等于__ _____. 10、函数f(x)= lg (-2x +4x+5)的单调减区间为 . 11、已知m 、l 是直线, αβ、是平面, 给出下列命题: ①若l 垂直于α内的两条相交直线, 则l ⊥α; ②若l 平行于α, 则l 平行α内所有直线; ③若m l l m ⊂⊂⊥⊥αβαβ,,,且则; ④若l l ⊂⊥⊥βααβ,且,则; ⑤若m l m ⊂⊂αβαβ,,,且∥则∥l .其中正确的命题的序号是 .FC B A FDCG E 1BH1C1D1A12、已知集合{}(,)|M x y y x m ==+,{(,)|N x y y == ,若M N 有两个不同的元素,则m 的取值范围是__________.13、以等腰直角三角形ABC 斜边BC 上的高AD 为折痕,将△ABC 折成二面角B AD C --等于 时,在折成的图形中,△ABC 为等边三角形.14、已知函数)(x f 定义在),0(+∞上,测得)(x f 的一组函数值如表:试在函数x y =,x y =,2x y =,12-=x y ,1ln +=x y 中选择一个函数)(x g 来描述)(x f ,则这个函数应该是 .二、解答题:(本大题共6小题,共90分. 解答应写出文字说明,证明过程或演算步骤.) 15、(本题满分14分)已知三角形的顶点为(2,4)A ,(0,2)B -,(2,3)C -,求: (1)AB 边上的中线CM 所在直线的方程;(2)求ABC ∆的面积.16、(本题满分14分)在平行四边形ABCD 中,AB=AC=1,∠ACD=90°,将它沿对角线AC 折起,使平面ABC ⊥平面ACD , (1)求证:AB ⊥CD(1)求异面直线AD 与BC 所成的角.A B CD AB D17、(本题满分15分)如图,三棱柱ABC —A 1B 1C 1 中,1AA ⊥平面ABC ,AC =BC =1,∠ACB=90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明你的结论.18、(本题满分15分)如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点.(1)求证:直线1BD ∥平面PAC ; (2)求证:平面PAC ⊥平面1BDD ; (3)求证:直线1PB ⊥平面PAC .PD 1C 1B 1A 1D CBA19、(本题满分16分)圆C 的半径为3,圆心C 在直线02=+y x 上且在x 轴下方,x 轴被圆C 截得的弦长为52. (1)求圆C 的方程;(2)是否存在斜率为1的直线l ,使得以l 被圆C 截得的弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由. 20、(本小题16分) 某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元):(1) 分别将A 、B 两种产品的利润表示为投资的函数关系式;(2) 该企业已筹集到18万元资金,并全部投入A ,B 两种产品的生产. ①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元.4 6高二数学国庆假期作业(二)参考答案一、填空题:(本大题共14小题,每小题5分,共70分.)1、平行或异面2、34,55⎛⎤⎥⎝⎦3、 24、315、__2__6、1x =或3430x y --=7、正方形8、 ④9、_60010、(2,5)或者[2,5) 11、①④ 12、[1 13、900 14、1ln +=x y二、解答题:(本大题共6小题,共90分. 解答应写出文字说明,证明过程或演算步骤.) 15、(本题满分13分)已知三角形的顶点为(2,4)A ,(0,2)B -,(2,3)C -, 求:(1)AB 边上的中线CM 所在直线的方程;(2)求ABC ∆的面积.解:(1)AB 中点M 的坐标是(1,1)M ,………………………2分中线CM 所在直线的方程是113121y x --=---,………………4分 即2350x y +-= …………………6分(2)解法一: AB ==…………8分直线AB 的方程是320x y --=, …………10分 点C 到直线AB 的距离是d ==……12分 所以△ABC 的面积是1112S AB d =⋅=. ………13分 16、(本题满分14分)在平行四边形ABCD 中,AB=AC=1,∠ACD=90°,将它沿对角线AC 折起,使平面ABC ⊥平面ACD , (1)求证:AB ⊥CD (1)求异面直线AD 与BC 所成的角. 16.解(1)略(2)60°17、(本题满分15分)如图,三棱柱ABC —A 1B 1C 1 中,1AA ⊥平面ABC ,AC =BC =1,∠ACB=90°,AA 1 =2,D 是A 1B 1 中点.(1)求证C 1D ⊥平面A 1B ;(2)当点F 在BB 1 上什么位置时,会使得AB 1 ⊥平面C 1DF ?并证明你的结论. 17.解(1)略(2)F 为BB 1 中点,证明略18、(本题满分15分)如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点.(1)求证:直线1BD ∥平面PAC ; (2)求证:平面PAC ⊥平面1BDD ;(3)求证:直线1PB ⊥平面PAC . 解:(1)设AC 和BD 交于点O ,连PO ,由P ,O 分别是1DD ,BD 的中点,故PO//1BD ,所以直线1BD ∥平面PAC …………5分 (2)长方体1111D C B A ABCD -中,1==AD AB ,底面ABCD 是正方形,则AC ⊥BD 又1DD ⊥面ABCD ,则1DD ⊥AC ,所以AC ⊥面1BDD ,则平面PAC ⊥平面1BDD …………10分(3)PC 2=2,PB 12=3,B 1C 2=5,所以△PB 1C 是直角三角形.1PB ⊥PC ,同理1PB ⊥PA ,所以直线1PB ⊥平面PAC . …………15分19、(本题满分16分)圆C 的半径为3,圆心C 在直线02=+y x 上且在x 轴下方,x 轴被圆C 截得的弦长为52.(1)求圆C 的方程;(2)是否存在斜率为1的直线l ,使得以l 被圆C 截得的弦AB 为直径的圆过原点?若存在,求出l 的方程;若不存在,说明理由. 解:(1)由题意,设圆心C (,2)a a -,(0a >)…………1分 则圆的方程可设为22()(2)9x a y a -++= ………2分PD 1C 1B 1A 1DCBA由几何性质知,222(2)3a -+=, ………4分 解得1a = ………5分∴圆C 的方程是22(1)(2)9x y -++= … ……6分另法:令0y =处理. ………6分 (2)设l 的方程y x b =+,以AB 为直径的圆过原点,则 OA ⊥OB ,设A 11(,)x y ,B 22(,)x y ,则1212x x y y +=0 ① ………8分 由⎩⎨⎧+==++-bx y y x 9)2()1(22得 0)44()22(222=-++++b b x b x ………10分 要使方程有两个相异实根,则△=)44(24)22(22-+⨯-+b b b >0 即323--<b<323- ……11分244,122121-+=--=+b b x x b x x ………12分 由y 1=x 1+b ,y 2=x 2+b ,代入x 1x 2+ y 1y 2=0,得2x 1x 2+(x 1+x 2)b+b 2=0 ……14分 即有b 2+3b-4=0,b=-4,b=1(舍去) ……15分 故存在直线L 满足条件,且方程为4-=x y 或1+=x y ………16分20、(本小题16分) 某企业生产A ,B 两种产品,根据市场调查与预测,A 产品的利润与投资成正比,其关系如图一;B 产品的利润与投资的算术平方根成正比,其关系如图二(注:利润和投资单位:万元):(1) 分别将A 、B 两种产品的利润表示为投资的函数关系式;(2) 该企业已筹集到18万元资金,并全部投入A ,B 两种产品的生产. ①若平均投入生产两种产品,可获得多少利润?②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约4 6为多少万元. 解:(1) 设甲乙两种产品分别投资x 万元,所获利润分别为f(x) 、g(x)万元由题意可设f(x)=1k x ,g(x)=k ……2分 根据图象知,f(x)图象过点(1,0.25),g(x)的图象过点(4,4) 代入各自函数表达式解得:1k =0.25,2k =2∴A 、B 两种产品的利润函数分别为:f(x)=0.25x ,g(x)= ……6分(2)①由(1)得f(9)=2.25,g(9)==6, ∴ 总利润y=8.25万元 ……8分②设B 产品投入x 万元,A 产品投入18-x 万元,该企业可获总利润为y 万元,则有y=14(18-x)+0≤x ≤18 ……10分,则y=14(-t 2+8t+18)= 21(4)4t --+344 , 0t ≤≤ …13分∴当t=4时,y max =344=8.5,此时x=16,18-x=2 ……15分答:A 、B 两种产品分别投入2万元、16万元,可使该企业获得最大利润,且最大利润为8.5万元. ……16分。
2章章末一、选择题1.设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序无素对(a,b),在S中有惟一确定的元素a*b与之对应).若对任意的a,b∈,有a* (b*a)=b,则对任意的a,b∈S,下列等式中不恒成立的是()A.(a*b) *a=aB.[a* (b*a)] * (a*b)=aC.b* (b*b)=bD.(a*b) * [b* (a*b)]=b[答案] A[解析]抓住本题的本质a* (b*a)=b此式恒成立.a,b只要为S中元素即可,a*b∈S,B中由已知即为b* (a*b)=a符合已知条件形式.C中取a=b即可.D中a*b相当于已知中的a,也正确.只有A不一定正确.2.观察按下列顺序排列的等式:9×0+1=1,9×1+2=11,9×2+3=21,9×3+4=31,…,猜想:第n(n∈N+)个等式应为()A.9(n+1)+n=10n+9B.9(n-1)+n=10n-9C.9n+(n-1)=10n-1D.9(n-1)+(n-1)=10n-10[答案] B3.已知数列2,5,22,11,…,则25是这个数列的()A.第6项 B.第7项C.第19项D.第11项[答案] B[解析]2,5,8,11,…,而25=20,可见各根号内构成首项为2,公差为3的等差数列由20=2+(n-1)×3得n=7.二、填空题4.已知等式cos α·cos2α=sin4α4sin α,cos α·cos2α·cos4α=sin8α8sin α,…,请你写出一个具有一般性的等式,使你写出的等式包含了已知等式(不要求证明),那么这个等式是:__________________.[答案] cos α·cos2α·…·cos(2n -1α)=sin(2n α)2n sin α[解析] 该题通过观察前几个特殊式子的特点,通过归纳推理是得出一般规律,写出结果即可.5.(2010·淄博模拟)已知函数f (x )满足:f (p +q )=f (p )f (q ),f (1)=3,则f (1)2+f (2)f (1)+f (2)2+f (4)f (3)+f (3)2+f (6)f (5)+f (4)2+f (8)f (7)=________. [答案] 24[解析] 依题意有f (2x )=f (x +x )=f 2(x ),又f (x +1)=f (x )·f (1),∴f (1)=f (x +1)f (x ). 于是原式=2f (2)f (1)+2f (4)f (3)+2f (6)f (5)+2f (8)f (7)=2[f (1)+f (1)+f (1)+f (1)]=24.三、解答题6.已知函数f (x )=a x +x -2x +1(a >1) (1)证明f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负根.[证明] 任取x 1、x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0,∵a >1,∴ax 2-x 1>1,且ax 1>0,∴ax 2-ax 1=(ax 2-x 1-1)ax 1>0,又∵x 1+1>0,x 2+1>0.∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1),满足f (x 0)=0.①若-1<x 0<0,则x 0-2x 0+1<-2,ax 0<1, ∴f (x 0)<-1与f (x 0)=0矛盾②若x 0<-1,则x 0-2x 0+1>0,ax 0>0, ∴f (x 0)>0与f (x 0)=0矛盾. 故方程f (x )=0没有负数根.。
高二数学作业2:
简述新课程中常用逻辑用语、圆锥曲线与方程的定位、要求、变化及其缘由。
长春市朝鲜族中学黄美花常用逻辑用语部分:
常用逻辑用语,原来叫简易逻辑。
在定位上和结构上发生的明显变化:第一个就是把集合和常用逻辑用语分开。
常用逻辑用语主要是帮助学生熟悉、了解并且能够在日常生活和数学中正确地使用,特别是数学中经常用到的一些逻辑用语,而不把它作为逻辑学初步,也不作为数理逻辑学初步,这是非常明显的一个不讲极限的情况下直接切入,通过大量实例分析和几何直观认识和理解导数,并且能够利用它去讨论一些实际问题。
一、定位
正确地使用逻辑用语是现代社会公民应该具备的基本素质.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思想.在本模块中,学生将在义务教育阶段的基础上,学习常用逻辑用语,体会逻辑用语在表述和论证中的作用,利用这些逻辑用语准确地表达数学内容,更好地进行交流.
二、要求
(1)命题及其关系
新课程标准:①了解命题的逆命题、否命题与逆否命题.
②理解必要条件、充分条件与充要条件的意义,会分析四种命题的相互关系.
教学大纲:①理解四种命题及其相互关系;
②掌握充要条件的意义.
(2)简单的逻辑联结词
新课程标准:通过数学实例,了解“或”、“且”、“非”的含义.
教学大纲:理解逻辑联结词“或”、“且”、“非”的含义.
(3)全称量词与存在量词
新课程标准:①通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.
②能正确地对含有一个量词的命题进行否定.
三、变化
(1)①名称上的改变:大纲《集合与简易逻辑》,课标《常用逻辑用语》;
②顺序上的变化:与集合分离,在必修内容之后,避免形式化的趋向,起点更高,有丰富的实例储备,既能更好地理解的理解和体会常用逻辑用语,又能通过常用逻辑用语的应用加深和提升对已有知识的理解,
③加强思考问题的严谨性;内容上的变化:课标引入了符号:“∧”、“∨”,
分别用“p∨q”及“p∧ q”代替大纲中“p或q”及“p且q”从而与符号“p”(非p)相对应,
(2)课标增加了“全称量词与存在量词”的内容,包括以下知识点:
①全称量词与全称命题的概念及符号
②存在量词与特称命题的概念及符号“”,
(3)含有一个量词的命题的否定.;
课标未提及“简单命题”和“复合命题”的概念,课标A版未提及真值表的概念,课标未提及“反证法”的概念,大纲提出了“反证法”的概念,详细地叙述了反证法的一般步骤,并举例说明了方法的应用对于某些含有变量因而无法判断其真假的语句,如果对变量加以限制,这些语句就可以成为命题了.教科书介绍了对变量加以限制的两类量词:全称量词和存在量词,指出判断全程命题和特称命题真假的方法,并介绍了如何对只含有一个量词的全称命题和特称命题进行否定.对此,旨在让学生体会全称量词和存在量词的意义,能正确地对含有一个量词命题进行否定.
四、变化及缘由
1.通过大量数学实例的介绍,加强对基本概念意义的理解
在大量的数学实例的基础上,思考、探究、分析、发现,最后总结概括出相关概念和知识,是本章内容的突出特色。
本章内容,重在让学生通过对常用逻辑用语的学习,体会运用逻辑用语在表述和论证中的作用,能用这些逻辑用语准确地表达数学内容,更好地进行交流。
为此,教科书在安排内容时,就突出了让学生领会这些常用逻辑用语的含义,从而更好的运用
这些常用逻辑用语的这一目的。
本章内容与学生日常生活中的某些概念有一定关联,但就在数学上的运用和含义还有一定差别,因此数学中如何正确理解和运用这些常用逻辑用语,是本章的关键也是较难处理的,为此,教科书是从大量的丰富数学实例出发,来帮助学生认识数学中的这些常用逻辑用语的含义的。
例如,对“命题”概念的阐述,就是通过总结6个数学例子的基础上概括得出的;对于四种命题及其关系,也是通过对命题“若f(x)是正弦函数,则f(x)是周期函数”的条件与结论的互换及否定等具体例子的讨论,达到对四种命题及其关系的认识;逻辑联结词“或”“且”“非”含义和用法的介绍,也是通过学生熟悉的数学实例讲授的;学习完命题及命题的否定后,教科书又安排了丰富的实例,使学生了解生活和数学中经常使用的两类量词(全称量词和存在量词),并通过例子说明如何对含有一个量词的命题进行正确地否定。
2.给学生提供充分的思考、探究的空间
这样的编写意图贯穿本章内容始终。
由于本章内容较为传统,引用的数学实例很多是学生熟悉的,如何在学生熟悉的内容基础上,激发学生学习的兴趣,引发探究知识的欲望,体会本章知识内容学习的重要性和实际意义,是教科书设计的一个重点。
本章突出了对数学实例进行“思考、探究、发现、总结规律、得出结论、实际运用”的特点,从第一节“命题及其关系”中关于“命题”概念的学习,就体现了这一特点。
教科书首先展示了6个学生熟悉的数学表述形式,让学生观察并思考这些表述形式有什么特点,说明能否判断它们的真假,然后
归纳总结出这些表述形式的共同特点:是陈述句,可以判断真假,给出命题的数学定义,然后运用定义,判断例题中的语句哪些是命题,是真命题还是假命题。
随后的四种命题及其关系的学习,也是通过这样的方式展开,先观察四个命题,思考这四个命题的条件和结论的关系,然后发现、归纳出什么是互逆、互否、互为逆否命题,发现四种命题的相互关系。
逻辑联结词“或”“且”“非”也是选取学生熟悉的命题,观察思考这些命题间的关系,引出逻辑联结词,体会借助逻辑联结词联结得到一个新命题的过程,激起思考和探究的欲望。
3.强调数学知识间的前后联系
本章知识内容的学习注重了几个方面的联系:(1)新内容的学习建立在大量的学生已经学过或熟悉的数学实例的基础上,也即联系已学过的数学实例学习新内容;(2)联系物理中的串联、并联电路及其开通情况,更加形象地理解和学习逻辑联结词“且”“或”的含义及判断由它们联结的命题的真假,体会新知识内容的含义;(3)联系并类比集合“交”“并”“补”运算,进一步体会逻辑联结词“且”“或”“非”的含义,以及由它们联结得到一个新命题的过程。
通过前后知识内容的关联,使学生更好的理解新知识,体会新知与旧知间的联系及新知识的运用。
4.注重数学符号语言的运用
大量的借助符号语言表述数学内容,也是本章的特色之一。
符号语言作为数学的基本语言,具有表述的简洁、准确的特点。
如对四种命题的符号表示能帮助我们更加清楚地认识四种命
题及其相互关系;对充分条件、必要条件、充要条件的符号表示有利于我们认识条件和结论间的推出关系;“或”“且”“非”以及全称量词与存在量词的符号表示,也使我们看到了符号语言运用的方便、准确及便利的特点。
本章借助大量的符号语言,使我们进一步体会了运用常用逻辑用语表达和交流的简洁与准确。
圆锥曲线与方程部分:
一、定位
在必修课程学习平面解析几何初步的基础上,在本模块中,学生将学习圆锥曲线与方程,了解圆锥曲线与二次方程的关系,掌握圆锥曲线的基本几何性质,感受圆锥曲线在刻画现实世界和解决实际问题中的作用,进一步体会数形结合的思想.
二、要求
新课程标准:
①了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用.
②经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质.
③了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质.
④能用坐标法解决一些与圆锥曲线有关的简单几何问题(直线与圆锥曲线的位置关系)和实际问题.
⑤通过圆锥曲线的学习,进一步体会数形结合的思想.
教学大纲:
①掌握椭圆的定义、标准方程和椭圆的简单几何性质;理解椭圆的参数方程.
②掌握双曲线的定义、标准方程和双曲线的简单几何性质.
③掌握抛物线的定义、标准方程和抛物线的简单几何性质.
④了解圆锥曲线的简单应用.
⑤结合教学内容,进行运动、变化观点的教育.
三、变化
(1)相对来说,这一部分的内容变化要小一些.主要是更加强调了解析几何方法的灵魂及其体现.目的是帮助学生更好地领悟解析法,习惯于从数和形两个角度去思考问题、处理问题,这也是学习数学的基本方法.
(2)强调数形结合是解析法的灵魂.数形转换、数形结合这一重要的思想.具体体现在:强调几何背景和学生发展的需要.例如,与“大纲”课程相比,“课标”更关注圆锥曲线的来龙去脉,关注其几何背景.并改变了原来缺乏层次、要求单一的设计,对于不同的学生设计了不同的层次,如对希望在人文、社会科学等方面发展的学生,更强调对椭圆这一特殊的圆锥曲线有一个比较全面的了解,而其他的圆锥曲线只作一般性了解.这样做在很大的程度上,是关注学生自身的发展与需要.
四、变化缘由
解析几何是用代数的方法解决几何问题,体现了形数结合的思想,因而这一部分的题目的综合性比较强,它要求学生既能分析图形,又能灵活地进行各种代数式和三角函数式的变形,这对学生能力的要求较高。
坐标方法是要求学生掌握的,但是,作为普通高中的必修课的教学要求不能过高,只能以绝大多数学生所能达到的程度为标准。
在对原教材使用情况进行调查时,有些教师反映教材的题目比较旧,希望增加一些新的题目。
新教材增加了少量有一定的灵活性,难度不大的题目,以便满足这些要求。